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Abstract

Epidemiological studies have been critical for estimating associations between exposure to 

ambient particulate matter (PM) air pollution and adverse health outcomes. Because total PM 

mass is a temporally and spatially varying mixture of constituents with different physical and 

chemical properties, recent epidemiological studies have focused on PM constituents. Most studies 

have estimated associations between PM constituents and health using the same statistical 

methods as in studies of PM mass. However, these approaches may not be sufficient to address 

challenges specific to studies of PM constituents, namely assigning exposure, disentangling health 

effects, and handling measurement error. We reviewed large, population-based epidemiological 

studies of PM constituents and health and describe the statistical methods typically applied to 

address these challenges. Development of statistical methods that simultaneously address multiple 

challenges, for example, both disentangling health effects and handling measurement error, could 

improve estimation of associations between PM constituents and adverse health outcomes.
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Introduction

Exposure to ambient particulate matter (PM) air pollution has been consistently associated 

with increased mortality and morbidity in epidemiological studies [1–7]. Most recent 

epidemiological studies focus on the mass concentration of particles of a specific size 

distribution, for example, PM less than 2.5 µm (PM2.5) in aerodynamic diameter; however, 

PM is a spatially and temporally varying mixture of chemical constituents including 

elemental carbon (EC) and organic carbon (OC) species, ions such as sulfate and nitrate, and 

elements such as silicon and nickel [8]. The spatial and temporal variation in PM 

composition may be driving previously observed spatial and temporal differences in 

estimated health effects of total PM mass [1, 4, 9]. Since studies of both short-term and 

long-term exposures to PM constituents have demonstrated that associations with adverse 

health outcomes vary by constituent [10–13], determining which chemical constituents of 

PM are most harmful is necessary in order to develop better strategies to protect human 

health.

Large-scale, epidemiological studies of PM constituents and health frequently use ambient, 

fixed-location monitors to assign exposure and then estimate associations with adverse 

health outcomes using single pollutant regression models, which is the same approach 

developed for and applied in epidemiological studies of total PM mass and other major 

ambient air pollutants. While this approach provides a general framework for estimating 

associations between air pollution and health, studies of PM constituents and health are 

faced with particular challenges. First, ambient monitors measuring PM constituents are 

particularly sparse across space and typically do not measure concentrations daily [14]. This 

presents problems for population-based epidemiological studies, which aim to assign 

exposures to populations spread over large areas (e.g., counties or cities), larger than 

reasonably represented by available monitoring data given the spatial heterogeneity of many 

PM constituents [15]; lack of daily monitoring data also limits investigation of multiday, 

lagged effects of PM constituent exposures. Second, PM constituents generated by the same 

source are often correlated with each other and also PM constituents, by definition fractions 

of total PM, may be correlated with total PM mass [8]. Thus, it can be difficult to 

disentangle the health effects of one PM constituent from the health effects of other PM 

constituents or total PM mass in epidemiological studies. Last, other sources of 

measurement error, such as error related to instruments or sampling may be greater for 

measurements of PM constituents than for total PM mass concentrations. As an example, 

many PM constituents (such as metals and specific organic species) contribute minimally to 

total PM by mass [8] and low concentrations of these constituents often cannot be 

confidently differentiated from zero when they fall below their method detection limits 

(MDL) [16–18]. Two previous papers outlined some of the challenges present in 

epidemiological studies of PM constituents [19, 20]. A review of current methods and 

challenges is needed as the number of studies of PM constituents and health has increased in 

recent years.

In this review, we summarize a literature search of how recent large, population-based 

epidemiological studies address these challenges and we highlight where further 

development of statistical methods is most needed. While our focus is large-scale 
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epidemiological studies, smaller studies such as panel studies have a different set of 

challenges that would be useful to review in future work. We do not review the substantive 

findings of these epidemiological studies of PM constituents and health, which have been 

previously summarized elsewhere [21, 22].

