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Abstract
Aging is the major risk factor for neurodegenerative diseases such as Alzheimer's disease,

but little is known about the processes that lead to age-related decline of brain structures

and function. Here we use RNA-seq in combination with high resolution histological

analyses to show that aging leads to a significant deterioration of neurovascular structures

including basement membrane reduction, pericyte loss, and astrocyte dysfunction. Neuro-

vascular decline was sufficient to cause vascular leakage and correlated strongly with an

increase in neuroinflammation including up-regulation of complement component C1QA in

microglia/monocytes. Importantly, long-term aerobic exercise from midlife to old age pre-

vented this age-related neurovascular decline, reduced C1QA+microglia/monocytes, and

increased synaptic plasticity and overall behavioral capabilities of aged mice. Concomitant

with age-related neurovascular decline and complement activation, astrocytic Apoe dramat-

ically decreased in aged mice, a decrease that was prevented by exercise. Given the role of

APOE in maintaining the neurovascular unit and as an anti-inflammatory molecule, this sug-

gests a possible link between astrocytic Apoe, age-related neurovascular dysfunction and

microglia/monocyte activation. To test this, Apoe-deficient mice were exercised from midlife

to old age and in contrast to wild-type (Apoe-sufficient) mice, exercise had little to no effect

on age-related neurovascular decline or microglia/monocyte activation in the absence of

APOE. Collectively, our data shows that neurovascular structures decline with age, a pro-

cess that we propose to be intimately linked to complement activation in microglia/mono-

cytes. Exercise prevents these changes, but not in the absence of APOE, opening up new

avenues for understanding the complex interactions between neurovascular and neuroin-

flammatory responses in aging and neurodegenerative diseases such as Alzheimer’s

disease.
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Author Summary

Aging is frequently accompanied with frailty and cognitive decline. In recent years,
increasing evidence has linked physical inactivity with the development of dementias such
as Alzheimer’s disease. In fact, it is recognized that exercise combats frailty and cognitive
decline in older adults, but the biological mechanisms involved are not completely known.
Understanding the biological changes that trigger cognitive deterioration during aging
and the mechanisms by which exercise improves health and brain function is key to ensur-
ing the quality of life of the elderly population and to reducing risk of dementias such as
Alzheimer’s disease. Here, we show that the cerebrovascular system in mice significantly
deteriorates with age, and the structure and function of the blood brain barrier is progres-
sively compromised. These age-related neurovascular changes are accompanied by neu-
roinflammation and deficits in common and spontaneous behaviors in mice. We found,
however, that exercise from middle to older age preserves the cerebrovascular health, pre-
vents behavioral deficits and reduces the age-related neuroinflammation in the cortex and
hippocampus in aged mice. Mice deficient in Apoe, a gene associated with longevity and
Alzheimer’s disease, are resistant to the beneficial effects of exercise, suggesting a possible
mediating role for APOE in the maintenance and function of the neurovascular system
during aging.

Introduction
As the general population ages, age-related diseases are on the increase. Data from the United
States (US) Department of Health and Human Services show that more than 12.9% of the US
population is over the age of 65 and this is expected to double by 2030 [1]. Aging is the major
risk factor for many diseases including cancer, diabetes, heart disease, and Alzheimer’s disease
(AD) [2]. Therefore, with an aging population, prevalence of age-related diseases is expected to
increase. For instance, more than 5 million people in the US suffer from AD, and this is
expected to exceed 10 million in the next 20 years [3]. In order to prevent and treat age-related
neurodegenerative diseases, particularly AD, it is essential to better understand the factors that
contribute to aging-induced susceptibility.

In the healthy aged brain, functional and morphological changes lead to cognitive and sen-
sorimotor control decline that affect the performance of activities of daily living (ADL) in older
adults and increase vulnerability to the development of neurodegenerative conditions [4,5].
Age-related cognitive deficits are partly explained by changes in neural plasticity and synaptic
activity. However, overall decline in brain health has also been correlated to other non-neuro-
nal processes such as cerebrovascular dysfunction [6,7] and activation of innate immune
responses [8]. Understanding how aging affects these processes will likely shed light on devel-
oping therapeutic strategies that prevent these age-related changes and decrease the vulnerabil-
ity to neurodegenerative conditions.

Interestingly, physical activity during aging has ameliorative effects on cognitive decline and
sensorimotor deficits. Physically active older adults show improved performance in cognitive
and sensorimotor tests and have greater brain volume in regions noticeably affected by age in
sedentary subjects [4,9]. For instance, in humans, exercise enhances cerebral blood flow (CBF),
neurogenesis, and angiogenesis in the hippocampal dentate gyrus, increases hippocampal vol-
ume, and improves memory [10,11,12]. In addition, aerobic physical activity greatly improves
cardiovascular function and decreases systemic inflammation in older subjects [8,9,13]. How-
ever, a detailed analysis of the processes involved has not been performed. In this study, we
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demonstrate significant changes in neurovascular integrity and function in the superior region
of the cortex and hippocampus. We show a significant loss of pericytes and marked neurovas-
cular decline, correlated with dysfunction of the blood brain barrier and activation of innate
immune responses including the complement cascade. Strikingly, exercise almost completely
prevented these age-related neurovascular changes and lessened complement induction in
myeloid cells, but had little to no effect in the absence of APOE. We propose that exercise is an
effective means of mitigating age-related neurovascular decline by directly or indirectly modu-
lating Apoe-expressing astrocytes and/or C1QA-expressing myeloid cells.

Results

Gene Profiling Suggests Aging Causes Regional Compromise of the
Neurovascular Unit
To determine gene expression changes in response to normal aging, transcriptional profiling
was performed on brain tissue from young (4 mo) and aged (21 mo) C57BL/6J (B6) mice.
Because portions of the limbic and higher-order integrative cortical areas (including frontal
association cortex, cingulate cortex, retrosplenial cortex, and the parietal associative cortices)
and the hippocampus are commonly impacted in AD [14], brains were dissected into three
separate regions for RNA sequencing and analysis: (i) region 1—frontoparietal cortex and cor-
pus callosum (FPC/CC), (ii) region 2—hippocampus (HP), and (iii) region 3—rest of the cor-
tex and brain stem (RB). In total, 24 samples were profiled separately—three regions from four
different mice from two age groups. To avoid batch effects, all RNA was prepared, and RNA-
seq libraries generated at the same time. Samples were barcoded, pooled and sequenced across
four lanes of an Illumina Hi-seq (see Methods).

For each of the three regions profiled, pairwise analyses comparing young samples to aged
samples were performed to determine differentially expressed (DE) genes (see Methods). A
total of 1,045 genes (551 up-regulated and 494 down-regulated) were DE in the FPC/CC
(region 1, S1 Table), 644 genes (492 up-regulated and 152 down-regulated) in the HP (region
2, S2 Table), and 1,137 (526 up-regulated and 611 downregulated) in the RB (region 3, S3
Table) (Fig 1A). Gene set enrichment analysis (using DAVID, see Methods) showed significant
differences between the regions, i.e., DE genes from each of the three regions were present in
overlapping but not identical Kyoto Encyclopedia of genes and genomes (KEGG) pathways (S4
Table). This suggests that normal aging impacts the regions of the brain in different ways and
may provide clues as to why specific brain regions are more susceptible to dysfunction in cer-
tain neurodegenerative diseases. Of particular interest were the KEGG pathways overrepre-
sented in region 1, tissue enriched for the FPC and the CC. These pathways included focal
adhesion, vascular smooth muscle contraction, gap junction and extracellular matrix (ECM)-
receptor interaction pathways (Fig 1B). Genes in these pathways were generally down-regu-
lated (Fig 1C and 1D) and suggest possible perturbation to the neurovascular unit. To assess
possible neurovascular dysfunction in region 1, intravascular and perivascular deposition of
the plasma protein fibrinogen, or fibrin, a marker of vascular compromise, was analyzed by
immunostaining. Previous studies have shown intra- and extravascular accumulation of fibrin
(ogen) in the postmortem brains of AD patients as well as AD mouse models where severe neu-
rovascular dysfunction occur [15,16,17,18]. In aged mice, small and sporadic deposits of extra-
vascular fibrin were found only in the cortex, particularly the neocortex (region 1) (Fig 1E). We
also noticed that contrary to young mice, intravascular accumulation of fibrin(ogen) was per-
sistent in the brains of aging mice even after intracardial perfusion suggesting possible deposi-
tion of fibrin(ogen) in the luminal vessel wall as previously observed in human AD brains [15].
Quantification of fibrin(ogen)-immunostained area in the cortex, which included intra- and
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extravascular deposition of this protein, indicated a 3-fold increase in aged compared with
young mice (Fig 1F), confirming the transcriptional profiling data that predicted neurovascular
dysfunction in the FPC in aged mice.

