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Abstract

Most statistical methods that adjust analyses for measurement error assume that the target 

exposure T is a fixed quantity for each individual. However in many applications the value of T 

for an individual varies with time. We develop a model that accounts for such variation, describing 

the model within the framework of a meta-analysis of validation studies of dietary self-report 

instruments, where the reference instruments are biomarkers. We demonstrate that in this 

application, the estimates of the attenuation factor and correlation with true intake, key parameters 

quantifying the accuracy of the self-report instrument, are sometimes substantially modified under 

the time-varying exposure model compared to estimates obtained under a traditional fixed-

exposure model. We conclude that accounting for the time element in measurement error 

problems is potentially important.
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1. Introduction

There is now an extensive literature on statistical methods for dealing with measurement 

error in a target measure (denoted T). Most of the methods assume that T is a fixed quantity 

for each individual and model the relationship between an error-prone measurement 

(denoted W) and T [1]. However, in many applications, T really varies with time.

In these circumstances, statisticians usually re-define T as the long-term average, and treat 

the variation over time as part of the measurement error. Correlation over time between 

repeated values is either ignored or sometimes modeled as correlation between error terms. 

When the number of repeat measurements is limited, the correlation is most commonly 

ignored. Potentially important information is thereby lost.
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Rosner et al [2] did explicitly model data from a nutritional cohort study with two sets of 

measurements taken 4 years apart, and allowed the target measure (usual intake of vitamin 

C) to differ at the two time points. Keogh et al [3] also modeled true intake that varies with 

time. However, neither work distinguishes between shorter-term and longer-term 

instruments, nor attempts to estimate the relationship between a dietary report and the 

longer-term average intake.

In this paper we model a target measure T that can change from one short-term period to the 

next over a limited number of periods. We aim to estimate the relationship between dietary 

self-reports of different types and longer-term true average intake. We describe the model 

within a meta-analysis framework, so as to apply it to data from a pooling project, described 

in Section 2. In Section 3 we describe the statistical model, theory and methods. In Section 4 

we give a simplified example, showing the bias of estimates based on the usual model in 

which T is fixed, using theory and simulations. In Section 5 we describe the results of 

applying the method to a pooling project of validation studies. In Section 6 we discuss 

limitations of our approach and extensions.

Our studies span a relatively short time-period (at most 2 years) and do not include health 

outcome data. Thus, we do not tackle here the important problem discussed by Frost and 

White [4] in which an error-prone time-varying exposure's relationship with a health 

outcome is of interest.

2. Application

The Validation Studies Pooling Project (VSPP) [5] combines data from 5 validation studies 

of dietary self-report instruments for assessing individuals’ dietary intake. Three studies 

include men and women, while two include only women. Two types of self-report 

instrument, 24-hour recalls (24HR) and food frequency questionnaires (FFQ) were validated 

against recovery biomarkers, i.e. biomarkers known to provide nearly-unbiased 

measurements of dietary intake. We focus here on two such biomarkers, doubly labeled 

water (DLW) for energy intake and 24-hour urinary nitrogen (UN) for protein intake, and 

investigate reported intake of protein, energy and their ratio, known as protein density.

The 24HR queries intake on a single day, the one previous to its administration; the FFQ 

enquires about average intake over the recent past, usually the previous 12 months. We wish 

to estimate the measurement error properties of these self-report instruments, when viewed 

as targeting longer-term average intake, which we will define here as the average over 12 

months. Note that the biomarker measurements, like the 24HR, measure short-term intake, 

either the previous day (UN), or average intake over the past 10-14 days (DLW).

Each of the studies in VSPP included between 250 and 550 individuals who completed at 

least one FFQ, 24HR, DLW assessment and UN assessment. The majority completed more 

than one 24HR and more than one UN. Each study also incorporated a sub-study where a 

subgroup of individuals repeated main study assessments, at varying times after the main 

study: 3 weeks in one study, approximately 6 months in three studies, and 10-23 months in 

one study.
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3. Statistical Methods

Aim

We focus on estimating the attenuation factor, λ, and the correlation with truth, ρWT. They 

are defined as follows. If an outcome variable is related to an exposure T in a linear 

regression model and the coefficient of T is βT, and we substitute for T an error-prone 

measure, W, then the coefficient for W, βW, equals λβT. When W and T are normally 

distributed, λ can be shown to equal cov(W,T)/var(W). The correlation with truth, ρWT, is 

the correlation of W with T. We estimate these quantities for 24HRs and FFQs, for men and 

women separately.

In addition, we also estimate calibration (prediction) equations [6] for T that include both W 

and personal characteristics Z related to T. In our application Z comprises age group (<40y, 

40-49, 50-59, 60-69, 70-79, ≥80), log of body mass index, race (African-American v other) 

and education (high school, college, postgraduate). These covariates serve as an illustrative 

example of our method. For comments on choosing the set of covariates in practice, see the 

Discussion section.

Time

Participants completed the FFQ at the beginning of all studies but one, and in the other study 

at its end. We set the completion of the FFQ as the common time point. Relative to this time, 

other instruments were completed from between 450 days beforehand to 450 days afterward. 

We divided this period into 10 sub-periods of 90 days each, labeled by subscript j 

(j=1,...,10), with the FFQ placed at the beginning of the 6th period.

Statistical models

Instead of a single error-prone measurement W, three error prone measurements, 24HR 

(denoted R), FFQ (denoted Q), and biomarker (denoted M) are modeled separately in 

relation to true intake T. The models for R, Q and M form a multi-part measurement error 

model, commonly used in nutrition applications. The same model is used for energy, protein 

and protein density, but the modeling is performed separately for each. All dietary variables 

are modeled on the logarithmic scale, including the unobserved true intake, as follows.

