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Abstract

Purpose of review—Blood flow is intimately linked with cardiovascular development, repair, 

and dysfunction. The current review will build on the fluid mechanical principle underlying 

hemodynamic shear forces, mechanotransduction, and metabolic effects.

Recent findings—Pulsatile flow produces both time- (∂τ /∂t)and spatial-varying shear stress 

(∂τ /∂x) to modulate vascular oxidative stress and inflammatory response with pathophysiological 

significance to atherosclerosis. The characteristics of hemodynamic shear forces; namely, steady 

laminar (∂τ /∂t= 0), pulsatile (PSS: unidirectional forward flow), and oscillatory shear stress (OSS: 

bidirectional with a near net 0 forward flow) modulate mechano-signal transduction to influence 

metabolic effects on vascular endothelial function. Atheroprotective PSS promotes anti-oxidant, 

anti-inflammatory, and anti-thrombotic responses, whereas atherogenic OSS induces NADPH 

oxidase–JNK signaling to increase mitochondrial superoxide production, protein degradation of 

manganese superoxide dismutase (MnSOD), and post-translational protein modifications of LDL 

particles in the disturbed flow-exposed regions of vasculature. In the era of tissue regeneration, 

shear stress has been implicated in re-activation of developmental genes; namely, Wnt and Notch 

signaling, for vascular development and repair.

Summary—Blood flow imparts a dynamic continuum from vascular development to repair. 

Augmentation of PSS confers atheroprotection and re-activation of developmental signaling 

pathways for regeneration.
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Introduction

Atherosclerosis is a systemic disease; however, its manifestations tend to be eccentric and 

focal. Detection of atherosclerotic lesions prone to rupture is of clinical importance in the 

management of patients for acute heart attack or stroke. In addition to genetic predisposition 

and epigenetic factors, the pathogenesis is modulated by a combination of biochemical and 

hemodynamic factors. Hemodynamic force, such as wall shear stress on the endothelial 

cells, modulates inflammatory and metabolic effects in the vascular system [1]. At the lateral 

walls of bifurcations, disturbed flow, including oscillatory flow (bidirectional and axially 

misaligned flow), is considered to be an inducer of oxidative stress in favor of initiating 

atherosclerosis, whereas in the medial walls of bifurcations, pulsatile flow (unidirectional 

and axially aligned flow) down-regulates inflammatory cytokines, adhesion molecules, and 

oxidative stress [2-4] (Fig. 1). In this review, we focus on how fluid shear stress imparts 

both metabolic and mechanical effects on vascular endothelial function to influence vascular 

remodeling with clinical implication in arterial restenosis after angioplasty [5-7]

Fluid mechanical principle of hemodynamic shear forces

Fluid shear stress is generated by the frictional force by virtue of the viscosity that acts 

tangentially on the endoluminal surface. In the case of Couette flow, the fluid is embedded 

between two parallel plates separated by a displacement H. Shear force is applied to move 

the upper plate with velocity U while the lower plate is fixed. Shear stress (τ) is defined as 

the slope of tangential velocity (du/dy), and is proportional to the dynamic viscosity (μ).

At a constant pressure (P) throughout the fluid domain, the equation of fluid motion known 

as Navier-Stokes equation is defined as follows:

When the upper plate at y = H is moving with velocity U (Utop = U), and the lower plate at y 

= −H is fixed (Ubottom=0) fluid motion is linearly defined as (Figure 2a):

In the case of Poiseuille flow, both the upper and lower plates are fixed. The Navier-Stoke 

equation for 2-D blood flow at a constant pressure applied throughout the fluid domain is 

defined as:
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The velocity profile is parabolic; that is, the velocity is maximal at the center, and zero at the 

wall or y = ±H for the non-slip flow (Figure 2b).

In the case of 3-D Poiseuille flow in the blood vessel, fluid shear stress at steady state (dτ/dt 

= 0) is directly proportional to the flow rate of blood (Q) and dynamic viscosity (μ), and 

inversely proportional to the cube of arterial radius (R).

Therefore, a small decrease in diameter significantly influences wall shear stress.

Fully developed Poiseuille blood flow seldom occurs in the arterial circulation in which the 

dynamic viscosity (μ) is not constant and the blood flow is non-Newtonian. Spatial and 

temporal variations in pulsatile flow prevents fully developed flow. For this reason, 

disturbed flow, including oscillatory flow, preferentially and geometrically occurs in the 

lateral wall of branching points (Figure 1). This atherogenic flow promotes vascular 

oxidative stress and inflammatory responses to initiate atherosclerosis [8].