Aging Causes BM Breakdown and Pericyte Loss
The transcriptional profiling of the aged FPC/CC demonstrated significant down-regulation of
extracellular matrix-associated genes as well as important genes for pericyte function suggest-
ing possible disturbances in the interactions and function of the components of the neurovas-
cular unit. To more fully characterize the extent of neurovascular dysfunction in the cortex of
aged brains, the major components of the neurovascular unit, including basement membrane
(BM), endothelial cells, pericytes, and astrocytes were assessed. Collagen IV (COL4) and lami-
nin (LAM), two major components of the BM (generated by astrocytes, pericytes, and endothe-
lial cells), were significantly reduced in the cortex of aged mice compared to young mice (S1
and S2 Figs) despite no decline in CD31, a marker of endothelial cells (S1 Fig). This suggests
BM reduction was not caused by vascular reduction due to endothelial cell loss. Gene profiling
showed three pericyte-related genes, Pdgfrβ, Act2, and Cav2, which were significantly down-
regulated in aged compared to young mice (Fig 1C), suggesting pericytes were negatively
impacted by normal aging. Analysis of pericytes, using immunostaining for PDGFRβ showed a
greater than 20% reduction in pericyte numbers and almost 50% reduction in pericyte coverage
of microvessels in the cortex of aged compared to young brains (Fig 2A–2C).

Although transcriptional profiling data in the HP did not show pathways relevant to neuro-
vascular unit dysfunction as being differentially affected by age (S4 Table), genes relevant to
the neurovascular unit, including Pdgfrβ (−1.36) and Cldn5 (−1.63) were down-regulated (S2
Table), suggesting possible dysfunction to the neurovascular unit in the HP also. Therefore, we
assessed neurovascular health in the CA1 region of the HP. Similar to our findings in the FPC,
COL4+ microvessels and coverage of PDGFRβ+ were also significantly reduced in the hippo-
campal CA1 region of aged mice when compared with young (S3 Fig). Furthermore, ultrastruc-
tural analysis identified several degenerating pericytes in the cortex of aged mice that were not
observed in young mice (Fig 2D). Pericytes are critical components of the neurovascular unit
and play a key role in the regulation of BM, vessel contractility, and inhibition of vesicular
transcytosis through endothelial cells [19]. Increased endothelial vesicular transcytosis was fre-
quently observed in the aged cortex (Fig 2E), further supporting age-related pericyte dysfunc-
tion or loss. Fibrin deposition and pericyte loss were associated with an increase in the number
of activated microglia/monocytes (Fig 3A and 3B). Ultrastructural analyses suggested that
these microglia/monocytes were phagocytic when in close proximity to areas of pericyte degen-
eration and increased endothelial transcytosis activity (Fig 3C).

Pericytes can mediate the attachment of astrocyte endfeet to the vascular surface and regu-
late the polarization of specific proteins, such as the water channel aquaporin-4 (AQP4), to the
perivascular endfoot region [20,21]. AQP4 is expressed by astrocytes that play a key role in the
regulation of brain water transport at the neurovascular interface [22]. Immunostaining and
immunoblotting showed a significant decrease of AQP4 protein at the neurovascular junctions
in the cortex of aged compared to young mice (Fig 4A and 4B). AQP4 decrease was

Fig 1. Transcriptional profiling predicts age-related neurovascular dysfunction. (A) The number of DE genes in three brain regions (FPC/CC; HP; RB)
comparing 21-month-old mice to 4-month-old control mice. (B) Pathways overrepresented in the DE genes from the FPC/CC region. For further details and
the overrepresented pathways from other regions, see S4 Table. (C) Genes relevant to the neurovascular unit were generally down-regulated. (D) DE genes
from the FPC/CC region in the ECM-receptor interaction pathway were down-regulated (green). (E–F) Fibrin intra- and extravascular deposits (red) were
significantly increased in aged cortex compared to young cortex. In (F) values are relative mean + Standard Error of the Mean (SEM) to the young values,
n = 6 mice per group, **p = 0.0073 by unpaired t test. Scale Bars: 50 μm. The data used to make this figure can be found in S1 Dataset.

doi:10.1371/journal.pbio.1002279.g001
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Fig 2. Pericyte loss and increased endothelial transcytosis in the aged cortex. (A) Reduction of PDGFRβ+ pericytes (magenta) and laminin capillary
coverage (green) is evident in the aged cortex when compared with the young cortex. (B) Quantification of PDGFRβ+ pericytes in the young and aged cortex.
(C) Quantification of PDGFRβ+ pericyte coverage of microvessels in the young and aged cortex. (D) In the young cortex, a healthy pericyte (P) is shown,
while in the aged cortex, a degenerating pericyte (DP) and thicker BM are displayed. (E) Ultrastructural analysis of young and aged blood vessels in the
cortex reveals increased number of vesicles and indentations (blue arrows) in the endothelial cells from aged mice, suggesting an increase in vesicular
transcytosis activity in these cells during aging. In B and C, values are relative mean + SEM to the young values, n = 6 mice per group, ***p < 0.001 and
****p < 0.0001 by unpaired t test. Scale Bars: 50 μm (A), 2 μm (D and E), and 0.5 μm and 0.25 μm (E two lower panels at the right). EC = endothelial cell and
BV = blood vessel. The data used to make this figure can be found in S1 Dataset.

doi:10.1371/journal.pbio.1002279.g002
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Fig 3. Microglia/monocyte density is increased in regions with pericyte loss in the aged cortex. (A) Representative images showing extravascular
deposition of FIBRIN (red) surrounded by microglia with increased LECTIN immunoreactivity (light blue). (B–C) A significant increase in IBA1+ microglia/
monocyte cells (green) in the aged cortex coincides with the significant decrease of PDGFRβ+ pericytes (magenta) in the same region when compared with
the cortex from young mice. (D) In the aged cortex, electron micrographs show active phagocytic microglia/monocytes (M) in close proximity to apoptotic cell
bodies (AC) in close contiguity to a blood vessel (BV), to a degenerated pericyte (DP), and to a blood vessel with high transcytosis activity. Damaged axons
(blue arrows) and vesicular bodies with cellular debris (magenta arrows) are also observed in these regions. In (C) values are relative mean + SEM to the
young values, n = 4 mice per group, **p < 0.005 by unpaired t test. Scale Bars: 50 μm (A–B) and 2 μm (D). The data used to make this figure can be found in
S1 Dataset.

doi:10.1371/journal.pbio.1002279.g003
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accompanied by an increase in glial fibrillary acidic protein (GFAP) immunoreactivity, an indi-
cation of astrocyte reactivity (Fig 4C). There was also a noticeable swelling of astrocyte endfeet
with enlarged vacuoles in some cortical microvessels of aged mice but not from young mice
(Fig 4D). Collectively, our data suggest that normal aging causes significant dysfunction to the
cortical neurovascular unit, including BM reduction and pericyte loss. These changes correlate
strongly with an increase in microglia/monocytes in the aged cortex.

Fig 4. Astrocytic AQP4 is decreased in aged cortical astrocytes. (A) AQP4 immunoreactivity (blue) and protein levels (B) are significantly decreased in
the aged cortex. (C) Astrocyte reactivity is increased in the cortex of aged mice determined by increased immunoreactivity of astrocytic GFAP (green) when
compared with young mice. (D) Electron micrographs showing examples of astrocyte endfeet (As, white region surrounding the vessels) abnormalities such
as swelling and big vacuoles (*) in aged mice. Astrocyte endfeet abnormalities were not observed in all cases in aged mice and never seen in young mice.
Values in (B) are relative mean + SEM to the young values, n = 4 per group. **p < 0.005 (B) by unpaired t test. Scale Bars: 50 μm (A and C) and 2 μm (D).
DP = degenerated pericyte, EC = endothelial cell and BV = blood vessel. The data used to make this figure can be found in S1 Dataset.

doi:10.1371/journal.pbio.1002279.g004
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Exercise Prevents Neurovascular Dysfunction and Complement
Induction in Aged Mice
Aging is generally accompanied by cognitive decline and sensorimotor deficits that affect the
performance of ADL in the aged population [4,5]. Lifestyle choices such as exercise have been
shown to have beneficial effects on the aging brain [9,13], including increased brain volume
[4,11], improved performance in several cognitive and motor tasks [4], and neuronal function
[9]. Also, a recent study claimed a third of AD cases could be attributed in part to physical inac-
tivity [23]. However, the impact of long-term physical exercise on the health of the neurovascu-
lar unit has not been determined. To assess this, mice were provided access to a running wheel
from 12 months old (equivalent to middle aged in humans) and assessed at 18 months of age
(equivalent to early old age [~60 y old] in humans where risk of AD is greatly increased) (Fig
5A). Voluntary running was preferred to exercise by forced treadmill to remove any potential
confounding effects of stress [24]. In addition, voluntary running in mice can induce adaptive
physiological changes in cardiac and skeletal muscle showing it is a good method to assess bio-
logical changes as a result of exercise [25]. No differences in average running distance (~2
miles/night/mouse) between the young (7 mo) and aged (18 mo) groups of mice were found
after 6 months with the running wheel (Fig 5B), indicating that aged mice were able to main-
tain their running capacity during the 6 months period. Exercised aged mice were first assessed
for overall improvement in behavior and neuronal activity. Physical activity improves ADL in
humans, and so common daily behaviors in mice—grip strength, nesting, and burrowing—
were assessed in exercised and nonexercised (sedentary) mice (Fig 5C–5E). Significant
improvements in both grip strength (Fig 5C) and nesting behavior (Fig 5D) were observed in
running aged mice (18 mo) compared to sedentary aged mice (18 mo) and were similar to lev-
els seen in aging (12 mo) mice. Burrowing also appeared to be improved but was not statisti-
cally significant (Fig 5E). These results indicate that physical activity improved the capabilities
and motivation of old mice to engage and perform typical spontaneous behaviors that seem to
be affected by aging.