(a) Biomarker—Denote the kth repeat biomarker assessment in the jth sub-period 

(j=1,...,10) on the ith individual of study h (h=1,..,5) by Mhijk. Then:

(1)

where Thijk is true intake on the day of the marker assessment and δhijk is random error 

independent of T. Correlation between repeat biomarker values is thus assumed to occur 

through the correlation between true intakes at those times, and biomarker measurements are 

assumed to have classical measurement error.

(b) 24-hour recall—For the same (h,i,j,k) as above, denote the 24-hour recall assessment 

by Rhijk. Then:
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(2)

where Thijk is true intake on the day corresponding to the 24HR assessment, ZRhijk is a 

vector of explanatory variables, uRhi is a random error term representing subject-specific 

bias [7] and εRhijk is independent random error not correlated over time. The correlation 

between repeat 24HRs thus occurs through the correlation between true intakes at those 

times and through the subject-specific bias. The covariates ZR are included for estimating 

calibration equations, but are omitted for estimating attenuation factors and correlations with 

truth, since traditionally these measures of an instrument's quality are reported without 

covariate adjustment. Covariates ZR have subscripts j and k and may vary with time, but in 

our application they do not.

(c) Food frequency questionnaire—Denote the single FFQ assessment of individual i 

in study h by Qhi. Then:

(3)

where Thi is the average true intake over the sub-period of the FFQ administration and the 3 

previous sub-periods, the assumed target of the FFQ. Covariates ZQ may differ from ZR, but 

in our application they are the same; uQhi and εQhi are random error terms representing 

subject-specific bias and independent random error, respectively. Model (3) is not 

completely identifiable when each individual has only a single FFQ, since the variances of 

uQhi and εQhi cannot be estimated separately; however, the variance of their sum can be 

estimated.

In models (1)-(3), the error terms (δ,ε) and the subject-specific biases (u) are assumed to be 

mutually independent, except for uRhi and uQhi. The correlation between uRhi and uQhi, and 

the variances of uQhi, εQhi, uRhi, and εRhijk may differ by study. In our application, the 

variance of δhijk is assumed constant, since insufficient replications of DLW biomarker 

measurements prevented study-specific estimation.

(d) True intake—Denote true average intake in sub-period j, by Thij, The distribution of 

Thij, conditional on covariates ZThij, has first and second moments:

(4)

Furthermore for a single-day's intake within a sub-period j:

where  and ϕhijk are independent of each other and of Thij and ZThij. 

The covariates ZT may differ from ZR or ZQ, but in our application they are the same. The 
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mean and variance of T may vary with time (i.e. with subscript j), but in our application do 

not; we write  as , and ZThij as ZThi. The correlations ρjj’ have one of the following 

structures: banded Toeplitz, autoregressive model order 1 (AR(1)), compound symmetry, or 

degenerate (all 1's), whichever provides the best fit to the model as judged by the Akaike 

Information Criterion (AIC). The degenerate structure option, together with setting ωϕ =0, 

corresponds to the fixed-intake model, and we use it to compare estimates under this model 

with estimates under a time-varying intake model.

Under model (4), the correlation between true intakes on different days in the same sub-

period is 1/(1+ωϕ), and between true intakes on days in periods j and j’ is ρjj’ /(1+ωϕ). Also, 

24HRs and biomarkers measuring the same day's intake have covariance (conditional on 

covariates Z) , compared to the smaller  if they measure different 

days in the same sub-period, and the even smaller  if measured in different sub-

periods, j and j’.

Estimating attenuation factor λ and correlation with truth ρWT

The target exposure is defined as average true intake over 12 months. However the timing of 

these 12 months differs according to self-report instrument. A 24HR reports current intake, 

so the target exposure is

(5)

the average intake during and surrounding sub-period j. A FFQ reports past intake, so the 

target is

(6)

the average intake during and before sub-period j. These definitions impact the estimation of 

attenuation factors and correlations with true intake, as indicated below. Other definitions of 

the target exposure may be used, each resulting in a different estimate of attenuation and 

correlation.

(a) 24-hour recall—The attenuation factor, λRh, for a single 24HR in study h is 

cov(Rhijk,Thi)/var(Rhijk), with Thi defined in (5). From model (2) without covariates Z and 

model (4),

Similarly, for the correlation with true average intake:
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To compute these quantities for the mean of m 24HRs (m>1),  in the above equations is 

replaced by .

(b) Food Frequency Questionnaire—The attenuation factor for a FFQ, λQh, may be 

computed from model (3) without covariates and Thi defined in (6) as:

and the correlation with truth, ρQh, as:

They were estimated under the time-varying intake model or the fixed-intake model by 

substituting the maximum likelihood estimates of the parameters into the above equations. 

Variances of the estimates were obtained using the nonparametric bootstrap. Overall 

attenuation factors and correlations were calculated by taking weighted averages of the 

estimates across the five studies, with weights inversely proportional to the estimates’ 

variances.

Estimating the model parameters

Parameters were estimated using maximum likelihood (conditional likelihood given fixed 

covariates Z), assuming that Qhi, Rhijk and Mhijk have a conditional multivariate normal 

distribution given Zhi (we drop the subscript Q, R or T assuming the three sets of covariates 

coincide). The conditional means, variances and covariances of Qhi, Rhijk and Mhijk, given 

Zhi, are provided in Appendix 1. Actually, if the first and second moments are correctly 

specified, all parameters are consistently estimated, even if the normality assumption fails. 

The use of the nonparametric bootstrap for inference also provides robustness to non-

normality. Estimation was performed using a custom-built program written in SAS [8].