Literature Search

We systematically reviewed large, epidemiological studies of the associations between 

short-term and long-term exposures to PM constituents and adverse health outcomes. In our 

main search, we identified 1872 citations in PubMed through 31 March 2015 that contained 

at least one term from each of four categories: PM, constituents, health, and study design 

(Table 1). After reviewing 1872 citations, we identified 747 relevant, peer-reviewed, 

epidemiological studies of PM constituents and health. Studies were primarily excluded 

because they did not analyze PM constituents or health. We limited our review to only large 

(>500 individuals), population-based studies of multiple PM constituents. We did not review 

panel studies because they frequently are able to better characterize pollution exposure and 

they have a different set of challenges than those facing larger epidemiological studies. The 

process of our literature review is depicted in Fig. 1. Our review identified 15 cohort studies 

of long-term exposure to PM constituents, 77 time series and case-crossover studies of 

short-term exposure to PM constituents, and 11 birth cohort studies. From all these studies, 

we determined the statistical methods commonly used to address major challenges including 

assigning exposure in the presence of spatial and temporal heterogeneity, disentangling 

health effects of individual constituents, and instrument-related measurement error. Because 

of the large number of relevant studies identified (n = 103), we summarize recent studies 

that exemplify unique approaches to address these challenges in Table 2.

Assigning Exposure in the Presence of Spatial and Temporal Heterogeneity

Cohort, time series, and case-crossover studies rely on spatial and temporal variability in 

pollutant concentrations to estimate associations with adverse health outcomes. Cohort 

studies frequently estimate long-term exposure to pollution (e.g., over years) and compare 

the spatial distributions between pollutant exposures and adverse health outcomes across an 

area. In time series studies, temporal (e.g., day-to-day) variability is compared between the 

pollutant and adverse health outcome for a given area. Time-stratified case-crossover 

studies also compare temporal variability in the pollutant and outcome, but exposure is 

assigned to each individual and compared between the case day, when the outcome 

occurred, and control days, when the outcome did not occur. In some cases, cohort studies, 

and in particular birth cohort studies, use both spatial and temporal variability in the 

pollutant and outcome to estimate associations.

Fixed-location networks of ambient pollution monitors provide information about the spatial 

and temporal variability of pollutant concentrations and these data are commonly used to 

assign exposure in epidemiological studies; however, as noted above, ambient monitors that 

measure PM constituent concentrations are frequently spatially sparse. For example, the 

EPA Chemical Speciation Network (CSN) is a network of approximately 250 sites across 

the entire USA with only a small number (generally ≤3) of monitors in each urban area, 
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compared with over 2000 monitors across the USA for PM2.5 [11, 14]. In addition, ambient 

monitoring of PM constituents generally is only conducted every third or sixth day [10, 14]. 

It is challenging to estimate the true spatial and temporal variation of PM constituent 

concentrations using the available monitoring data. In this section, we discuss the various 

ways epidemiological studies have assigned exposure to ambient PM constituents, which are 

frequently temporally and spatially heterogeneous due to their chemical and physical 

properties.

Cohort Studies

Because cohort and birth cohort studies rely primarily on spatial variability to estimate 

associations with health, predicting the spatial surface of local pollutant concentrations is 

important. Incorrect prediction of the spatial surface can lead to biases in estimated health 

effects. The spatial surface is commonly estimated using the observed pollutant 

concentrations at ambient monitors. Frequently, these locations do not match the locations 

where we observe health outcomes (e.g., residential addresses), and this difference in spatial 

locations between pollution data and health outcome data is referred to as spatial 

misalignment in the spatial statistical literature. One method for assigning exposure to PM 

constituents and accounting for spatial misalignment in cohort studies is to use the long-term 

average concentration from the closest ambient monitor within a certain distance of an 

individual’s residential address [13, 23–25]. Other studies of PM constituents have estimated 

long-term exposure using unweighted or distance-weighted average concentration of several 

neighboring monitors [26–29]. A comparison of these three approaches (the closest ambient 

monitor, the unweighted mean of closest monitors, and the weighted mean of closest 

monitors) found estimated health effects were mostly consistent across approaches [30]. 

These approaches to predict the exposure surface are both easy to understand and apply, but 

they often will fail to fully characterize the true concentrations of highly variable PM 

constituents at residential addresses.