These behavioral improvements induced by exercise were accompanied by stabilization of
functional synapses and improved neural plasticity. While sedentary aged mice showed signifi-
cant decreased levels of the presynaptic proteins such as synaptophysin and the postsynaptic
protein PSD-95 (S4 Fig), indicating a possible loss or weakening of functional synapses, run-
ning mice demonstrated significant preservation of synaptophysin when compared with youn-
ger mice (S4 Fig). Neural plasticity was also evaluated in these mice by examining changes in
the expression of the immediate early gene Arc (activity-regulated cytoskeletal gene). Arc tran-
scription is induced by neuronal activity [26] and is immediately up-regulated in the parietal
cortex in response to spatial exploration [27]. Arc cortical expression was significantly elevated
in aged running mice compared with aged sedentary mice after burrowing behavior (Fig 5F
and 5G), indicating that more neurons in the parietal cortex were recruited and activated dur-
ing spatial exploration in the aged runner mice compared to aged sedentary mice.

Next, the effects of exercise on the neurovascular unit were assessed. Exercise significantly
reduced vascular leakage. Fibrin levels in aged running mice were similar to that seen in young
mice and significantly less than aged sedentary mice (Fig 6A and 6B). COL4 immunostaining
in the cortex (S5 Fig) and CA1 (S5 Fig) demonstrated a significant preservation of the BM in
aged runner mice when compared with aged sedentary mice (S5 Fig). No changes were
observed in the density of CD31+ microvessels between sedentary and runner mice (S4 Fig),
indicating that exercise prevented a deterioration of COL4 coverage in cortical and hippocam-
pal CA1 microvessels during aging without an overall increase in vascular density. Aged runner
mice also exhibited significantly higher numbers and vascular coverage of cortical PDGFRβ+
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Fig 5. Exercise improves behavior and neuroplasticity in agedmice. (A) Experimental strategy for voluntary running experiments (Sd = sedentary,
Rn = Runner, Sac = sacrifice). (B) Representative image of a mouse running in an electronic wheel and quantification of running distance/night for young and
aged mice after 6 months showing no differences between groups. (C) Significant deficits in grip strength found in aged sedentary mice were prevented by
voluntary running. (D) Representative images of nests scored 3 and 5 are shown. Nest construction behavior was preserved in aged running mice but not in
aged sedentary mice. (E) No statistically significant changes were found in burrowing behavior, however mice in the aging group (3/7) and in the aged
sedentary group (2/6) did not engage in this activity, while all young and runner aged mice were able to perform it. (F) Arc (purple) in situ hybridization in aged
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pericytes compared to aged sedentary mice, levels similar to those observed in younger seden-
tary mice (Fig 6C and 6D). Finally, exercise preserved astrocytic AQP4 protein to similar levels
observed in young mice (Fig 6E and 6F) and correlated with a decrease in astrocyte reactivity
(S6 Fig). In the hippocampal CA1 region, the reduction in vascular coverage of PDGFRβ+ peri-
cytes and AQP4 levels observed in the aged sedentary mice were also prevented by exercise (S7

sedentary and aged runner mice after 2 h of burrowing test. Low levels of Arc expression are found in the cortex of a mouse that did not do the burrowing test.
(G) The fraction of NeuN+ Arc+ neurons is significantly higher in the aged runners when compared with aged sedentary mice. No changes in the number of
cortical NeuN+ neurons between aged sedentary and running mice. In panels B–E and G, values are mean + SEM, n = 7 per group in B–E, and n = 5 per
group in G. In (C) **p = 0.0012 ***p = 0.0006, in (D) *p = 0.0165 and 0.0217 respectively, and in (G) *p = 0.0282 by ANOVA followed by Tukey’s posthoc
tests. Scale Bar: 50 μm. The data used to make this figure can be found in S1 Dataset.

doi:10.1371/journal.pbio.1002279.g005

Fig 6. Exercise preserves neurovascular unit integrity in agedmice. (A–B) Age-related intravascular and extravascular deposition of FIBRIN (red) is
significantly reduced in aged runner mice. Microvessels are immunostained with endothelial CD31 (cyan). (C) PDGFRβ+ pericyte (magenta) number and
coverage are significantly increased in aged runners when compared with aged sedentary mice. (D) Quantitative analysis of PDGFRβ+ pericytes number and
coverage. (E) AQP4 (blue) immunoreactivity of astrocyte endfeet is significantly increased in aged runners when compared with aged sedentary mice. (F)
AQP4 protein levels show a significant preservation of both parameters on aged runner mice. In panels (D–F), values are mean + SEM, n = 4 aging mice,
n = 6 aged Sd mice and n = 6 aged Rn mice. In (B) *p = 0.014 and (F) *p = 0.0318 by unpaired t test. In (D) ****p < 0.0001 and ***p = 0.0014 by ANOVA
followed by Tukey’s posthoc tests. Scale Bars: 50 μm. The data used to make this figure can be found in S1 Dataset.

doi:10.1371/journal.pbio.1002279.g006
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Fig). Therefore, exercise prevented age-related pericyte loss, neurovascular unit decline, and
vascular leakage.

Induction of the complement cascade in the brain, particularly in myeloid-derived cells
such as microglia/monocytes, has been shown to be a potentially damaging event in aging and
disease [28,29,30,31]. Further, the classical pathway of the complement cascade has been
strongly implicated in synaptic and neuronal dysfunction [32], but only limited data are avail-
able on the role of complement in neurovascular dysfunction [33]. Analysis of our transcrip-
tional profiling showed increased expression of multiple components of the classical pathway
including C1qa (+1.94), C1qb (+1.91), C1qc (+2.02), C3 (+2.71), C4a (+2.42), C4b (+4.63), and
C5ar2 (+2.81) in the HP of aged compared to young mice (see S2 Table). Since exercise pre-
vented neurovascular dysfunction, synaptic decline, and behavioral deficits, we first assessed
the impact of exercise on the number of microglia/monocytes in aged brains. Exercise signifi-
cantly reduced the numbers of IBA1+ microglia/monocytes in the cortex of aged running mice
compared to sedentary mice (Fig 7A and 7B). In fact, the numbers of microglia/monocytes
were inversely correlated with pericyte numbers (Fig 7C), suggesting an important link
between pericyte loss (and neurovascular health) and activation of microglia/monocytes. Next,
to examine the effects of exercise on induction of the classical pathway of the complement cas-
cade, we assessed C1qa, a component of the C1 complex, the initiating complex of the classical
pathway. The number of C1qa+microglia/monocytes was elevated 3-fold in the aged mice
compared to young mice (Fig 7D and 7E). Importantly, exercise caused a significant reduction
in the number of cortical C1qa+microglia/monocytes (35% less, Fig 7E). Similarly, in the hip-
pocampal CA1 region, microglia/monocytes were increased in aged sedentary mice when com-
pared with young mice, and this increase was prevented by exercise in aged running mice (Fig
7F and 7G). These results suggest that the positive effects of exercise could be due in part to a
reduction in complement activation during aging.

Exercise Had No Effect on Behavioral Deficits, Neurovascular
Dysfunction, and Microglial/Monocyte Activation in Apoe-Deficient Mice
To begin to determine possible mechanisms of the age-dependent vascular compromise, peri-
cyte loss, and an increase in innate immune responses, transcript and protein expression levels
of APOE were assessed in aging brains. APOE is a strong candidate to mediate age-related neu-
rovascular decline for the following reasons. First, variations in human APOE are the major
genetic risk factors for decreased longevity and AD [34,35,36]. Second, APOE has regulatory
effects on cerebrovascular integrity and function through pericyte signaling [37,38]. Finally,
APOE is an important mediator of innate immune responses [39,40,41]. Supporting a possible
role for APOE in mediating age-related neurovascular dysfunction, Apoe transcript expression
was noticeably decreased in the FPC (Fig 8A and 8B) and hippocampal CA1 (Fig 8C and 8D)
in aged mice compared to young mice. Other studies have not reported an age-related decrease
in APOE levels in the cortex and hippocampus [42]. Our data suggests this is because the
decrease in Apoe transcript expression in the cortex was contrasted with a significant increase
in Apoe transcript levels in the white matter regions, such as the CC in aged compared to
young mice (Fig 8E–8G). This led to no measurable changes by RNA-seq (Fig 1), qPCR (4 mo
versus 24 mo, 2-ΔΔCt = 0.91) or western blotting (Fig 8H). Interestingly, Apoe was only
expressed by astrocytes and not neurons or microglial cells (S8 Fig) and may reflect a difference
between Apoe expression in normal aging compared to injury or disease where others have
reported expression in additional cell types such as microglia [36]. The decline in astrocytic
Apoe in the cortex was in contrast to a second astrocytic apolipoprotein, ApoJ (or Clusterin,
Clu), where no significant changes were observed in aged compared to young brains (S9 Fig).
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Fig 7. Exercise reducesC1qa+ microglia/monocytes in the aged cortex. (A) Representative sections from an aged sedentary and aged runner mouse
immunostained with PDGFRβ (magenta) for pericytes and IBA1 (green) for microglia/monocyte cells. (B) Quantification of IBA1+ cells in aging, aged
sedentary (Sd), and aged runner (Rn) mice shows a decrease in microglia/monocyte density in the aged runners versus the aged sedentary mice. (C)
Correlation between PDGFRβ+ cells and IBA1+ cells (R2 = 0.49, p = 0.01). Decreased number of pericytes correlates with increasing number of microglia/
monocyte cells. (D) Representative sections of the cortex hybridized withC1qa riboprobe and coimmunostained with IBA1 (green) in young, aged Sd and
aged Rnmice. (E) Quantification of C1qa/IBA1+ (magenta bars) and IBA1+ (green bars) cells in the cortex of young, aged Sd, and aged Rn mice showing a
significant increase in C1qa+/IBA1 positive cells in aged Sd mice and a significant decline of these cells in the aged runner mice. A new quantification of
IBA1+ cells (different from B) was performed for the analysis of C1qa+/IBA1 cells. (F) Representative sections of the hippocampal CA1 hybridized with C1qa
riboprobe and coimmunostained with IBA1 (green) in young, aged Sd, and aged Rn mice. (G) C1q/IBA1+ (magenta bars) and IBA1+ (green bars) cells in the
hippocampal CA1 are significantly increased in aged Sd mice and significantly reduced in aged Rn mice. In panels (B, E, and G) values are mean + SEM, n =
4 per group. In (B) **p = 0.0032 and *p = 0.0148, in (E) **p = 0.0065 and 0.0044, ***p = 0.0006 and *p = 0.0194 and in (G) ***p < 0.0006,***p = 0.0003,
**p = 0.0025 and *p = 0.0302 by ANOVA followed by Tukey’s posthoc tests. Scale Bars: 50 μm. The data used to make this figure can be found in S1
Dataset.