Model fit was investigated in two ways. First, AIC was used to choose the most appropriate 

correlation structure for true intake, and to distinguish between models. Second, empirical 

correlations between biomarker values obtained in different sub-periods were compared 

with those predicted from the model (see Appendix 2).
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Calibration Equations

Calibration equations predict the target average intake, Thi. In a fixed-intake model, they are 

most naturally obtained by regressing the mean biomarker value on the reported intake and 

covariates Z. However, when intake varies with time, one needs to fit models (1)-(4), 

estimate the parameters and then derive the equations. Some technical details of the 

derivation for the FFQ follow.

The conditional expectation of target average intake given Q is

(7)

where

Formula (7) can be used to calculate the calibration equation for any single study h.

If an overall calibration equation is required for use in new studies employing a similar FFQ 

in a similar population to the ones used in the 5 studies, then one may use in place of λQh 

and γT0h their weighted averages over the 5 studies, and the estimate of γT1 from a model 

that sets  equal for all studies, after testing for between-study heterogeneity. The only 

quantity in (7) that would remain to be determined is E(Qhi | Zhi), which could be estimated 

from the new study, since both Q and Z are observed.

4. A simple example

Consider the case where there is only 1 study (h=1), two sub-periods (j=1,2), and each 

individual (i=1,..,n) has two 24HRs, one in each period, and two markers that are performed 

in the first period, one on the same day as the 24HR. We show in Appendix 3 that under 

both the time-varying intake model and the fixed-intake model the maximum likelihood 

estimators of the attenuation and correlation with truth for a single 24HR can be obtained 

from explicit functions of the second moments, whenever those estimates fall within the 

parameter space, and that the estimates of attenuation and correlation with truth for the 

24HR can then be estimated under each model.

To demonstrate the potential bias in the estimate based on the fixed-intake model, we 

present the relative bias, based on its asymptotic expectation (see Appendix 3 for the 

expression) and on simulations of finite sample estimates with parameters taking the 

following values: ; ; ; , , ρ12 = 0.1, 0.5, 0.9; ωϕ 

= 0.1, 0.5, 2.0. The parameters βR0 and γT0 have no influence on the estimates of attenuation 

or correlation and are assigned arbitrarily to zero. Data were simulated under the time-

varying intake model described in the previous section with the 9 possible combinations of 

parameters for 500 individuals and estimates of attenuation and correlation were obtained 

using the method described in Appendix 3. Each scenario was simulated 1000 times.
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Results are shown in Table 1. Biases can be appreciable depending on the values of ρ12 and 

ωϕ. In general, there are two sources of the bias. The first is that Cov(R̄i., M̄
i1.) 

overestimates the covariance between the self-report and true usual intake, due to the first 

self-report and marker being performed on the same day. The second is that Cov(Mi11, 

Mi12) overestimates the variance of true usual (average) intake, due to both markers being 

performed in the same sub-period. The attenuation factor  is overestimated if ωϕ>0. The 

correlation with true usual intake  may be overestimated or underestimated depending on 

the values of ωϕ (ωϕ>0) and ρ12(0<ρ12<1).

5. Application to VSPP

Model fit and parameter estimates

We present results of applying our method to intakes of protein and protein density for men 

and women separately. Model (1)-(4) was first fitted without covariates Z. The correlation 

structure that led to the lowest AIC was compound symmetry for men, and AR(1) for 

women. The fixed-intake model (ρj,j’=1, ωϕ =0) was also fit. Table 2 compares estimates of 

parameters related to random effects from the two models.

The time-varying intake model provided a better fit than the fixed-intake model, as seen 

from the differences in AIC between the two models. The estimate of biomarker within-

person variance was considerably smaller under the time-varying compared to the fixed-

intake model, since under the former model this variance is estimated only from biomarker 

values repeated within the same sub-period. Estimated correlations between average intakes 

in different sub-periods were quite high, except for protein density among women more than 

6 months apart.

Table 3 displays estimates of the regression coefficients under the same two models. The 

estimated coefficients of the 24HR variable were mostly smaller under the time-varying 

model than under the fixed-intake model, especially for women reporting protein density. 

However, this trend was not seen with coefficients of the FFQ. Table 3 also shows ratios of 

error components of variance to the “signal” component in self-reported intake. The larger 

are these ratios, the smaller will be the attenuation factors and correlations with truth. In 

most cases the ratios for the 24HR increased when changing from the fixed-intake to the 

time-varying intake model, whereas for the FFQ the ratios decreased. The increases were 

particularly large for women reporting protein density on a 24HR and were governed largely 

by the corresponding decrease in the regression coefficients.

Attenuation factors and correlations with truth

Tables 4-7 compare estimated attenuation factors and correlations with truth for the time-

varying and fixed-intake model for protein and protein density intakes in men and women. 

The same trends are seen in each table. Under the time-varying model, FFQ estimates were 

slightly larger, and 24HR estimates were smaller. For protein intake (Tables 4-5), despite 

this trend, under both models, a single 24HR had slightly higher estimated attenuation 

factors and correlations than a FFQ, and the mean of 4 24HRs had markedly higher 

estimates than a FFQ. However, for protein density (Tables 6-7), the fixed-intake model 
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gave estimates for the mean of 4 24HRs that were higher than for a FFQ, while the time-

varying intake model gave estimates that were comparable for the two instruments.

Calibration equations

Models (1)-(4) with covariates Z were fitted with the restriction that  did not differ 

across studies. Table 8 displays an example of the results, with estimates of γT1, λQh for 

each study, and the weighted average of γT0h, for FFQ-reported intakes of protein and 

protein density for women. Values of λQh appeared quite homogeneous across studies, 

lending support to using the weighted average value in new studies. Also, estimates of λQh 

were similar to those obtained without covariates Z in the model (compare with Tables 5 and 

7). Age, race and body mass index strongly predicted protein intake, but only age and race 

strongly predicted protein density. Tests for between-study heterogeneity of  were not 

formally significant (although there was an indication of heterogeneity for protein density). 