Some cohort studies apply spatial models to ambient monitoring data to assign exposure to 

PM constituents. To obtain exposure at locations without monitoring data, some simple 

spatial models predict the full exposure surface by modeling the dependence between 

monitoring locations as a function of distance between monitors, possibly incorporating 

spatially varying covariates. Kriging methods are commonly applied spatial models that use 

a Gaussian process to model the correlation between monitoring locations. Instead of 

modeling the dependence between monitors directly, land use regression models use 

spatially varying covariates to predict the exposure surface at locations where covariate 

information is available but constituent concentrations are not. The predictors are derived 

using Geographic Information Systems (GIS) data and may include characteristics such as 

traffic intensity, population density, and land use. Many cohort studies have used spatial or 

land use regression models to predict exposure to PM constituents [31–38]. To characterize 

a pollutant’s spatial variation, data from many ambient monitors with good spatial coverage 

over the area of interest are usually necessary, though such data are not always available in 

smaller studies. Hence, spatial models and land use models cannot generally be used in 

single community studies unless supplemental data are collected.
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While national monitoring networks are frequently used in cohort studies, some cohort 

studies have conducted additional measurement campaigns for ambient PM constituents. 

The European Study of Cohorts for Air Pollution Effects (ESCAPE) study sampled ambient 

pollution in 20 major European cities at 20 sites each [33, 34, 37, 38]. In the USA, the 

Multi-Ethnic Study of Atherosclerosis (MESA) included fixed-site ambient monitors placed 

in densely populated areas underrepresented by other monitoring networks as well as 

rotating monitors placed outside a sample of subjects’ homes [32, 35, 36]. The large number 

of ambient monitors allowed these studies to fit complex spatio-temporal models for PM 

constituents; however, these campaigns are expensive and time consuming.

Several birth cohort studies in our review used the Community Multiscale Air Quality 

(CMAQ) model, which simulates spatially resolved PM2.5 constituent concentrations using 

meteorology, state-of-the-art knowledge on atmospheric chemistry, and emission 

information [39–41]. One of these studies applied a spatio-temporal model using CMAQ 

data to identify critical exposure windows in the associations between PM2.5 constituents 

and congenital anomalies [39]. In a study of low birth weight, a chemical transport model 

was applied to estimate spatially resolved exposure to PM constituents [42]. While using 

modeled PM constituent concentrations provides more spatially resolved exposure 

information than using available ambient monitoring data alone, these simulated 

concentrations can be biased and need to be calibrated using ambient monitoring data within 

the study area [41, 43, 44].

Time Series and Case-Crossover Studies

Associations between short-term exposure to PM constituents and adverse health outcomes 

are frequently estimated using time series or time-stratified case-crossover methods. In these 

epidemiological designs, the selected exposure time frame generally ranges from same-day 

exposure to exposure several days preceding the outcome. Most studies in our review 

estimated associations with adverse health outcomes for a single day of exposure (e.g., 

same-day exposure), often because they did not have daily PM constituent concentrations. 

Previous studies of total PM mass have shown that the estimated effects on adverse health 

outcomes can span multiple exposure days [1, 45, 46]. Estimating PM constituent health 

effects corresponding to multiple days of exposure using non-daily data requires temporal 

imputation, which has not been previously attempted and is challenging because observed 

PM constituent concentrations may be substantially different than unobserved 

concentrations on subsequent and previous days. A non-daily sampling schedule can impact 

health effect estimation, possibly driven both by decreased power and by random variability 

across the sampled subsets of health and pollution data [47•]. When daily data are available, 

studies have averaged exposure over multiple days preceding the outcome of interest [48, 

49]. Epidemiological studies of PM constituents with access to daily data have also 

estimated associations using unconstrained and constrained distributed lag models, which 

simultaneously estimate associations for multiple exposure days and allow estimation of 

cumulative effects [50–56].

Spatial variability of the exposure in time series studies is also important to consider because 

pollution is often measured at fixed-site ambient monitors while adverse health outcomes 
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are aggregated across administrative regions such as cities or counties, a problem of spatial 

misalignment. To account for spatial misalignment between concentrations and outcomes in 

time series designs, most studies used either one or an average of ambient monitors to 

represent concentrations for an entire administrative region (e.g., [11, 47•, 57–59]). Other 

studies have also used population-weighted averages that utilize spatially interpolated PM2.5 

constituents at a finer spatial resolution within the administrative region [48, 60, 61]. A 

study of pediatric asthma emergency department visits in Atlanta found estimated health 

effects of PM2.5 constituents did not vary substantially when the ambient average was 

estimated in three ways; using one designated central monitor, the unweighted average of 

ambient monitors, or a population-weighted average [48].