doi:10.1371/journal.pbio.1002279.g007
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Fig 8. Apoe expression is reduced in the parietal cortex and CA1 of agedmice. (A) Representative sections of the FPC from young and aged brains
hybridized with an Apoe riboprobe. (B) Quantification of Apoe hybridized area in the cortex shows a significant decrease of Apoe expression in the aged
mice. (C) Representative sections of the hippocampal CA1 region from young and aged brains hybridized with an Apoe riboprobe. (D) Apoe hybridized area
in the CA1 shows a significant decrease of Apoe expression in the aged mice. (E) Representative sections of the CC from young and aged brains hybridized
with Apoe riboprobe. (F) A significant increase of Apoe hybridized area is measured on the aged CC. (G) Representative images of Apoe in situ hybridization
in the cortex and CC showing decreased expression of Apoe in the cortex and increased expression in the CC in aged mice compared with young mice. (H)
No differences in APOE protein levels were found by western blotting of whole brains from young and aged mice. Values in (B, D, and F) are relative mean +
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Therefore, astrocytic Apoe expression is dramatically altered in localized regions of the brain
during normal aging. This regional difference in Apoe expression could be due to differences
between the type of astrocytes that populate the region (e.g., white matter astrocytes are mostly
fibrous, while astrocytes in the cortex are mostly protoplasmic) or to different signals coming
from the different environments [43,44]. Importantly, exercise preserved Apoe expression in
the FPC (Fig 9A and 9B) and hippocampal CA1 (Fig 9C and 9D), adding further support for a
role of APOE in age-related pericyte loss and neurovascular compromise.

To further investigate whether APOE contributes to neurovascular deterioration during
normal aging and exercise-dependent preservation of the neurovascular unit, Apoe-deficient
mice were exercised and compared to aged sedentary Apoe-deficient mice. Previous studies
[37], confirmed by our study (S10 Fig), show neurovascular compromise including pericyte
dysfunction or loss, vascular leakage, and BM reduction in young (<12 months old) Apoe-defi-
cient mice that are strikingly similar to aged wild-type (Apoe-sufficient) mice. To determine
the effect of exercise in the absence of APOE, Apoe-deficient mice were exercised from 12
months of age for 6 months, and components of the neurovascular unit assessed at 18 months
of age. The average running distance performed by Apoe-deficient mice was not significantly
different from aged Apoe-sufficient running mice (S10 Fig). However, age-related deficits in
grip strength and nest construction were not prevented by exercised Apoe-deficient mice (S10

SEM to the young values, n = 6 per group. In (D) **p < 0.001 and in (F) *p = 0.0364 by unpaired t test. Scale Bars: 600 μm (A), 50 μm (C), 100 μm (E and G).
The data used to make this figure can be found in S1 Dataset.

doi:10.1371/journal.pbio.1002279.g008

Fig 9. Age-related reduction in Apoe expression in the cortex and CA1 is prevented by running. (A–B) Representative sections and quantitative
analysis of Apoe-hybridized cortex on aging Apoe-/-, aging, aged sedentary (Sd), and aged runner (Rn) mice showing a significant preservation of Apoe
expression on runner mice. No hybridization signal with Apoe riboprobe was observed in the Apoe-/- mouse brain. (C–D) Representative sections and
quantitative analysis of Apoe expression on aging hippocampal CA1. Down-regulation of Apoe expression in the CA1 region in aging mice is prevented by
wheel running. Values in (B and D) are relative mean + SEM to the aging values, n = 6 per group. In (B) *p = 0.0347 and 0.0244, and in (D) **p = 0.0019 and
0.0016 by ANOVA followed by Tukey’s posthoc tests. Scale Bars: 50 μm. The data used to make this figure can be found in S1 Dataset.

doi:10.1371/journal.pbio.1002279.g009
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Fig). In the brain, exercise did not restore vascular leakage in Apoe-deficient mice (Fig 10C and
10E). Exercise only partially restored PDGFRβ+ pericyte number in aged Apoe-deficient mice
(Fig 10D and 10F), but did not impact the density of COL4+ microvessels (S10 Fig). Further-
more, exercise did not prevent the increase in microglia/monocytes in Apoe-deficient mice that
was seen in wild-type mice (Fig 10D–10G). Therefore, overall, exercise had little to no effect
on age-related neurovascular dysfunction and microglia/monocyte numbers in Apoe-deficient
mice.

Discussion
Dysfunction of the neurovascular unit in the aging and aged brain is of great interest, since
numerous studies have independently correlated the development of AD with vascular

Fig 10. APOE is a contributor to exercise-induced preservation of neurovascular integrity. (A and B) Voluntary running does not change vascular and
extravascular deposition of FIBRIN (red) in aged Apoe-/- mice. Endothelial cells (cyan) are immunolabeled with CD31. (C and D) PDGFRβ+ pericyte number
(magenta) but not coverage, is only partially increased in aged Rn Apoe-/-mice compared to controls. (E and F) The number of IBA1+ microglia/monocytes
(green) is not reduced by running in aged Apoe-/-mice. Values in (B, D, and F) are mean + SEM, (B) n = 6 and (E–G) n = 3–4 per group. In (D) **p = 0.0024,
*p = 0.0468, *p = 0.0166, and *p = 0.0430, and in (F) **p = 0.0022 and 0.0084, and *p = 0.0105 by ANOVA followed by Tukey’s posthoc tests. Scale Bars:
50 μm. The data used to make this figure can be found in S1 Dataset.

doi:10.1371/journal.pbio.1002279.g010
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dysfunction during aging [2,6,45,46,47], but the mechanisms involved are not known. Studies
have shown deterioration of the cerebrovascular ultrastructure along with decreasing CBF and
lower metabolic rates of glucose and oxygen in normal human aging [45]. Similarly, exercise
has been shown to be beneficial for the brain [4,9,11,12,13,48], but the processes positively
impacted by exercise are not completely understood. Here, we elucidated the damaging effects
of normal aging on the neurovascular unit in the cortex and HP of mice and show that exercise
can prevent these detrimental changes (Fig 11).

Transcriptional profiling predicted dysfunction of the neurovascular unit particularly in the
FPC, with some relevant genes also DE in the HP. Other studies have also profiled aging brains
(e.g., [49,50,51]) but ours, to our knowledge, is the first to propose dysfunction of the neurovas-
cular unit in aging mice. However, enrichment analyses of the DE genes comparing young and
old male and female brains from the human study performed by Berchtold and colleagues
(supplemental tables 3 and 4 from [51]) reveals overrepresentation of genes in multiple KEGG
pathways relevant to the neurovascular unit (including focal adhesion, vascular smooth muscle,
and ECM-receptor interactions) and neuroinflammation (including the complement cascade).
These pathways are strikingly similar to the pathways we have identified in our study (Fig 1)
providing compelling evidence that our findings in aging mice are directly relevant to human
aging.