Overall, the results support using these calibration equations for new studies with a similar 

FFQ and population to those in the VSPP.

6. Discussion

We have described a measurement error model for dietary intake that accounts for the 

timing of biomarker measurements in relation to self-report instruments, for the target 

measure of each instrument, and for the time between repeat biomarker measurements. 

Application to dietary validation study data showed some substantial changes in the 

estimates of attenuation and correlation with truth for self-report instruments. Estimates of 

attenuation factors and correlations with truth were slightly increased for FFQs, and 

decreased for 24HRs.

Our method required subdividing the time into sub-periods of 90 days. The length of the 

sub-period should be chosen with care, and should be short enough to capture the variation 

in dietary intakes, but not so short that measurements within a sub-period are very sparse. 

Ultimately, the choice depends on the study design and the available data. Alternatively, one 

could try to model the true intake in continuous time. Such an approach may improve our 

parameterization in which correlations between intakes change abruptly at discrete times. 

However, a continuous model would require specifying weekly cyclical variations in diet, 

which we preferred to avoid.

Preis et al [9] have reported investigating the influence of timing of repeat biomarkers on 

estimates of attenuation factor and correlation with truth. Using data from two of the five 

VSPP studies (OPEN and AMPM), they adopted a fixed-intake model, and applied 

estimates of within-person biomarker variance found in the AMPM study to that of the 

OPEN study. They reported that the time between repeat biomarkers impacted materially on 

estimated correlations, tending to decrease them when based on biomarker repeats close in 

time and increase them when based on repeats spaced further apart, although this was 

disputed by Dodd et al [10]. Our results in Tables 4-7 show a different pattern, with 

estimated correlations for FFQs relatively unaffected by the adoption of a fixed-intake or 

time-varying intake model, and correlations for 24HRs that were overestimated by the fixed-
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intake model. This overestimation seemed particularly strong in study 3 (the AMPM 

Validation Study). In this study, two of the 24HRs coincided with the day of the biomarker 

determination, and also the time between repeat biomarkers was 10-23 months, the longest 

period between repeats of the 5 studies. Both aspects, proximity of 24HR to biomarker 

determination and extended time between repeat biomarker measurements, tend to 

spuriously increase the fixed-intake model estimates of attenuation and correlation with truth 

in a fixed-intake model, and receive proper treatment only in a time-varying model.

Choosing which covariates to include in a calibration equation is complex. A covariate 

appearing in the health outcome model should also be included in the calibration model, 

unless it is uncorrelated with both true intake and dietary measurement error [1]. However, 

there is debate regarding whether covariates in the calibration equation should be included in 

the health outcome model. If the covariate included in the calibration model is known to be 

independent of health outcome conditional on other covariates in the health outcome model, 

then it can be safely omitted from the health outcome model, but otherwise not [11]. Further 

research is needed to establish valid modeling principles in other settings. BMI is 

particularly problematic because, while it is an important predictor of intakes such as 

energy, protein and sodium, it is unclear whether it is a confounder (that should be included 

in the disease model) or a mediator, which requires special methods [12,13]. Zheng et al 

[14] provide further discussion. Our aim here is simply to show how to use the time-varying 

intake model for estimating calibration equations.

This work has several implications for the design of dietary validation studies. The timing of 

biomarker measurements relative to the administration of the self-report instruments needs 

more attention. The period of the targeted long-term average intake must be defined and 

may be considerably longer than the usual 6-9 months. Having decided on a relevant period, 

the biomarker measurements and short-term self-reports (such as 24HRs) should be spread 

out over that period, and the FFQ administered towards the end, so as to compare it with 

past diet measured by biomarkers.

Since correlations with truth for multiple 24HRs appear to be somewhat lower than 

previously estimated, there is a need to study the combination of multiple 24HRs with FFQs 

to achieve higher correlations. Such combination has recently been proposed by Carroll et al 

[15].

Allowing for variation in time of a target measure could be important in other areas of 

epidemiology and medicine that involve quantities measured with error. These include 

studies of association of physical activity with health outcomes, longitudinal studies of 

serum cholesterol and other biological precursors of heart disease, and interventions to affect 

behavioral outcome variables such as exposure to second-hand smoke. The work described 

in this paper, together with Rosner et al [2] and Keogh et al [3], represent a more general 

move to acknowledge the role of time in the study of measurement error and its effects.
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Appendix 1

Conditional means, variances and covariances of Q, R and M, given Z, and 

identifiabilty of parameters

Using the same notation as in the Methods section of the main text, the conditional means, 

variances and covariances of Qhi, Rhijk and Mhijk, given Zhi, are:

where ρjj’ = 1 if j = j’, I[c] is the indicator function, and DRhijk and DMhij’k’ are the days 

(time units) for which Rhijk and Mhij’k’ measure intake, respectively. Whether or not the 

parameters are identifiable depends on the data available and on the parameterization of the 

correlation matrix {ρjj’}. If we have repeat biomarker data, M, in all combinations of periods 

j and j’, then we can estimate the ρjj’ individually. If the repeats are restricted to certain 
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combinations of j and j’, then we may still be able to estimate all ρjj’ if the structure of the 

correlation matrix is suitably parsimonious, e.g. autoregressive of order 1. The term ωϕ can 

be estimated if we have recalls R and biomarkers M that are measured on the same day, and 

other combinations of R and M that are measured in the same period j, but not on the same 

day.

Appendix 2

Comparison of model-based estimates with empirical estimates of 

correlations between repeat biomarkers

One way of checking the goodness fit of models (1)-(4) is to compare the empirical 

correlations between repeated biomarker measurements and their model-based estimates. 

Because there were a limited number of repeat biomarker measurements, and they were not 

performed in all the possible combinations of periods j and j’ (j, j’ = 1,....,10), we consider 

the pairwise correlations as a function of the time difference, |j-j’|.