These approaches, while straightforward, will not provide a good estimate of the true 

ambient average for an administrative region if concentrations of the PM constituent are 

spatially heterogeneous and only a small number of monitors are available. Spatial 

heterogeneity exacerbates the spatial misalignment problem for time series studies because 

the true ambient average pollution concentration frequently has less temporal variability 

than the observed concentrations of a pollutant at a single ambient monitor. Therefore, even 

for spatially heterogeneous constituents with high temporal correlations across space, spatial 

misalignment can lead to error in the estimated ambient average concentration, which is 

needed when linking to aggregated health outcomes. An investigation of various sources of 

exposure error in time series studies found that attenuation in estimated health effects driven 

by spatial error was greater for EC, a spatially heterogeneous constituent, than for sulfate, a 

spatially homogeneous constituent [62•].

When data are available from many monitors, spatiotemporal models can be used to account 

for some spatial misalignment. In a study of PM2.5 constituents and hospital admissions in 

20 US counties, spatial models were used to estimate county-wide ambient concentrations 

and the corresponding spatial misalignment error variance for each PM2.5 constituent [63]. 

Another national-level US study represented constituents as time-varying proportions of 

PM2.5 and fitted a spatial model to PM2.5 mass to account for spatial misalignment [64]. 

Because these models rely solely on monitoring data, which provide limited spatial 

information and are not randomly placed throughout an administrative region, they may not 

fully capture a pollutant’s spatial variability.

In case-crossover studies, exposure to pollution is assigned to each individual. The most 

common approach to account for spatial misalignment between the individual’s residential 

address and the ambient constituent monitor is to use only residential addresses located 

within a certain distance of an ambient monitor [65•, 66], which will be most effective for 

spatially homogeneous pollutants such as sulfate. A study of myocardial infarction in New 

Jersey assigned exposure to PM2.5 constituents using monitor-calibrated CMAQ 

concentrations based on the nearest CMAQ grid-cell containing an ambient monitor [44]. 

CMAQ yields PM constituent concentrations with more complete spatio-temporal coverage 

than ambient monitors alone provide; however proper calibration of CMAQ outputs requires 

data from more ambient monitors than are generally available for PM constituents.
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Disentangling Health Effects of Individual Constituents

Disentangling health effects corresponding to PM constituents from those corresponding to 

total PM mass within epidemiological studies is challenging. Previous studies have 

consistently demonstrated that total PM mass is associated with adverse health outcomes [1, 

2, 5] and epidemiological studies of PM constituents may estimate significant health effects 

solely because PM constituents are correlated with total PM mass. Many studies used 

standard covariate adjustment for total PM mass in models of PM constituents and adverse 

health outcomes (e.g., [36, 38, 41, 67, 68]), though this approach can lead to large standard 

errors for constituents highly correlated with total PM. Instead of adjusting for total PM2.5 

directly, several studies estimated associations between PM2.5 constituents and health while 

controlling for the leftover PM2.5 mass (total PM2.5 mass−PM2.5 constituent) [51, 53]. This 

approach minimizes multicollinearity between the constituent and total PM2.5, but the 

interpretation of health effects can be challenging since increases in the PM2.5 constituent 

correspond to decreases in the leftover PM2.5 fraction. Another alternative is to first isolate 

the PM constituent from total PM mass by adjusting for total PM mass, which yields the 

portion of the PM constituent uncorrelated with total PM. Then the resulting residuals can be 

used in health effect regression models [65•, 69], though these estimated health effects do 

not represent the total effect of a PM constituent on adverse health outcomes [65•]. Studies 

have also estimated health effects for total PM2.5 mass and determined whether the 

estimated health effect was modified by each PM2.5 constituent [44, 70, 71]. This approach 

is appealing because the results indicate whether PM2.5 toxicity increases with a higher 

proportion of a particular constituent, but it does not allow direct estimation of constituent 

health effects. Mostofsky et al. [65•] discussed the relative advantages and disadvantages of 

approaches for controlling for total PM mass in epidemiological studies of PM constituents.