Genes relevant to the neurovascular unit were more represented in the transcriptional pro-
files from the FPC compared to the HP, adding further support to the possibility that specific
brain regions may be more or less susceptible to aging than others [51]. However, some genes
relevant to the neurovascular unit were DE in the HP, and neurovascular decline in CA1 region
of the HP was observed. An explanation for region-specific differences in the transcriptional
profiles may be due to the compositions of the tissues being profiled. For instance, there are sig-
nificant differences in vascular density between the cortex and the HP [45,52]. In the rat brain,
the highest vascular density is found in the neocortex (frontal and parietal regions profiled
here) where variations in vascular density were shown to impact metabolic and synaptic activ-
ity [52]. This could result in increased sensitivity to detect neurovascular dysfunction by

Fig 11. Schematic illustration of age-related changes in the neurovascular unit that are prevented by exercise. In the aged cortex of sedentary mice,
neurovascular dysfunction is evident by decreased numbers of pericytes, decline in BM coverage, and increased transcytosis on endothelial cells.
Expression of AQP4 in astrocyte endfeet and down-regulation of Apoe (purple) are also found as part of the age-related dysfunction of the neurovascular
unit. In addition, decrease in synaptic proteins such as synaptophysin (SYN) is found in aged neurons. The number of proinflammatory IBA1+ microglia/
monocytes expressing high levels of C1qa RNA is also increased in the aged cortex and HP indicating age-related neuroinflammation in aged mice. These
age-related changes were successfully prevented by 6 months of voluntary running during aging, indicating the important contribution of physical activity on
preservation of cerebrovascular function during aging.

doi:10.1371/journal.pbio.1002279.g011
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transcriptional profiling in the FPC compared to the HP. Also, the density and reactivity of
astrocytes (compared to neurons) is different in the cortex compared to the HP with hippo-
campal astrocytes constitutively expressing GFAP, even in healthy brains [44,53]. This could
also explain in part why, in our study, molecular pathways associated with neuroinflammation
were more represented in the HP. Although others have also proposed region-specific changes
in response to aging [51], further work is required to fully determine the extent of region-spe-
cific susceptibility in the aging brain.

Multiple changes to the neurovascular unit in the FPC and HP were observed in aged mice,
one of the most striking being a significant loss of pericytes and their vascular coverage. While
it is not known whether aging impacts pericytes directly or indirectly, pericyte function is criti-
cal for vessel stability, blood flow, and blood–brain barrier (BBB) integrity and function
[19,54]. Loss of pericytes can cause BBB breakdown (by increasing endothelial transcytosis),
reductions in BM, and alterations on AQP4 localization, correlating with an increase in innate
immune responses [20,55,56], features observed in aged mice. Sporadic perivascular and more
frequent intravascular deposits of fibrin, and increased vesicular transcytosis in endothelial
cells in the aged cortex suggests vascular compromise is possibly occurring as a consequence of
pericyte loss and/or dysfunction. Normal aging in humans is also associated with increased
vascular compromise [57,58]. In fact, a recent study, using a new high resolution MRI method
to map the blood-to-brain transfer constant of gadolinium (Ktrans) regionally and quantita-
tively, found that vascular leakage is an early event in the aged human brain that begins in the
HP and is correlated with cognitive decline [58], supporting our findings in the aged mouse
brain. Moreover, discontinuous and dysregulated coverage of BM on cortical microvessels and
reduction of AQP4 protein levels at the neurovascular interphase were also observed in aging
mice, suggesting that astrocyte–endothelial cell interactions are altered in the aged brain. It has
been proposed that pericytes regulate the interactions of astrocytic endfeet with the vasculature
[20], and age-related pericyte dysfunction and degeneration could lead to the disruptions of
astrocyte-vascular interactions. Growing evidence supports age-related vascular dysfunction as
a major contributing factor in the onset and progression of AD [6,7,45]. Extensive reductions
in the number of pericytes have been correlated with BBB breakdown in postmortem AD
brains [59], and intravascular and perivascular deposition of fibrin has been also found in AD
mice [15,17] and AD patients [15,18,60]. Our data suggest that signaling changes between
astrocytes, pericytes, and endothelial cells are impacted by aging, underpin neurovascular dys-
function, and may contribute to neurodegenerative diseases such as AD.

Our data also showed a direct correlation between pericyte loss, neurovascular decline, and
an increase in C1qa (an initiating molecule of the classical pathway of the complement cascade)
in response to aging. One key role of the neurovascular unit is to control the infiltration of
peripheral immune cells (inflammation) and to protect the brain against blood-derived protein
extravasation [45]. However, it is not clear whether the increase in C1qa+ microglia/monocytes
in aging mice is as a result of the proliferation of resident microglia or the infiltration of periph-
eral monocytes. During aging, a shift from an anti-inflammatory to a proinflammatory state
can occur in the brain leading to cognitive decline, suggesting innate immune responses are an
important characteristic of aging [8]. Conversely, an age-related increase of proinflammatory
markers in the blood is correlated with poor cognitive performance in older adults [8], suggest-
ing that age-related cognitive decline could be triggered in part by age-related systemic inflam-
mation. Increased levels of C1qa have been identified in the brains of 12 mo mice [30],
indicating that proinflammatory processes are detected early in aging brains. Moreover, age-
related cognitive decline in mice is prevented by genetic deletion of C1qa supporting the delete-
rious effect of this protein and proinflammatory processes in brain function during aging [30].
Further work is required to determine whether peripheral complement-expressing monocytes
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infiltrate into the aging brain and whether the roles of complement-expressing resident micro-
glia and/or peripheral monocytes are beneficial, damaging, or both. It is also not clear whether
complement induction precedes neurovascular decline or occurs as a consequence of it. If the
entry of peripheral immune cells into the brain is a key driver of age-related neurovascular
decline, targeting peripheral immune cells before they enter the brain may be a feasible route to
combat age-related cognitive decline and neurodegenerative diseases such as AD.

A major finding of this study is that exercise prevents neurovascular unit decline, including
the reduction of age-related fibrin deposition and preservation of pericytes. The positive impact
of exercise on neurogenesis, angiogenesis, neuronal activity, and cognition have been well dem-
onstrated [4,9,11,13,61], but little is known about the effects of long-term exercise on cellular
and molecular interactions of the neurovascular unit and other glial cells during aging. In our
study, long-term exercise during aging prevented deficits in spontaneous and common behav-
iors in mice that are similar to ADL in humans, which are also affected by aging and improved
by physical activity [62,63,64,65]. For instance, changes in grip strength and physical frailty in
humans have been strongly associated with decline in cognitive performance [66,67,68]. It has
been proposed that common biological processes mediate age-related decline in physical and
cognitive function [67], suggesting that exercise in aging could be targeting and preventing
declines in these common processes. Our data support this hypothesis by demonstrating that
long-term exercise in aging mice prevents age-related physical frailty and behavioral deficits
along with enhancements in brain structure and function.

While it is not yet known whether exercise-induced pericyte protection is direct or indirect,
the importance of pericytes in the neurovascular unit underscores the potential of exercise to
ameliorate age-associated degenerative changes and preserve long-term neurovascular health.
Interestingly, previous reports found that levels of peripheral circulating platelet-derived
growth factor subunit B (PDGFB), an essential growth factor for pericytes derived from endo-
thelial cells [69], are significantly reduced with age [70], but increased by exercise [71]. The
effects of peripheral growth factors on the cerebrovascular system have been demonstrated
before. For instance, circulatory IGF1 is necessary for exercise-induced angiogenesis [72] in the
young brain, while blood-derived GDF11 induces angiogenesis in the aged subventricular zone
during heterochronic parabiosis [73], suggesting that circulatory factors could be mediating
exercise-induced changes in the cerebrovascular system. Further studies are necessary to deter-
mine the possible contribution of circulatory factors to exercise-mediated improvements of
cerebrovascular health.

Another important finding in this study was the significant reduction in the number of
aged-induced proinflammatory C1qa+ microglia/monocytes in exercised mice. Induction of
C1qa in the CNS promotes synapse elimination and synaptic dysfunction during development,
neurodegenerative diseases such as glaucoma and AD, and aging [29,30,31,32,74]. Importantly,
the positive changes found in exercised mice were accompanied by stabilization of synaptic
proteins and improvements in neuronal plasticity along with behavioral enhancements when
compared with age-matched sedentary mice, and could be a direct result of a lessening of com-
plement activation. Increased levels of C1QA are found in aged human brains suggesting a pos-
sible contribution of the complement cascade to age-related cognitive decline [30], but the
impact of exercise on complement activation in the human brain has not been studied. How-
ever, it is well established that exercise in humans increases hippocampal volume and blood
flow, induces greater levels of electrical and synaptic activity, and improves memory and cogni-
tive performance in older adults that exercised [9,11,12]. This further highlights the impor-
tance of understanding the mechanisms by which aging and lifestyle directly or indirectly
affect the function of astrocytes, pericytes, and microglia/monocyte.
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Determining the mechanisms by which aging leads to neurovascular decline and how exer-
cise prevents this decline is important, as it could lead to the identification of therapeutic strate-
gies that target similar processes. Here we suggest APOE as a strong candidate for mediating
age-related neurovascular unit decline; Apoe expression decreases in the cortex and HP of aged
mice, Apoe expression is preserved by exercise, and exercise has little to no effect on behavioral
deficits, neurovascular dysfunction, and innate immune responses in aged Apoe-deficient mice.
Given that mice deficient in Apoe show vascular permeability, decreased CBF, synapse loss,
and cognitive impairments [37,75,76], a decrease in Apoe expression in the aging brain would
be predicted to impact the health of the neurovascular unit. Supporting this, a previous study
shows an activation of a proinflammatory pathway in pericytes in Apoe-deficient mice leading
to BM dysregulation and neurovascular breakdown [37]. Interestingly, although exercise had
no effect on most components of the neurovascular unit in Apoe-deficient mice, exercise did
partially increase pericyte number, but not coverage, indicating exercise has at least some posi-
tive effects on pericyte survival independent of APOE but they could be still dysfunctional.
Another possibility is that intensity and duration of the exercise in this study was not sufficient
for Apoe-deficient mice to reach the beneficial effects found in the wild-type mice. It is impor-
tant to note that Apoe-deficient mice already had a dysfunctional neurovascular unit prior to
running in contrast to the experiments using wild-type mice. Therefore, it is possible that exer-
cise prevents neurovascular dysfunction but it has little to no effect on mice with an already
dysfunctional neurovascular unit. This outcome would also be important, as neurovascular
dysfunction from events such as brain injury or strokes could predispose to neurodegenerative
diseases such as AD, and exercise may not be as beneficial in these circumstances.