As, in the modeling, we assumed that these pairwise correlations did not differ across 

studies. Accordingly the empirical correlations were calculated for each study and then 

combined in a weighted average. Times between repeats differed across studies, so one 

study would contribute information on |j-j’|=0, others would contribute to |j-j’|=1, 2 or 3, and 

yet another study only to |j-j’|=3 up to 7. The model-based correlations were calculated 

according to the following formula:

As an example of the results, we present in Table A1 the comparisons for protein density, 

for men and women separately. It can be seen that the data are rather sparse except for |j-j’| 

= 0 for men and |j-j’|=0 up to 2 for women. The model-based correlations for |j-j’|=0 agree 

very well with the empirical estimates. For other time differences, the model-based 

estimates fall within the 95% confidence intervals of the empirical estimates, except for |j-j’|

=4 for women, where the empirical estimate seems to be a rogue value, larger even that the 

correlation for |j-j’|=0. Thus, overall the model appears to provide a reasonable fit to the data 

based on the comparison of empirical with model-based estimates of correlation. A similar 

picture was obtained when absolute protein intake was considered.

Appendix 3

A simple example

The equations for the conditional means and variances that are provided in Appendix 1 

simplify to the following in the simple example presented in the Section 4 of the main text 

entitled “A simple example”. In that example, there is only one study (h=1), 2 sub-periods 
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(j=1,2), no covariates Z, no FFQ, and each individual has two 24HRs, one in sub-period 1 

and one in sub-period 2, and two markers, both in the first sub-period, with one on the same 

day as the first 24HR. Since there is only one study, the subscript h is suppressed 

throughout; and since there are no repeat 24HRs within the same sub-period, the subscript k 

is suppressed for R.

There are 9 equations for the 9 unknown parameters: γT0, βR0, βR1, , ωϕ, ρ12, , , and 

. These equations provide unique solutions for the parameters and when the solutions fall 

within the parameter space, they coincide with the maximum likelihood estimates under the 

assumptions of normality stated in the main text.

The expressions for the attenuation factor and correlation with truth for the 24HR in this 

case are:

Their estimates are obtained by plugging in the estimates of each parameter obtained from 

the equations above.

These estimates may be compared with those derived from the fixed-intake model. Under 

that model, ωϕ=0 and ρ12=1; the estimating equations are:
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Here again, the equations provide unique solutions for the parameters and when the 

solutions fall within the parameter space, they coincide with the maximum likelihood 

estimates. The expressions for the attenuation factor and correlation with truth for the 24HR 

are:

Their estimates are obtained by plugging in the estimates of each parameter obtained from 

the equations above. It can then be shown that the estimators of λRF and ρRF have 

asymptotic expectations that are not equal to λRT and ρRT, respectively, as one would wish, 

but instead  and . Note that when ωϕ=0 ρ12=1, both 

multiplicative factors equal 1. In general, there are two sources of the biases in these 

estimates. The first is that Cov(R̄i., M̄
i1.) overestimates the covariance between the self-

report and true usual intake, due to the first self-report and marker being performed on the 

same day. The second is that Cov(Mi11, Mi12) overestimates the variance of true usual 

intake, due to both markers being performed in the same sub- period. The attenuation factor 

 is overestimated if ωϕ>0. The correlation with true usual intake  may be 

overestimated or underestimated depending on the values of ωϕ (ωϕ>0) and ρ12(0<ρ12<1). 

Table 1 of the main text shows the magnitude of the bias for selected values of ωϕ and ρ12.
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Appendix

Table A1

Comparison of empirical with model-based estimates of the correlation between repeat 

biomarker measurements as a function of the time between the repeats: protein density in 

men and women

Empirical Model-based

Gender Difference 
in Time 
Periods

Total no. individuals Estimated correlation 95% 
CI 

lower 
limit

95% 
CI 

upper 
limit

Estimated Correlation

Men 0 500 0.591 0.531 0.645 0.626

1 19 0.604 0.207 0.830 0.554

2 16 0.706 0.323 0.890 0.554

3 12 0.831 0.490 0.951 0.554

4 9 0.880 0.521 0.975 0.554

5 32 0530 0.222 0.741 0.554

6 0 - - - 0.554

7 8 0.480 −0.339 0.885 0.554

Women 0 550 0.604 0.548 0.654 0.602

1 109 0.367 0.192 0.519 0.477

2 126 0.217 0.043 0.377 0.377

3 20 0.120 −0.341 0.534 0.299

4 11 0.772 0.321 0.938 0.237

5 20 0.483 0.051 0.762 0.188

6 1 - - - 0.149

7 12 −0.259 −0.725 0.370 0.118

Abbreviations footnote

24HR twenty-four hour recall

AIC Akaike Information Criterion

DLW doubly labeled water

FFQ food frequency questionnaire

VSPP Validation Studies Pooling Project
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Table 1

Bias in the estimated attenuation factor and correlation with true usual intake based on a fixed-intake model 

when a time-varying intake model pertains – a simple example
a

ω ϕ 0.1 0.5 2.0

ρ 12 0.9 0.5 0.1 0.9 0.5 0.1 0.9 0.5 0.1

True λR 0.32 0.25 0.19 0.30 0.24 0.17 0.24 0.19 0.14

Bias of λ̂RF (%)
b 2.6 3.7 4.4 12.9 16.6 22.2 52.5 66.8 90.9

Asymptotic Relative Bias (%) 2.6 3.3 4.5 13.2 16.7 22.7 52.6 66.7 90.9

True ρR 0.40 0.36 0.31 0.39 0.35 0.30 0.35 0.31 0.27

Bias of ρ̂RF (%)
b 0.0 −10.2 −22.4 10.0 0.9 −9.5 48.8 44.5 41.7

Asymptotic Relative Bias (%) 0.0 −10.5 −22.5 10.3 1.0 −9.0 48.8 44.3 41.6

a
For details of the example see Section 4

b
Relative bias: [(Mean of Estimate – True Value)/True Value] × 100%
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Table 2