Other epidemiological studies have used Bayesian models to account for the relationships 

between PM constituents and total PM mass. One approach is to estimate community-level 

health effects of total PM and then apply a Bayesian hierarchical model to determine 

whether community- and season-specific fractions of PM2.5 constituents explain variability 

in estimated health effects of PM [72]. Similarly, fully Bayesian hierarchical models can be 

developed to allow long-term average PM2.5 constituent concentrations to impact the 

associations between PM2.5 and adverse health outcomes [73]. Constituent health effects can 

also be modeled simultaneously by representing each as a time-varying proportion of total 

PM2.5 mass in a Bayesian hierarchical model [64]. Though these Bayesian models require a 

considerable number of ambient monitors, these models leverage the spatially and 

temporally resolved PM2.5 ambient monitoring data in their analysis of PM2.5 constituents.

Similar to the issues for accounting for PM2.5 mass, many studies have simultaneously 

included multiple constituents in health effect regression models in an attempt to disentangle 

the health effect of one PM constituent from other constituents (e.g., [11, 26, 30, 37, 53, 60). 

However, there is substantial correlation between PM constituents, driven by shared sources 

and meteorology, and simultaneously estimating their health effects can lead to 

multicollinearity and unstable estimates of association. Because of this multicollinearity, 

health effects may be observed for a non-toxic PM constituent in single pollutant models 

when another unobserved, but correlated, constituent is truly toxic. A study of 119 US 
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counties compared the estimated health effect magnitudes between PM2.5 constituents by 

comparing the posterior probabilities that one constituent’s effect exceeded another using a 

multivariate Bayesian hierarchical model [74]. While this approach helps to disentangle the 

health effects of PM2.5 constituents, it does not directly address multicollinearity because the 

approach still fits multivariable regression models to each county. Other studies used 

variable selection procedures to determine the PM constituents most associated with health. 

Forward selection in a multipollutant model has been applied to determine the PM2.5 

constituents that were most associated with mortality [13]. Spatial variable selection models 

can be used to simultaneously estimate health effects of multiple PM2.5 constituents while 

imposing some regularity constraints to account for multicollinearity [75•]. In variable 

selection models, only those constituents that best predict the outcome are included in the 

final model. In this strategy, the selection of constituents may be driven by those that are 

best measured.

Instead of estimating health effects of individual PM constituents, some studies estimated 

health effects of groups of PM constituents. To estimate joint effects of PM constituents, 

two studies first estimated individual effects in a multivariate regression model and then 

summed the resulting estimated coefficients [61] or applied a second-stage regression model 

[76]. Many studies estimated associations between exposure to PM sources, which represent 

groups of constituents, and adverse health outcomes (e.g., [25, 29, 42, 50, 59, 66, 77, 78]). 

In most cases, sources are not directly measured and must be inferred from PM chemical 

constituent concentrations using source apportionment models [25, 29, 77, 78]. A simpler 

alternative to source apportionment modeling is to recreate sources of PM (e.g., soil dust) 

using a linear function of constituents associated with that source [79]. Other studies have 

used k-means clustering [80] and Bayesian modeling [81] to cluster study days based on 

properties of PM, including chemical composition, and determined whether the association 

between PM2.5 and health varied by cluster. Estimating health effects for groups of PM 

constituents reduces multicollinearity at the expense of not differentiating the effects of one 

constituent from other constituents.

Instrument-Related Measurement Error

PM can consist of over 50 chemical constituents and many of these constituents, such as 

transition metals, contribute minimally to PM2.5 by mass, but may be associated with 

adverse health outcomes [8, 23, 26]. These constituents may be more prone to instrument-

related measurement error than major ambient pollutants in part because they frequently 

have low concentrations in ambient air, and depending on the sensitivity of the specific 

measurement methods used, their concentrations can often be below the MDL [16–18]. In 

our literature review, most studies did not mention how data below the MDL were treated. 

In several studies, concentrations below the MDL were replaced by half the MDL, a 

common practice in environmental studies [69, 75•, 82]. A study of hourly PM2.5 constituent 

concentrations in Seoul, South Korea found that estimated associations between PM2.5 

constituents and mortality did not vary substantially between using the raw data below the 

MDL, substituting 1/2 MDL, and omitting values below the MDL, though the percentage 

below the MDL varied across constituents from 0.0 % (OC) to 43.4 % (sodium) [82]. In 

studies of constituents with a larger percentage of concentrations below the MDL or studies 
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of daily concentrations, the estimated health effects may be more sensitive to the method 

used to adjust data below the MDL. A large number of studies included only those 

constituents with few observations below the MDL [23, 25, 34, 53, 68–71, 76, 80, 83–85], 

though the proportion allowed varied between studies. Development of imputation 

approaches [86] or incorporating modeled estimates from dispersion or emissions models 

may aid health effect estimation for constituents with concentrations below the MDL.