Spatial variations in hemodynamic shear stress

In the arterial system, the greater curvature of aortic arch and the lateral walls of bifurcating 

regions are prone to develop endothelial dysfunction (Figure 1e). Oscillatory shear stress 

(OSS) in the aortic arch or bifurcation induces oxidative stress via nicotinamide adenine 

dinucleotide phosphate (NADPH)-oxidase enzyme system production of cytosolic 

superoxide (O2
-), and up-regulates atherogenic gene expression, including nuclear factor- 

kB (NF-κB)-mediated adhesion molecules and chemokines [9]. In these regions (Figure 2c-

e), the time-averaged shear stress and pressure are relatively low as compared to the straight 

regions or the greater curvature. As fluid flows from high to lower pressure regions, blood 

flow tends to divert towards the lower pressured regions where the inertia force retards the 

fluid motion, giving rise to flow separation known as eddies. Therefore, OSS develops 

downstream or in the post-stenotic regions, where the time-averaged shear stress is low to 

promote inflammatory responses. In contrast, high shear stress develops upstream in the pre-

stenotic regions, where the “shoulder” of the plaque is susceptible to fluid and mechanical 

mismatch or Von Mises stress to destabilize the plaque for rupture [10]. Thus, hemodynamic 

shear stress is low in post-stenotic but high in pre-stenotic regions [11]. The combination of 

OSS and low mean shear stress favors atherogenesis, whereas pulsatile and high shear stress 
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confers protection [12]. These combined effects highlight the mechanical mechanisms 

underlying the rupture-prone shoulder regions, where inflammatory cells, including 

macrophages, release metalloproteinase (MMP). Despite the highest shear force occurring at 

the narrowing or the throat of stenotic lesions, OSS and low mean shear stress developed in 

post-stenotic regions increase the residence time for LDL and inflammatory cells, including 

monocytes, to transmigrate to the subendothelial layer.

In the throat of stenotic lesions, the high shear stress caused by narrowing of the plaque 

presents an opportunity for shear-activated nanotherapeutic thrombolytic agents to treat 

stenotic plaques [13]. Micro-aggregates of nanoparticles were recapitulated in the mouse 

model in which tissue plasminogen-coated nanoparticles disintegrate into nano-scale 

components in response to high fluid shear stress, leading to rapid clot dissolution in a 

mesenteric injury model to restore blood flow [13]. Although nanotoxicity remains a 

translational barrier, the integration of nanotherapeutics with hemodynamic shear force 

presents a promising direction to address post-stenotic lesion growth.

Despite improvement in imaging modalities such as intravascular ultrasound or magnetic 

resonance angiography to visualize anatomic structures, detecting areas of flow separation 

or low shear stress in post-stenotic regions remains challenging. Given the limitations in 

real-time prediction of rupture-prone regions, Ai et al. demonstrated flow reversal in a 3-D 

eccentric stenotic model by high frequency ultrasonic transducer (45 MHz) [14]. By 

interfacing microelectromechanical system (MEMS) thermal sensors with the high-

frequency pulsed wave Doppler ultrasound, real-time assessment of changes in fluid shear 

stress upstream, downstream, and at the throat of the stenosis was validated by both 

computational fluid dynamics (CFD) codes and the ultrasound-acquired flow profiles. 

Furthermore, post-stenotic regions are prone to vascular oxidative stress and inflammatory 

responses, features of clinical relevance [14]. In this context, the advent of micro shear stress 

sensors holds promise to identify vascular regions of flow reversal with high spatial and 

temporal resolution [15-17]. In corollary, the application of shear-activated nanotherapeutic 

particles opens a new area of nanomedicine to address atherosclerotic lesions in the regions 

of flow separation or reversal when the blood flows though the lesser curvature of the aortic 

arch or the lateral wall of bifurcations. On the other hand, exercise-augmented pulsatile 

shear stress (PSS) up-regulates atheroprotective genes, including endothelial nitric oxide 

synthase (eNOS) [18-22], conferring cardioprotection.