Estimates of random effects (standard errors in parentheses) and goodness of fit for the time-varying and 

fixed-intake models without covariates

Protein Protein Density

Gender Parameter Time-varying intake Fixed-intake Time-varying intake Fixed-intake

Men Correlation Structure Compound Symmetry - Compound Symmetry -

AIC 2045.8 2070.0 −65.8 −34.1

σT1
2 0.043 (0.004) 0.043 (0.006) 0.032 (0.004) 0.029 (0.004)

σT2
2 0.082 (0.012) 0.065 (0.012) 0.074 (0.011) 0.066 (0.013)

σT3
2 0.054 (0.006) 0.052 (0.006) 0.054 (0.005) 0.053 (0.006)

σδ
2 0.015 (0.005) 0.034 (0.002) 0.009 (0.006) 0.032 (0.002)

ω φ 0.301 (0.090) 0 0.438 (0.128) 0

ρ 12 0.873 (0.073) 1 0.885 (0.079) 1

ρ 13 0.873 1 0.885 1

ρ 14 0.873 1 0.885 1

ρ 15 0.873 1 0.885 1

ρ 16 0.873 1 0.885 1

Women Correlation Structure AR(1) - AR(1) -

AIC 5525.4 5603.2 682.3 747.9

σT1
2 0.058 (0.006) 0.042 (0.006) 0.052 (0.006) 0.038 (0.006)

σT2
2 0.101 (0.011) 0.086 (0.012) 0.080 (0.009) 0.058 (0.009)

σT3
2 0.050 (0.004) 0.055 (0.007) 0.055 (0.005) 0.061 (0.008)

σT4
2 0.051 (0.004) 0.038 (0.005) 0.041 (0.004) 0.023 (0.005)

σT5
2 0.057 (0.004) 0.050 (0.006) 0.047 (0.005) 0.028 (0.005)

σδ
2 0.007 (0.006) 0.045 (0.002) 0.009 (0.010) 0.049 (0.002)

ω φ 0.495 (0.109) 0 0.499 (0.162) 0

ρ 12 0.918 (0.029) 1 0.792 (0.052) 1

ρ 13 0.843 1 0.627 1

ρ 14 0.774 1 0.497 1

ρ 15 0.711 1 0.394 1

ρ 16 0.652 1 0.312 1
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Table 3

Estimates of regression slopes (standard errors in parentheses) and partitions of the variance of self-reports
a 

for the time-varying and fixed-intake models without covariates

Protein Protein Density

Gender Parameter Study Time-varying intake Fixed-intake Time-varying intake Fixed-intake

Men

β R1

1 0.75 (0.14) 0.69 (0.11) 0.69 (0.12) 0.72 (0.11)

2 0.24 (0.15) 0.32 (0.18) 0.32 (0.08) 0.36 (0.09)

3 0.70 (0.07) 0.81 (0.08) 0.35 (0.05) 0.42 (0.05)

β Q1

1 0.72 (0.16) 0.68 (0.15) 0.49 (0.09) 0.52 (0.09)

2 0.39 (0.20) 0.40 (0.19) 0.30 (0.11) 0.27 (0.09)

3 0.41 (0.12) 0.40 (0.11) 0.28 (0.07) 0.26 (0.06)

σuR
2 ∕ βR1

2 σT
2

1 1.5 1.9 0.7 0.6

2 20.5 14.0 0.9 0.7

3 0.8 0.4 1.7 1.1

σεR
2 ∕ βR1

2 σT
2

1 3.5 4.6 3.2 4.0

2 43.5 30.0 13.0 11.9

3 3.2 2.7 6.8 5.2

(σuQ
2 + σεQ

2 ) ∕ βQ1
2 σT

2
1 7.0 7.8 3.6 3.5

2 13.8 16.4 5.5 7.7

3 11.6 12.6 6.9 8.1

Women

β R1

1 0.42 (0.12) 0.47 (0.13) 0.34 (0.10) 0.35 (0.11)

2 0.53 (0.08) 0.60 (0.11) 0.32 (0.06) 0.46 (0.09)

3 0.61 (0.07) 0.77 (0.08) 0.36 (0.05) 0.46 (0.06)

4 0.91 (0.15) 1.12 (0.19) 0.43 (0.14) 0.78 (0.23)

5 0.55 (0.07) 0.63 (0.08) 0.37 (0.06) 0.62 (0.12)

β Q1

1 0.57 (0.17) 0.61 (0.18) 0.42 (0.11) 0.40 (0.10)

2 0.12 (0.18) 0.10 (0.16) 0.56 (0.12) 0.46 (0.10)

3 0.49 (0.13) 0.46 (0.12) 0.37 (0.08) 0.27 (0.06)

4 0.73 (0.11) 0.83 (0.13) 0.51 (0.08) 0.68 (0.14)

5 0.84 (0.13) 0.85 (0.14) 0.43 (0.08) 0.49 (0.11)

σuR
2 ∕ βR1

2 σT
2

1 3.1 3.3 2.4 2.7

2 2.3 2.0 2.9 1.7

3 1.4 0.6 1.7 0.6

4 0.4 0.1 2.2 0.7

5 1.5 1.2 2.0 0.9

σεR
2 ∕ βR1

2 σT
2

1 11.6 13.4 10.7 14.5

2 5.9 5.8 9.7 6.7

3 4.9 3.0 7.6 4.5

4 1.5 1.8 7.2 4.2

5 5.0 4.7 8.0 5.2

(σuQ
2 + σεQ

2 ) ∕ βQ1
2 σT

2 1 9.0 10.8 4.1 6.6
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Protein Protein Density