Further work is needed to fully explore the role of Apoe in age-related neurovascular decline.
In humans, APOE has three alleles that encode three different isoforms of the protein APOE2,
APOE3, and APOE4 that differ by a single amino acid substitution [77]. Human APOE alleles
impact neurovascular function to different extents in mice with mice carrying human APOE4
showing altered neurovascular function from a young age compared to mice carrying human
APOE2 or human APOE3 [37]. Similar to Apoe deficiency, APOE4 transgene in mice induces
the activation of the proinflammatory cyclophilin A (CypA)–matrix metalloproteinase 9
(MMP-9) pathway in brain pericytes, leading to the breakdown of the BBB and neurodegenera-
tion [37,38]. This proinflammatory pathway is also activated in the cerebrospinal fluid (CSF)
of cognitively normal APOE4 carriers [78] and in the microvessels of postmortem brains from
AD patients [79]. Furthermore, increased pericyte degeneration and BBB breakdown are found
in brains of APOE4 carriers with AD supporting the role of APOE4 in neurovascular dysfunc-
tion [79]. Interestingly, in humans and transgenic mice, APOE4 carriers have lower levels of
APOE protein in the brain compared to noncarriers [80,81], and human patients carrying
APOE4 develop AD 8–15 y earlier than carriers of APOE2 or APOE3 [38,62]. However, the
APOE4 isoform also contributes to AD progression by binding with higher affinity to amyloid-
β peptide and disrupting its clearance from the brain [82], and by contributing to amyloid-β
aggregation [83]. Our findings suggest that deficiency or reduced efficiency of APOE in normal
aging could cause dysfunction of neurovascular health and increased neuroinflammation, con-
tributing to AD susceptibility, onset, and progression. Experiments to fully explore the role of
APOE in age-related neurovascular decline and neuroinflammation, including conditional
ablation of Apoe in aging mice and the impact of multiple human isoforms of APOE, are
underway.

In summary, here we show that exercise in aging mice preserves the integrity and function
of the neurovascular unit leading to a healthier and “younger-like” brain. In recent years, there
has been a distinct lack of success in developing therapies that target specific components of
AD such as plaque deposition and excessive Tau phosphorylation. Our data, supported by data
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from human studies [4,9,23,84], point towards focusing efforts on understanding the impact of
aging and lifestyle on neurovascular unit decline and neuroinflammation, particularly pericyte
dysfunction and loss, and activation of innate immune responses. Understanding these pro-
cesses will both help encourage a healthy lifestyle that where possible includes exercise and
could lead to the development of improved treatments for AD and other neurodegenerative
disorders.

Materials and Methods

Mouse Strains
All experiments involving mice were conducted in accordance to policies and procedures
described in the Guide for the Care and Use of Laboratory Animals of the National Institutes
of Health and were approved by the Animal Care and Use Committee at The Jackson labora-
tory. All mice were bred and housed in a 12/12-hour light/dark cycle. As part of the Nathan
Shock Center of Excellence in the Basic Biology of Aging at The Jackson Laboratory, cohorts of
C57BL/6J mice were aged to between 12 and 24 months of age. All mice used in this study were
females C57BL/6J (B6) (Stock number 00664). Female B6 mice homozygous for the Apoetm1Unc

mutation (Apoe-/-) were obtained from The Jackson Laboratory (Stock Number 002052). To
produce experimental animals, Apoe-/- mice were intercrossed and aged. For this study, mice
under 9 months old were classified as “young”mice, while 12-month-old mice were classified
as “aging”mice, and 18–24 month old mice were identified as “aged”mice. For the parameters
analyzed in this paper, no significant differences were found between 18- and 24-month-old
mice.

Mouse Perfusion and Tissue Preparation
Mice were anesthetized with a lethal dose of ketamine/xylazine and transcardially perfused
with 1X PBS to remove any trace of blood from the brain. After perfusion, mice were decapi-
tated with brains carefully dissected out and hemisected in the midsagittal plane. For RNA-seq,
the superior region of the cortex (region 1), the HP (region 2), and the RB (region 3) were
removed and immediately snap-frozen. For other histological procedures, one-half of the
hemisected brain was snap-frozen and the other half was fixed by immersion in 4% parafor-
maldehyde for two nights. After fixation, brains were rinsed in 1X PBS, immersed in 30%
sucrose/PBS solution overnight at 4°C, frozen in OCT, and cryosectioned at 20 μm.

RNA Extraction, Library Construction, and Sequencing
Tissues were homogenized with TRIzol reagent (Life Technologies) and centrifuged to remove
debris. Chloroform (0.2 ml per 1 ml of TRIzol) was added to the cleared homogenate for phase
separation. Total RNA was purified from the aqueous layer using the QIAGEN miRNeasy
mini extraction kit (QIAGEN) according to the manufacturer’s instructions. RNA quality was
assessed with the Bioanalyzer 2100 (Agilent Technologies). Poly(A) selected RNA-seq sequenc-
ing libraries were generated using the TruSeq RNA Sample preparation kit v2 (Illumina) and
quantified using qPCR (Kapa Biosystems). Using Truseq V4 SBS chemistry, all libraries were
processed for 125 bp paired-end sequencing on the Illumina HiSeq 2,500 platform according
to manufacturer’s instructions.

RNA-seq Analysis, Official Gene Names, and Gene Set Enrichment
Samples were subjected to quality control analysis by NGSQCtoolkit v 2.3 [85]. Reads with
70% of their bases having a base quality score� 30 were retained for further analysis. Read
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alignment and expression estimation was performed using RSEM v 1.2.12 [86] with supplied
annotations at default parameters against the C57BL/6J mouse genome (build-mm10). Bam-
tools v 1.0.2 [87] were used to calculate the mapping statistics. Differential gene expression
analysis between groups was performed using EdgeR v 3.8.5 [87,88,89] following the removal
of outlier samples and lowly expressed genes (cpm [or counts per million]< 1 in less than two
samples). Normalization was performed using the trimmed mean of M values (TMM). Adjust-
ment for multiple testing was performed using FDR. Genes were considered to be significantly
DE at a FDR< 0.05. All raw and processed data is being made available through GEO archives
and S1–S3 Tables. Official ENSEMBL gene IDs for all genes included in this study are provided
in column 1 of S1, S2 and S3 Tables.

The Database for Annotation, Visualization and Integrated Discovery (DAVID, [89]) was
used to add functional annotation to DE gene lists and provide statistical assessment of the
annotations. We focused on the KEGG pathways [90]. For each list of DE genes, DAVID deter-
mines the number of genes in each KEGG pathway and uses a Fisher exact test to determine
the probability that the number of genes in each pathway would have occurred by chance [89].
A p-value< 0.05 was used to identify significant pathways. Pathways with gene expression
changes represented by colors (red–up-regulated, green–down-regulated) were generated at
the KEGG website [90].

Immunostaining
For immunostaining involving antibodies for vascular associated proteins, sections were pre-
treated with Pepsin as previously described [91] with minor modifications. Sections were
hydrated with H2O for 3 min at 37°C followed by treatment of the tissue with 0.5 mg/ml of
Pepsin (Sigma-Aldrich) for 18 min at 37°C. Sections were then rinsed twice with 1X PBS at
room temperature (RT) for 10 min. After Pepsin pretreatment, sections were rinsed once in 1X
PBT (PBS + 1% Triton 100X) and incubated in primary antibodies diluted with 1X PBT + 10%
normal goat or normal donkey serum over two nights at 4°C. After incubation with primary
antibodies, sections were rinsed three times with 1X PBT for 10 min and incubated for two
hours in the corresponding secondary antibodies (1:800, Invitrogen). Tissue was then washed
three times with 1X PBT for 10–15 min, incubated with DAPI and mounted in Poly aqua-
mount (Polysciences). The following primary antibodies were used: goat anti-COL4 (1:40,
R&D), goat anti-PDGFRβ (1:40, R&D), goat anti-CD31 (1:40, R&D), rabbit anti-LAM (1:200,
Sigma-Aldrich), goat anti-mouse APOE (1:50, Santa Cruz Biotech), Biotinylated Lycopersicon
Esculentum (Tomato) Lectin (1:200, Vector), rabbit anti-IBA1 (1:200, Wako), rabbit anti-
GFAP (1:200, Dako), rabbit anti-AQP4 (1:200, Sigma-Aldrich), mouse anti-synaptophysin
(SYN, 1:200, Millipore), mouse anti-NeuN (1:300, Millipore), rabbit anti-fibrinogen (FIBRIN,
1:200, DAKO). Blocking serum was not included in primary antibody solutions that contained
the fibrinogen antibody.