Shear stress-mediated mechanotransduction

Shear stress imparts both metabolic and mechanical effects on vascular endothelial cells 

(EC) [23]. A complex flow profile develops at the arterial bifurcations; namely, flow 

separation and migrating stagnation points, creating low and oscillating shear stress (Figure 

2c-e). In response to fluid shear stress, transmembrane proteins (including G-protein, Lectin-

like oxidized LDL receptor-1 [LOX-1 receptor], Toll-like receptor, and caveolin) [24-26], 

junctional proteins [27], and subendothelial mechanosensors (integrin) [28] are considered 

to be the mechano-receptors that transmit shear forces to mechano-signal transduction 

(Figure. 3). In addition to mechanosensing, EC sense shear stress via deformation of the cell 

surface which leads to the activation of transmembrane ion channels [29, 30], realignment of 
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endothelial cytoskeleton [31-33], and transmission of intracellular signaling pathways to 

modulate gene expressions [34-38].

At the lateral walls of bifurcations, disturbed flow, including OSS is considered to be an 

inducer of oxidative stress. OSS-activated NADPH oxidase enzyme system promotes 

superoxide (O2·-) production. In the presence of superoxide dismutase (SOD), O2·- is 

converted to hydrogen peroxide (H2O2) and hydroxyl radicals (·OH). These two reactive 

oxygen species (ROS) promote LDL oxidation, NF-κB-mediated adhesion molecule and 

matrix metalloproteinase (MMP) expression to destabilize atherosclerotic lesions. In 

parallel, O2
.- reacts with NO· at a rapid diffusion-limited rate to form peroxynitrite 

(ONOO·;-) as a substrate to lipid oxidation and nitrotyrosine formation [3, 6, 39-42]. OSS 

further up-regulates NADPH oxidase-dependent receptors for advanced glycation 

endproducts (RAGE) as an inflammatory mediator in diabetes [43]. In contrast, in the 

medial wall of bifurcations, pulsatile flow (PSS) down-regulates oxidative stress and 

inflammatory responses, but up-regulates eNOS and antioxidant expression to promote 

vasodilatory, anti-inflammatory, anti-oxidative and anti-thrombotic properties [2, 44*]. 

Furthermore, PSS or laminar flow (steady flow at dτ/dt = 0) decreases RAGE expression 

and attenuates RAGE signaling to inhibit NF-κB translocation to the nuclei [45].

Shear stress modulation of low density lipoprotein (LDL) post-translational 

modifications

The post-translational modifications of LDL particles initiate and modulate the progression 

of atherosclerosis. Myeloperoxidase (MPO), present in phagocytes such as macrophages, is 

released in response to oxidative stress and inflammatory responses. MPO produces 

hypochlorous acid by the reaction of H2O2 and chloride ions [46]. While this key reaction 

contributes significantly to the antimicrobial activity of phagocytes [47], a large body of 

evidence now supports oxidation of LDL by the MPO-H2O2-chloride system as a harbinger 

in the development of atherosclerosis [48*].

In addition to cytosolic ROS production, OSS induces mitochondrial O2
.- production [49]. 

OSS activates NADPH oxidase-ROS-JNK signaling, leading to an increase in mitochondrial 

O2
.- production [50-52], whereas PSS increases eNOS activities and mitochondrial 

membrane potential (ΔΨm) accompanied with an increase in Mn-SOD activities [53, 54]. 

Furthermore, oxLDL activates JNK to promote Mn-SOD ubiquitination and protein 

degradation [50-52]. Using a targeted proteomic approach, we have gained mechanistic 

insights into shear-modulated relative ratios of reactive oxygen species (ROS) and reactive 

nitrogen species (RNS), leading to ONOO·;- formation and specific post-translational 

nitration in the α and β helices of the apoB100 protein [53, 55, 56]; namely, α-1 (Tyr144), 

α-2 (Tyr2524), β-2 (Tyr3295), α-3 (Tyr4116), and β-2 (Tyr4211) [53]. Nitration leads to 

Apolipoprotein-B100 unfolding, and the modified particles are endocytosed by the 

scavenger receptors LOX-1, CD36 and SR-A (scavenger receptor-A), further contributing to 

the progression of atherosclerosis [57]. Similarly, high-performance liquid chromatography 

analyses of EC exposed to OSS demonstrates increased expression of the catalytic subunits 

of NADPH oxidase gp91phox or Nox4 with an ensuing increase in O2·- production [3]. In 

contrast, pulsatile shear stress (PSS) up-regulates eNOS expression accompanied with NO· 
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production, further conferring an atheroprotective role to attenuate post-translational 

oxidative and nitrative modifications of LDL particles [40] [3].