Gender Parameter Study Time-varying intake Fixed-intake Time-varying intake Fixed-intake

2 188.0 310.3 1.9 4.5

3 10.0 10.7 3.8 7.0

4 4.5 4.6 2.6 2.5

5 4.8 5.3 3.4 4.4

a
 = ratio of subject-specific variance to “true signal” variance in 24HR;  = ratio of within-person variance to “true 

signal” variance in 24HR;  = ratio of subject-specific variance plus within-person variance to “true signal” variance in 

FFQ.
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Table 4

Estimates of attenuation factors and correlations with truth for the time-varying and fixed-intake models 

without covariates (standard errors in parentheses): protein intake among men

Time-varying intake model Fixed-intake model

Instrument Study Attenuation Factor Correlation with Truth Attenuation Factor Correlation with Truth

FFQ
a 1 0.158 (0.033) 0.338 (0.069) 0.166 (0.035) 0.337 (0.067)

2 0.160 (0.082) 0.249 (0.126) 0.146 (0.071) 0.240 (0.114)

3 0.178 (0.050) 0.269 (0.074) 0.184 (0.049) 0.271 (0.069)

Weighted Mean 0.163 (0.026) 0.298 (0.047) 0.168 (0.026) 0.295 (0.045)

p
d 0.944 0.721 0.899 0.693

1 × 24HR
b 1 0.192 (0.032) 0.380 (0.058) 0.196 (0.032) 0.367 (0.055)

2 0.058 (0.037) 0.118 (0.074) 0.069 (0.039) 0.149 (0.084)

3 0.246 (0.030) 0.415 (0.046) 0.302 (0.031) 0.494 (0.039)

Weighted Mean 0.182 (0.019) 0.355 (0.032) 0.207 (0.019) 0.413 (0.030)

p < 0.001 0.001 < 0.001 < 0.001

4 × 24HR
c 1 0.327 (0.047) 0.495 (0.067) 0.364 (0.059) 0.500 (0.071)

2 0.115 (0.072) 0.166 (0.103) 0.138 (0.078) 0.211 (0.117)

3 0.452 (0.047) 0.562 (0.054) 0.593 (0.052) 0.692 (0.046)

Weighted Mean 0.344 (0.033) 0.491 (0.047) 0.423 (0.035) 0.594 (0.037)

p < 0.001 0.002 < 0.001 < 0.001

a
Food frequency questionnaire

b
Single 24-hour recall

c
Average of 4 repeats of a 24-hour recall

d
p-value for heterogeneity across studies
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Table 5

Estimates of attenuation factors and correlations with truth for the time-varying and fixed-intake models 

without covariates (standard errors in parentheses): protein intake among women

Time-varying intake model Fixed-intake model

Instrument Study Attenuation Factor Correlation with Truth Attenuation Factor Correlation with Truth

FFQ
a 1 0.161 (0.045) 0.302 (0.085) 0.139 (0.039) 0.291 (0.080)

2 0.039 (0.056) 0.069 (0.099) 0.031 (0.047) 0.057 (0.086)

3 0.168 (0.043) 0.288 (0.072) 0.187 (0.047) 0.292 (0.071)

4 0.231 (0.032) 0.410 (0.054) 0.218 (0.031) 0.424 (0.056)

5 0.188 (0.028) 0.397 (0.058) 0.186 (0.028) 0.398 (0.057)

Weighted Mean 0.180 (0.017) 0.336 (0.032) 0.169 (0.016) 0.329 (0.030)

p
d 0.052 0.029 0.015 0.005

1 × 24HR
b 1 0.137 (0.038) 0.241 (0.065) 0.121 (0.034) 0.238 (0.063)

2 0.179 (0.032) 0.311 (0.049) 0.189 (0.035) 0.337 (0.056)

3 0.194 (0.024) 0.348 (0.040) 0.283 (0.032) 0.466 (0.042)

4 0.304 (0.039) 0.531 (0.071) 0.304 (0.040) 0.584 (0.076)

5 0.207 (0.025) 0.341 (0.039) 0.229 (0.027) 0.381 (0.040)

Weighted Mean 0.201 (0.015) 0.340 (0.025) 0.222 (0.015) 0.397 (0.023)

p 0.029 0.036 0.002 0.002

4 × 24HR
c 1 0.295 (0.072) 0.354 (0.087) 0.282 (0.078) 0.363 (0.094)

2 0.330 (0.053) 0.422 (0.061) 0.375 (0.065) 0.475 (0.074)

3 0.365 (0.040) 0.477 (0.049) 0.561 (0.057) 0.657 (0.051)

4 0.456 (0.053) 0.650 (0.064) 0.565 (0.079) 0.797 (0.090)

5 0.389 (0.039) 0.468 (0.047) 0.472 (0.053) 0.547 (0.055)

Weighted Mean 0.376 (0.026) 0.476 (0.031) 0.463 (0.029) 0.580 (0.030)

p 0.264 0.022 0.019 0.003

a
Food frequency questionnaire

b
Single 24-hour recall

c
Average of 4 repeats of a 24-hour recall

d
p-value for heterogeneity across studies
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Table 6

Estimates of attenuation factors and correlations with truth for the time-varying and fixed-intake models 

without covariates (standard errors in parentheses): protein density intake among men

Time-varying intake model Fixed-intake model

Instrument Study Attenuation Factor Correlation with Truth Attenuation Factor Correlation with Truth

FFQ
a 1 0.411 (0.067) 0.449 (0.069) 0.425 (0.070) 0.470 (0.070)

2 0.479 (0.160) 0.378 (0.124) 0.427 (0.148) 0.339 (0.111)

3 0.418 (0.094) 0.342 (0.075) 0.418 (0.093) 0.331 (0.069)