Measurement error in PM2.5 constituent data from ambient monitors can also be driven by 

the sampling method, the amount of humidity in the air during measurements, loss of 

volatile particles, electrostatic charge, deposition of additional particles on the filter before 

or after sampling, or other artifacts [87]. Studies of PM2.5 constituents have minimized 

measurement error by using only concentration quantiles [44, 88]. Air quality models 

including CMAQ and chemical transport models do not suffer from the same sources of 

measurement error as monitoring data because they simulate pollutant concentrations 

instead of measuring them directly in the air [40–42, 44]. However, these models still rely 

on monitoring data for bias calibration, and thus accurate and precise monitoring data 

remain a key part of exposure assessment.

Discussion

In this review, we identified three challenges present in epidemiological studies of PM 

constituents and adverse health outcomes, including assigning exposure in the presence of 

spatial and temporal heterogeneity, disentangling health effects of individual constituents, 

and overcoming instrument-related measurement error. One additional consideration is the 

development and application of statistical methods that address several of these issues 

simultaneously. As an example, some PM constituents are emitted by the same, locally 

generated source (e.g., EC and OC from traffic emissions) and this can drive both the spatio-

temporal heterogeneity and the correlation between the PM constituents. To address spatial 

heterogeneity for multiple PM2.5 constituents, spatial models can be combined with a 

Bayesian hierarchical model that allows PM2.5 constituents to impact the associations 

between total PM2.5 mass and mortality [73]. Using a spatial model to estimate PM 

constituents can introduce measurement error in health effect models and a bootstrap-based 

measurement error correction model can be used to correct some of this error [31]. If the 

exposure lag most associated with a health outcome varies between PM constituents, which 

are not measured daily, it is unclear how to estimate associations in multipollutant models 

[29]. Additional statistical methods are still needed to address other combinations of these 

challenges.

When comparing estimated health effects from single pollutant models across constituents, 

differential measurement error between constituents (driven by differences in spatial 

heterogeneity, sampling method errors, etc.) can lead to observed associations only for the 

pollutant measured with smaller error [62•]. A common approach in studies of multiple PM 

constituents is to estimate their respective health effects in multipollutant models. However, 

in the case of differential measurement error, the health effects can be transferred from the 

truly toxic pollutant to one that is correlated with the toxic pollutant, but measured with 

lower error [21, 89]. Few epidemiological studies of multiple PM constituents and health 
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have incorporated methods for handling measurement error, though methods have been 

developed for and applied to ambient pollutants [90–92].

We focused on statistical challenges specific to epidemiological studies of PM constituents 

and health, though previous studies of ambient pollutants have discussed exposure 

estimation [62•, 93–95], confounding [96], measurement error [91, 92, 97, 98], and spatio-

temporal modeling [99–101]. Epidemiological studies of total PM mass are often not as 

sensitive as constituency-based studies to the issues we outline above. While PM2.5 can also 

be spatially and temporally heterogeneous [8], there are more total PM2.5 mass monitors 

than constituent monitors in most communities and PM2.5 monitors often collect daily data 

[14]. PM monitoring data with sufficient spatio-temporal coverage can be used to calibrate 

air quality models like CMAQ for use in subsequent health effect studies [101, 102]. 

Epidemiological studies of total PM often control for other pollutants such as ozone, sulfur 

dioxide, and nitrogen dioxide [4, 103], but the correlation between PM and these pollutants 

may not be as large as correlations found in studies of PM constituents. Last, because total 

PM concentrations are by definition larger than concentrations of PM constituents, total PM 

may be less prone to some sources of measurement error, such as concentrations below the 

MDL.