Shear stress regulation of inflammatory cell recruitment

Oscillatory flow induces up-regulation of adhesion molecules and cytokines, allowing 

monocyte/endothelial interactions central to atherosclerosis over a dynamic range of shear 

stress, as demonstrated with high spatial and temporal resolution using micro-electro-

mechanical systems (MEMS) sensors [39]. Indeed, EC exposed to low shear stress and flow 

reversal respond to inflammatory stimuli with increased monocyte binding [58], an effect 

mediated in part by the endothelial expression of ICAM-1 (intercellular adhesion 

molecule-1) [59] and release of the central atherogenic chemokine MCP-1 (monocyte 

chemoattractant protein-1) [60].

The transcription factor Krüppel-like factor 2 (KLF2) is an atheroprotective molecule 

induced by statin [61] and resveratrol [62] therapy. Recently, shear stress-induced KLF2 

expression has been implicated in regulating endothelial metabolism[44**]. KLF2 is 

selectively induced in vascular EC exposed to the biomechanics of atheroprotected regions 

of the vasculature [63, 64]. Laminar shear stress reduced endothelial glycolysis by 

repressing the expression of phosphofructokinase-2/fructose-2,6-bisphosphatase-3 

(PFKFB3) in a KLF2-dependent manner to maintain the quiescent metabolic state of EC and 

to inhibit angiogenesis. KLF2 further confers anti-inflammatory, anti-thrombotic, and anti-

oxidative properties. In response to disturbed flow, particular biochemical stimuli, including 

cytokines, high glucose, and oxidative stress, KLF2 expression are reduced, resulting in an 

increase in glycolysis and angiogenesis [65**]. In human carotid arteries, the induction of 

KLF2 results in the regulation of endothelial transcriptional programs controlling 

inflammation, thrombosis, vascular tone, and blood vessel development [63]. KLF2, 

therefore, serves as a mechano-sensitive and atheroprotective transcription factor [63]. 

However, the underlying mechanisms whereby shear stress regulates cellular metabolism, 

including glycolysis and mitochondrial redox state, to maintain endothelial homeostasis 

remains to be explored.

Shear stress regulation of atherothrombosis

The most common complication of atherosclerosis is fibrous cap rupture leading to plaque 

thrombosis and clinical manifestation of acute coronary syndromes or stroke. The 

biomechanical properties of plaque mineralization were recapitulated in in vitro or in silico 

models. When cultures of calcifying vascular cells (CVC), a subpopulation of smooth 

muscle cells that spontaneously mineralize, are subjected to increasing magnitude in 

pulsatile shear stress, calcification does not increase plaque vulnerability to fluid shear 

stress, but may contribute a slight stabilization [66]. Destabilization of atherosclerotic 

plaques occur in the presence of active metabolic states; namely, oxidized lipids and 

activated MMP are released by macrophages [4]. Disturbed flow or extreme high shear 

stress also regulates the expression of tissue factor, also known as factor III, to initiate the 

coagulation cascade following plaque rupture and subsequent thrombotic events [67].
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Shear stress modulation of vascular development and repair

In the era of stem cell and regenerative medicine, hemodynamic shear stress provides a 

biomechanical cure to modulate the microenvironment for vascular differentiation and 

repair. The transcription factor Runx1 (Runt-related transcription factor 1) is a master 

regulator of hematopoiesis [68]. Hemodynamic shear forces increase the expression of 

Runx1 in CD41+c-Kit+ hematopoietic progenitor cells, thus augmenting their colony-

forming potential [68]. Additionally, shear force-mediated mechanotransduction is 

implicated in the differentiation of stem cells to EC [69-71], and modulates hematopoietic 

and multilineage engraftment potential during embryogenesis [72**]. The effects on 

hematopoiesis are mediated in part by a cascade downstream of wall shear stress to regulate 

calcium efflux and to activate the prostaglandin E2-cyclic adenosine monophosphate-protein 

(AMP) kinase A signaling axis [72**].

Steady laminar shear stress was further demonstrated to affect pluripotency, as well as germ 

specification to the mesodermal, endodermal, and ectodermal lineages, as indicated by gene 

expression of OCT4, T-BRACHY, AFP, and NES in mouse embryonic cells [73]. OSS 

induces directional reorganization of F-actin to mediate the fate choice of mesenchymal 

stem cells (MSCs) through the regulation of the β-catenin/Wnt signaling pathway in a time-

dependent manner [74*]. OSS also activates angiopoietin-2 (Ang-2) expression critical to 

angiogenesis via canonical β-catenin/Wnt signaling in human aortic EC [75*]. Low and 

disturbed flow patterns up-regulate Notch1 expression in EC with translational implication 

for arteriovenous identity [76]. Steady shear stress induces VEGF-Notch signaling pathway 

to increase expression of the arterial endothelial marker EphrinB2, but down-regulates the 

venous endothelial marker EphB4 in murine embryonic stem (ES) cells [77]. Thus, the 

hemodynamic cue in the vascular microenvironment modulates vascular differentiation and 

proliferation.