Weighted Mean 0.420 (0.052) 0.396 (0.048) 0.423 (0.052) 0.390 (0.045)

p
d 0.927 0.551 0.998 0.321

1 × 24HR
b 1 0.248 (0.038) 0.414 (0.057) 0.252 (0.037) 0.425 (0.055)

2 0.187 (0.051) 0.244 (0.062) 0.206 (0.055) 0.271 (0.064)

3 0.258 (0.042) 0.303 (0.045) 0.328 (0.045) 0.372 (0.044)

Weighted Mean 0.240 (0.025) 0.328 (0.032) 0.266 (0.026) 0.365 (0.031)

p 0.438 0.132 0.206 0.187

4 × 24HR
c 1 0.457 (0.058) 0.562 (0.063) 0.538 (0.080) 0.621 (0.076)

2 0.514 (0.121) 0.404 (0.091) 0.597 (0.145) 0.461 (0.101)

3 0.529 (0.078) 0.433 (0.058) 0.709 (0.089) 0.546 (0.058)

Weighted Mean 0.481 (0.048) 0.483 (0.042) 0.612 (0.055) 0.554 (0.042)

p 0.711 0.229 0.362 0.435

a
Food frequency questionnaire

b
Single 24-hour recall

c
Average of 4 repeats of a 24-hour recall

d
p-value for heterogeneity across studies
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Table 7

Estimates of attenuation factors and correlations with truth for the time-varying and fixed-intake models 

without covariates (standard errors in parentheses): protein density intake among women

Time-varying intake model Fixed-intake model

Instrument Study Attenuation Factor Correlation with Truth Attenuation Factor Correlation with Truth

FFQ
a 1 0.370 (0.094) 0.396 (0.097) 0.330 (0.082) 0.362 (0.085)

2 0.509 (0.095) 0.535 (0.098) 0.398 (0.081) 0.428 (0.079)

3 0.454 (0.100) 0.408 (0.086) 0.470 (0.098) 0.355 (0.069)

4 0.442 (0.061) 0.476 (0.065) 0.417 (0.056) 0.532 (0.072)

5 0.426 (0.076) 0.428 (0.074) 0.375 (0.068) 0.430 (0.074)

Weighted Mean 0.439 (0.036) 0.450 (0.039) 0.396 (0.033) 0.422 (0.035)

p
d 0.890 0.805 0.836 0.420

1 × 24HR
b 1 0.164 (0.051) 0.240 (0.073) 0.156 (0.045) 0.235 (0.068)

2 0.179 (0.040) 0.245 (0.052) 0.232 (0.047) 0.327 (0.057)

3 0.205 (0.037) 0.279 (0.046) 0.356 (0.040) 0.405 (0.045)

4 0.173 (0.055) 0.278 (0.089) 0.215 (0.057) 0.411 (0.102)

5 0.186 (0.032) 0.270 (0.046) 0.226 (0.035) 0.375 (0.052)

Weighted Mean 0.184 (0.021) 0.263 (0.031) 0.235 (0.020) 0.356 (0.027)

p 0.955 0.970 0.055 0.279

4 × 24HR
c 1 0.367 (0.094) 0.359 (0.096) 0.387 (0.118) 0.369 (0.104)

2 0.370 (0.077) 0.353 (0.069) 0.497 (0.091) 0.479 (0.078)

3 0.433 (0.073) 0.405 (0.063) 0.789 (0.099) 0.604 (0.061)

4 0.344 (0.095) 0.392 (0.113) 0.459 (0.117) 0.600 (0.143)

5 0.387 (0.057) 0.390 (0.060) 0.505 (0.072) 0.561 (0.074)

Weighted Mean 0.384 (0.041) 0.382 (0.043) 0.534 (0.042) 0.537 (0.037)

p 0.914 0.961 0.063 0.325

a
Food frequency questionnaire

b
Single 24-hour recall

c
Average of 4 repeats of a 24-hour recall

d
p-value for heterogeneity across studies
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Table 8

Calibration Equations
a
 for Usual Intakes of Protein and Protein Density in Women, using FFQ-reported 

Protein and Protein Density, respectively

Protein Protein Density

Covariate Reg. coeff. (SE) p Reg. coeff. (SE) p

Intercept (weighted average of γT0h) 4.441 (0.115) 2.596 (0.118)

λQh: Study 1 0.132 (0.041) 0.419 (0.092)

    Study 2 0.039 (0.050) 0.528 (0.094)

    Study 3 0.149 (0.040) 0.425 (0.102)

    Study 4 0.191 (0.029) 0.426 (0.061)

    Study 5 0.162 (0.025) 0.412 (0.076)

    Weighted Average 0.152 (0.016) 0.436 (0.037)

                        Heterogeneity 
b 0.116 0.886

γT1:

Age: <40y v 50-59y 0.059 (0.034) 0.027 (0.035)

    40-49y v 50-59y 0.023 (0.027) −0.033 (0.029)

    60-69y v 50-59y 0.021 (0.030) <0.001 0.048 (0.032) 0.004

    70-79y v 50-59y −0.048 (0.034) 0.037 (0.036)

    >80y v 50-59y −0.177 (0.043) −0.051 (0.044)

log BMI 0.371 (0.035) <0.001 −0.012 (0.036) 0.744

Race: African American v Other
d −0.116 (0.019) <0.001 −0.072 (0.020) <0.001

Education: High school v College −0.030 (0.018)
0.067

−0.016 (0.018)
0.220

        Postgrad v College 0.014 (0.016) 0.018 (0.016)

                        Heterogeneity 
c 0.579 0.054

a
See Equation (7) in text

b
p-value for heterogeneity of adjusted “attenuation coefficient” for FFQ across studies

c
p-value for heterogeneity of regression coefficients for other covariates (γT1h) across studies

d
Other includes non-Hispanic whites
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