Time series, case-crossover and cohort studies of PM constituents and health are necessary 

for estimating population-level health effects that can guide regulation. This review 

discusses important considerations for such studies, but we acknowledge that other types of 

studies are needed to fully understand the pathway from pollution exposure to mortality and 

morbidity. Panel studies generally follow a relatively small number of individuals over time, 

and while less generalizable than large population-based studies, these studies often conduct 

better exposure measurement and provide an opportunity to assess air pollution health 

associations under specific contexts [104–107]. Occupational studies measure workplace 

pollutants and therefore have better exposure measurement for occupational exposures than 

many population-based studies have for ambient exposures [108, 109]. However, depending 

on the occupation, occupational exposures to specific PM constituents can exceed those 

experienced by the general population and these studies are primarily focused on indoor and 

not ambient pollution. Natural experiments, such as the reduction in ambient pollution levels 

in Beijing, China during the 2008 Olympics, can provide a unique opportunity to 

characterize health effects associated with a specific reduction in pollution, but may not be 

as useful to characterize short-term health effects associated with typical day-to-day 

variability [105]. Other experimental study designs, such as controlled exposure studies, 

toxicological studies, and animal studies, are also necessary to determine biological 

mechanisms and infer causal associations. Epidemiological studies are critical to fully 

characterize ambient air pollution health effects in the general population and should 

continue to be used, along with other study designs, to better understand how PM 

constituents impact human health.

Conclusions

Recent epidemiological studies of PM constituents and health have used a variety of 

statistical methods to assign exposure in the presence of spatial and temporal heterogeneity, 
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disentangle health effects of individual constituents, and address instrument-related 

measurement error. Spatial and temporal heterogeneity in PM constituent concentrations has 

been estimated by spatio-temporal models and more recently by monitor-calibrated air 

quality model simulations. Commonly multipollutant models of PM constituents include 

adjustment for total PM mass or other PM constituents, but more advanced statistical 

techniques, such as source apportionment modeling, have also been applied to estimate 

health effects corresponding to multiple correlated constituents. Instrument-related and 

model-based measurement errors have not been extensively investigated in epidemiological 

studies of PM constituents and health and additional methods may need to be developed. 

Methods that simultaneously address several issues presented by PM constituent data are 

critical for future epidemiological studies of PM constituents and health and remain an 

active area of statistical and epidemiological research.
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Fig. 1. 
Depiction of literature search conducted on PubMed for epidemiological studies of 

particulate matter constituents and adverse health outcomes through 31 March 2015
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Table 1

Terms used to search PubMed for epidemiological studies of particulate matter constituents and adverse health 

outcomes

Particulate matter Constituents Health Study design

Particulate matter Constituent(s) Health Epidemiologic(al)

Airborne particles Component(s) Mortality Time series

PM Source(s) Morbidity Cohort

PM2.5 Species Hospitalizations Case crossover

Carbon Birth Bayesian

Sulfate Emergency

Metal(s)
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Table 2

Summary of current methods used to handle different challenges in studies of particulate matter (PM) 

constituents and adverse health outcomes

Issue Approach References

Assigning exposure in the presence of spatial and 
temporal heterogeneity

Spatial variability in cohort studies Closest or average of closest monitors [13, 23–30]

Spatial models and land use regression models [31–38]

Additional monitoring campaigns [32–38]

Air quality modeling [39–42]

Multiday exposure in time series, case-crossover studies Average exposure across days [48, 49]

Distributed lag models [50–56]

Spatial misalignment in time series, case-crossover 
studies

Closest or average of closest monitors [11, 47•, 48, 57–61, 65•, 66]

Spatial models [63, 64]

Air quality modeling [44]

Disentangling health effects of individual constituents

Confounding by total PM mass Standard adjustment [36, 38, 41, 65•, 67, 68]

Control for non-constituent PM [51, 53]

Regress out effect of PM mass [65•, 69]

Constituents modify PM mass health effect [44, 65•, 70, 71]

Bayesian hierarchical model with PM mass [64, 72, 73]

Confounding by other PM constituents Standard adjustment [11, 26, 30, 37, 53, 60]

Compare posterior distributions [74]

Variable selection [13, 75•]

Estimate joint effects [61, 76]

Estimate effects of sources [25, 29, 42, 50, 59, 66, 77–79]

Cluster days [80, 81]

Instrument-related measurement error

Concentrations below MDL Substitute 1/2 MDL [69, 75•, 82]

Inclusion criteria [23, 25, 34, 53, 68–71, 76, 80, 
83–85]

Other instrument-related measurement error Coarsen measurements using quantiles [44, 88]

Air quality models [39–42, 44]

For methods that were used in many studies, a selection of recent studies that exemplify the issue are included

Curr Environ Health Rep. Author manuscript; available in PMC 2016 December 01.