Conclusion

Shear stress imparts both metabolic and mechanical effects on vascular EC, with a clinical 

implication in the focal and eccentric nature of atherosclerotic plaques. Physiologic shear 

stress up-regulates vasodilators, antioxidant enzymes, and tissue plasminogen activator 

(tPA) to confer atheroprotective responses, whereas oscillatory shear stress induces 

vasoconstriction, growth factors, and adhesion molecules to prime atherogenic responses. 

PSS increases endothelial mitochondrial membrane potential (ΔΨm) accompanied by a 

decrease in mitochondrial superoxide production (mtO2·;-), whereas OSS oxidized LDL 

increase mtO2·- production to promote apoptotic pathways. Recently, shear stress-

reactivated developmental Wnt-Ang-2 signaling in mature vascular EC was implicated in 

vascular formation and repair. Shear stress-activated VEGF-Notch signaling regulates the 

fate of arteriovenous differentiation. In this context, the spatial (∂τ /∂x) and temporal (∂τ /∂t) 

variations in shear stress largely determine the focal nature of vascular oxidative stress and 

pro-inflammatory states. While sedentary life-style promotes flow separation and disturbed 

flow, exercise-augmented pulsatile shear stress remains a timeless therapeutic strategy for 

maintaining endothelial homeostasis.
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Key Points

• The spatial (∂τ /∂x) and temporal (∂τ /∂t) variations in shear stress largely 

determine the focal nature of vascular oxidative stress and pro-inflammatory 

states.

• OSS activates the NADPH oxidase enzyme system promoting superoxide (O2·-) 

production leading to LDL oxidation, NF-κB-mediated adhesion molecule and 

MMP expression and atherosclerotic lesion destabilization.

• PSS increases endothelial mitochondrial membrane potential (ΔΨm), down-

regulates oxidative stress by up-regulating eNOS and decreasing mitochondrial 

superoxide production, and also inhibits inflammatory responses such as RAGE 

expression and NF-κB translocation to the nucleus.

• Shear stress-activated developmental Wnt-Ang-2 signaling in mature vascular 

EC is implicated in vascular formation and repair.
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Figure 1. 
(a) Shear stress profiles at the lateral and medial walls of arterial bifurcations. (b) Pulsatile 

shear stress (PSS) occurs at the medial wall (red circle), whereas oscillating flow (OSS) 

occurs at the migrating stagnation point of the lateral wall (blue circle). (c) Flow separation 

and disturbed flow develops at the lateral wall. (d) Angiogram supports the predilection sites 

for atherosclerosis. (e) Spatial variations in wall shear stress profiles at an instantaneous 

moment in systole. The magnitude of wall shear stress is relatively high in the ascending 

aorta, greater curvature, and descending aorta. Cross-section at the aortic arch reveals an 

eccentric distribution of high shear stress in the greater curvature but low in the lesser 

curvature. Cross-section from the descending aorta reveals concentric high shear stress.
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Figure 2. 
Comparison between Couette and Poiseuille flow. (a) When top plate moves with velocity U 

and bottom plate is fixed, fluid motion (Navier-Stoke Equation) shows a linear profile. Also, 

shear stress profile shows the constant profile. (b) When constant pressure is applied to fluid 

which is trapped between two fixed plates, fluid motion shows a parabolic flow. Shear stress 

profile shows a linear profile.

Anatomic variation promotes low reversal occurring from the high pressured to low 

pressured regions. (c) In the bifurcated region, low pressure develops at the lateral wall of 

bifurcation, lesser curvature, and the post-stenotic region. (d) In the wake of post-stenotic 

region, low pressure promotes flow separation and flow reversal. (e) In aortic arch, Greater 

curvature has higher pressure than the lesser curvature.
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Figure 3. 
Oscillatory shear stress mediated mechanotranduction signal modulates inflammatory 

responses, whereas pulsatile shear stress activates G-protein and PIP3-AKT pathway, 

leading to phosphoyrylation of eNOS.
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