For quantitative analysis of FIBRIN and SYN in the cortex, four images were randomly
taken in the parietal cortex for each brain for each mouse and opened in ImageJ (1.47 d) soft-
ware as a black and white image as reported previously [92]. Stained intensity and % of area
statistics were obtained by generating surface segmentation using the same threshold criteria
for all the pictures. For quantification of PDGFRβ+ or IBA1+ cells in the cortex and CA1, four
images were taken for each brain from each mouse with a Zeiss Axio Imager fluorescent micro-
scope and manually counted using the cell counter plugin from the ImageJ (1.47 d) software.
For quantification of pericyte coverage of microvessels, the length PDGFRβ+ pericytes were cal-
culated using the NeuronJ plugin in ImageJ (1.47d) software. All image analyses were per-
formed blind to the experimental conditions.
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Vascular Imaging Analysis
For quantification of COL4+ and CD31+ capillary area in the cortex and CA1, six images were
taken for each brain from each mouse with a Zeiss Axio Imager fluorescent microscope. Vessel
area was quantified using an automated method developed in-house, available upon request.
Briefly, a segmentation algorithm, modified from the ImageJ plugin VNT (Vascular Network
Toolkit, http://ntwrkanlystlkit.sourceforge.net/), was used for measure blood vessels area on
20x magnification images that were stained with the vascular markers COL4, LAM, CD31, and
Lectin. This segmentation algorithm was written as an ImageJ macro for automated processing
of images that includes the following steps: Gaussian blur (2 px), “Find edges”, Variance (5 px),
Median (3 px), Subtract (σ px), Multiply (255), Invert and Analyze Particles (S11 Fig). Image
analysis was automated and blind to the experimenters. This automated processing had a posi-
tive correlation with quantification of vessel area by manual tracing (in ImageJ) performed by
two independent investigators (R2 = 0.612, p = 1.24e-07) (S11 Fig).

In Situ Hybridization and Analysis
For in situ hybridization experiments, RNA probes for mouse Apoe (GE Dharmacon Clone ID
5136415), Arc (GE Dharmacon Clone ID 3498057), Clu (GE Dharmacon Clone ID 30550773),
and C1qa (GE Dharmacon Clone ID 3592169) were synthesized, labeled with digoxigenin
(Dig), and hydrolized by standard procedures. Frozen sections were postfixed (4% PFA for
5 min), rinsed twice with 1X PBS, and acetylated with 0.25% acetic anhydride for 10 min in
0.1 M triethanolamine (TEA). Sections were then washed in PBS and incubated overnight at
65°C with hybridization solution (50% formamide, 1X Hybe solution [Sigma-Aldrich], 1 mg/ml
yeast RNA) containing 1 μg/ml Dig-labeled riboprobe. After hybridization, sections were washed
by immersion in 0.2XSSC (Sodium Chloride- Sodium Citrate) at 72°C for 1 hr. Dig-labeled
probes were detected with an AP-conjugated anti-Dig antibody (Roche) followed by NBT/BCIP
(nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate) reaction (Roche). After in situ
hybridization, sections were incubated in primary antibodies (GFAP, NEUN and IBA1) as previ-
ously described [29] and briefly described above. Sections were then incubated with DAPI for
nuclei staining and mounted in Aqua PolyMount (Polysciences).

For quantitative analysis of Apoe and Clu RNA expression, the % area stained by the ribop-
robes in the cortex and CA1 was measured with ImageJ (1.47 d) software as reported previously
[92]. Briefly, six images were taken in the parietal cortex for each brain from each mouse and
opened in Image J as a black and white image. All images were converted to one stack and
cropped to obtain just the center of the picture. Stained area statistics were obtained by generat-
ing surface segmentation using identical threshold criteria for all the pictures. All image analy-
ses were performed blind to the experimental conditions. For quantification of Arc+ or C1qa+

cells in the cortex, four images were taken from each brain for each mouse in the transmission
light channel and the fluorescence channel for fluorescently-labeled NEUN or IBA1 and manu-
ally counted using the cell counter plugin from the ImageJ (1.47 d) software.

Transmission Electron Microscopy (TEM)
Mice were perfused with a mix solution of 2% PFA and 2% glutaraldehyde in 0.1 M Cacodylate
buffer (Caco). After perfusion, brains were fixed overnight in the same solution at 4°C. The
samples were then rinsed three times in 0.1 M Caco buffer. 100 μm thick coronal sections were
cut on a vibrating microtome and post fixed with 2% osmium tetroxide in 0.1 M Caco buffer
for 2 h at room temperature. Sections were rinsed three times with Caco buffer and then dehy-
drated through of series of alcohol gradations. The sections were then put into a 1:1 solution of
propylene oxide/Epon Araldite (Electron Microscopy Sciences, Hatfield, PA) overnight on an
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orbital rotator. Sections were then flat embedded with 100% Epon Araldite between 2 sheets of
Aclar film and polymerized at 65°C for 48 h. Specific areas of the parietal cortex in these sec-
tions were then selected, cut out with a razor blade and glued onto dummy blocks of Epon Ara-
ldite. 90 nm ultrathin sections were cut on a Diatome diamond knife, collected on 300 mesh
copper grids, and stained with Uranyl Acetate and lead citrate. Grids were viewed on a JEOL
JEM1230 transmission electron microscope and images collected with an AMT high-resolution
digital camera. Twenty cross-sectional blood vessels were imaged per brain/mouse, n = 3 per
group young (4 mo) and aged (18 mo) group.

RNA and Protein Extraction with TRIzol
Hemisected brains were dissected as described above and the superior region of the cortex con-
taining the parietal cortex was sliced, snap frozen at the time of collection and stored at −80°C.
RNA extraction was performed according to the TRIzol (Invitrogen) manufacturer’s instruc-
tions. Briefly, tissue was homogenized in 1ml of TRIzol reagent per 50–100 mg of tissue sam-
ple, followed by separation of phases using chloroform and removal of the aqueous phase for
RNA precipitation. The interphase and organic phenol-chloroform phase were saved for
protein extraction. For protein isolation, 100% ethanol was added to the interphase/phenol-
chloroform phase, centrifuged and the phenol-ethanol supernatant was taken. Protein was pre-
cipitated from the saved supernatant with isopropanol, washed with 0.3 M guanidine hydro-
chloride in 95% ethanol and resuspended in a 1:1 solution of 8 M urea (in Tris-HCl 1 M, pH
8.0) and 1% SDS using sonication as described previously [93]. Isolated RNA and protein were
stored at −80°C until use.

Quantitative PCR
Trizol-extracted RNA was used to assess the expression levels of mouse Apoe in young (n = 4)
and aged (n = 4) cortex, with all samples normalized to β-Actin. RNA was treated with DNAse
and reverse transcribed using the GeneAmp RNA PCR kit (Applied Biosystems). For quantita-
tive PCR, the Quanti-Fast SYBR Green kit (Qiagen) was used and reactions were carried out
with the following primers: Apoe (Forward: 5’-GGGCAAACCTGATGGAGAAG-3’ and Re-
verse: 5’-CCTGGCTGGATATGGATGTTG-3’); and β-Actin (Forward: 5’-TGGAATCCTGTG
GCATCCATGAAAC-3’ and Reverse: 5’-TAAAACGCAGCTCAGTAACAGTCCG-3’), with
each gene being interrogated in triplicate. Ct (threshold cycle) was calculated as the mean of
the successful replicates for each gene. For normalization, ΔCt values were calculated as Ct
(gene of interest) minus geometric mean of Ct for the normalizers. The average and standard
deviation of the young cortex were then calculated. The ΔΔCt was defined as the ΔCt (gene of
interest) minus ΔCt (control mean). The fold change was calculated as 2 minus ΔΔCt (up-regu-
lated) or –2ΔΔCt (down-regulated). A gene was considered DE if the fold change was greater
than two standard deviations away from the mean fold change from the young cohort.

Western Blot Analysis
Protein samples were separated by SDS-PAGE gel electrophoresis and transferred to nitrocellu-
lose membrane. Before incubation with primary antibodies, membranes were blocked in 5%
milk, and after primary antibody incubation the appropriate peroxidase-conjugated antibody
(Millipore) was used as a secondary antibody. For detection, membranes were treated with the
Amersham ECL western blotting analysis system (GE Healthcare) and exposed to the High
performance chemiluminescence film (GE Healthcare). The primary antibodies used for
immunoblotting are: goat anti-mouse APOE (1:1,000, Millipore), rabbit anti-pan laminin
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(LAM, 1:1,000, Sigma-Aldrich), mouse anti-PSD95 (1:1,000, Millipore), and mouse anti-βAc-
tin (1:2,000, Abcam).

Behavioral Tests
Fore limb strength was assessed by the suspended grid-grasping test. Mice were timed for how
long they can support their body weight by holding onto a metal mesh suspended in midair.
One minute was established as the maximum time for the test. Nest construction was assessed
as reported previously [94,95]. Briefly, singly housed mice were provided with a preweighted
nestlet one hour before the dark cycle. The next morning, the nest construction was assessed
following the 1 to 5 scoring method established by the Deacon lab (2012). To evaluate burrow-
ing, individually caged mice were provided with a one open ended 200 mm long and 70 mm
diameter polyvinyl chloride (PVC) plastic tube filled with 200 g of mouse food pellets as
described previously [94]. The open end was elevated 3 cm off the bottom of the cage with
machine screws (5 cm long). The mice were allowed to burrow for 2 hr, and the amount of
food pellets that remained in the tube was calculated. All behavioral tasks were performed at
least three times and the average calculated.

Exercise by Voluntary Running
For voluntary wheel running, mice were given free access to running saucer wheels (Innovive
Inc) (day and night, two mice per cage). Sedentary mice had no access to wheels. Both groups
were housed under these conditions for 6 mo. Animals were tested for running capacity by
placing individual mice in a cage with a wireless saucer wheel (ENV-044 Med Associates Inc.)
for 10 d. Data were collected nightly (16 hr), analyzed and average distance ran per night for
each mouse calculated.

Statistical Analysis
Data were analyzed using GraphPad Prism software. Significance was calculated using
unpaired t tests for comparisons between two groups and one-way multifactorial analysis vari-
ance (ANOVA) followed by Tukey posthoc tests for multiple comparisons. p-values are pro-
vided as stated by GraphPad Prism software and significance was determined with p-values
less than 0.05.

Supporting Information
S1 Dataset. Original data for each of the figures in the manuscript and supporting informa-
tion.
(XLSX)

S1 Fig. Decrease in BM coverage with age. (A) COL4+ microvessels are significantly
decreased in the cortex of aged mice when compared with young B6 mice. (B) Quantification
of COL4+ and CD31 capillary area in the young and aged B6 cortex. (C) Colocalization of
COL4 (green) with LAM (magenta) and Lectin (blue) in young and aged B6 mice. Loss of
COL4 and LAM coverage in Lectin+ capillaries is evident in the aged mouse when compared
with the young. In (B), values are relative mean + SEM to the young values, n = 4–6 mice per
group. ��p = 0.005 by unpaired t test. Scale Bars: 50 μm. The data used to make this figure can
be found in S1 Dataset.
(TIF)
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S2 Fig. Irregularities in BM coverage with age. (A) COL4 and LAM immunostaining in the
cortex of young and aged mice showing irregularities in the coverage of microvessels by these
BM proteins. Arrows indicates loss of coverage while arrowheads show increased levels deposi-
tion of these proteins in microvessels. (B) Total levels of LAM protein in the cortex of young
and aged mice. In panel (B), values are mean + SEM, n = 4 mice per group. Scale Bars: 50 μm.
The data used to make this figure can be found in S1 Dataset.
(TIF)

S3 Fig. BM and pericyte coverage are decreased with age in the CA1 region of the HP. (A)
COL4+ microvessels are significantly decreased in the cortex of aged mice when compared
with young B6 mice. (B) Microvessels coverage of PDGFRβ+pericytes is significantly reduced
in the hippocampal CA1 region. In (A) and (B), values are relative mean + SEM to the young
values, n = 6 mice per group. ���p = 0.0001 and ����p< 0.0001 by unpaired t test. Scale Bars:
50 μm. The data used to make this figure can be found in S1 Dataset.
(TIF)

S4 Fig. Synaptic proteins are decreased with age but preserved by exercise. (A) SYN cortical
immunoreactivity is noticeably decreased in aged (24 mo) mice when compared with young (4
mo) mice. (B) Levels of intensity of SYN immunoreactivity were significantly decreased in
aged mice when compared with young and aging mice. (C) PSD-95 protein levels in the cortex
are significantly decreased in aged mice when compared with young mice. (D–E) Voluntary
running significantly preserves SYN cortical immunoreactivity in aged mice. In panels (C and
D), values are relative mean + SEM to the young values (n = 4). In (B) ���p = 0.0003, and in (E)
��p< 0.0001 by ANOVA followed by Tukey’s posthoc tests and in (C) p< 0.005 by unpaired t
test. Scale Bars: 50 μm. The data used to make this figure can be found in S1 Dataset.
(TIF)

S5 Fig. BM dysregulation in aged brains is prevented by exercise. (A) COL4+ microvessels
are significantly increased in the cortex of aged runner mice when compared with aged seden-
tary mice. (B) Quantification of CD31+ capillary area shows no significant differences between
groups. (C) COL4+ microvessels are significantly increased in the CA1of aged runner mice
when compared with aged sedentary mice. (D) Quantification of CD31+ capillary area in the
CA1 shows no significant differences between groups. In (B–D), values are relative mean +
SEM to the young values, n = 4 aging mice, n = 6 aged sedentary mice and n = 6 aged runner
mice. In (A) ���p = 0.0007 and in (C) �p = 0.0163 by ANOVA followed by Tukey’s posthoc
tests. Scale Bars: 50 μm. The data used to make this figure can be found in S1 Dataset.
(TIF)

S6 Fig. Astrocyte reactivity is attenuated in aged, exercised mice. (A) Increased GFAP
immunoreactivity in the cortex of aged sedentary mice is prevented by voluntary running in
aged runner mice. (B) Quantification of GFAP+ area in the cortex of aging, aged sedentary and
aged runner mice. Values are mean + SEM of the % area immunolabeled with GFAP, n = 4
mice per group. �p< 0.05 by ANOVA followed by Tukey’s posthoc tests. Scale Bar: 50 μm. The
data used to make this figure can be found in S1 Dataset.
(TIF)

S7 Fig. Decline in pericyte and AQP4 coverage in the CA1 region of aged mouse brains are
prevented by exercise. (A–B) PDGFRβ+ pericyte coverage is significantly increased in the CA1
region of aged runner mice when compared with aged sedentary mice. No changes in the num-
ber of PDGFRβ+ pericyte were found between groups. (C–D) AQP4+ microvessels are signifi-
cantly increased in the CA1of aged runner mice when compared with aged sedentary mice. In
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(B and D), values are relative mean + SEM to the young values, n = 4 aging mice, n = 6 aged
sedentary mice, and n = 6 aged runner mice. In (B) ��p = 0.0011 and ���p = 0.0010 and in (D)
���p = 0.0009 and �p = 0.0183 by ANOVA followed by Tukey’s posthoc tests. Scale Bars:
50 μm. The data used to make this figure can be found in S1 Dataset.
(TIF)

S8 Fig. Apoe expression is only observed in astrocytes in the cortex of the aging mouse
brain. (A) Apoe in situ hybridization signal (purple/white) colocalized with GFAP immunos-
taining (green) in astrocytes. (B) Apoe expression (purple/white) is absent on IBA1+ microglia
and NEUN+ neurons. Scale Bars: 50 μm.
(TIF)

S9 Fig. Clusterin (Clu) is expressed mainly in astrocytes and, in contrast to Apoe, does not
decline with age. (A) Clu in situ hybridization signal (purple/white) colocalized with GFAP
(green/astrocytes), IBA1 (green/microglia) and NEUN (red/neurons) immunostaining. Arrows
indicate colocalization of GFAP with Clu expressing cells, but not IBA1+ microglial cells.
Arrowheads show cells positive for Clu signal are negative for NEUN immunostaining. (B–C)
Clu expression (purple) does not change with age in the neocortex. (D–E) No changes in Clu
expression are found in the CC. In (C and E), values are relative mean + SEM to the young val-
ues, n = 4 mice per group. Scale Bars: 50 μm (A and D), 100 μm (B). The data used to make this
figure can be found in S1 Dataset.
(TIF)

S10 Fig. Deficiency of Apoe promotes early neurovascular decline. (A) Col4+ capillaries are
significantly reduced on APOE-deficient mice. In (A) lower panel, merge images showing
PDGFRβ+ pericytes (magenta), IBA1+ microglia (green) and LECTIN+ endothelial cells in the
young Apoe+/+ and Apoe-/- mice. (B) Quantification of COL4+ capillary area between young (9
mo) Apoe+/+ and Apoe-/- B6 mice. (C) Quantification of CD31+ capillary area, nonsignificant
changes are observed. (D) Quantification of PDGFRβ+ pericytes showing a significant decrease
of these cells in the APOE-deficient mice. (E) Quantification of IBA1+ microglia showing a sig-
nificant increase of these cells in the APOE-deficient mice. (F) Running distances by Apoe-/
—aged mice were not statistically significant from Apoe+/+-aged runner mice. (G) Deficits in
grip strength found in Apoe-/- aging and aged sedentary mice were not statistically significant
from Apoe-/- aged runner mice, although a partial increase is observed. (H) Deficits in nest con-
struction behavior were not preserved in Apoe-/—aged running mice when compared with
Apoe-/—aged sedentary mice. (I–J) No changes in COL4+ capillary area were found between
aged sedentary Apoe-/- and aged runner Apoe-/- mice. (K) Quantification of CD31+ capillary
area in young Apoe-/-, aged sedentary Apoe-/- and aged runner Apoe-/- mice. In panels (B, D, E,
F–H, J, and K) values are mean + SEM. In (B, D, and E) ��p< 0.005, n = 4 by unpaired t test.
In (H) �p = 0.0416 and ���p = 0.0005 by ANOVA followed by Tukey’s posthoc tests. Scale Bars:
50 μm. The data used to make this figure can be found in S1 Dataset.
(TIF)

S11 Fig. Automated calculation of vascular area in the mouse cortex. (A–C) Sample images
showing steps of image-automated processing for microvessels area quantification. Original
image show in A, invert step after segmentation show in B and analyzed structures in C. Inset
on C shows the tabulated data acquired after the analysis. (D) A positive correlation (R2 =
0.612, p = 1.24e-07) is observed between vascular area calculation by manual segmentation ver-
sus automated segmentation by the segmentation algorithm developed in our lab.
(TIF)
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S1 Table. DE genes in the FPC/CC (region 1).
(XLSX)

S2 Table. DE genes in the HC (region 2).
(XLSX)

S3 Table. DE genes in the RB (region 3).
(XLSX)

S4 Table. KEGG Pathway Analysis (All regions).
(XLSX)
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