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Abstract

Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged 

with clinical use and became common in some bacterial pathogens. Mechanisms of resistance 

include two categories of mutation and acquisition of resistance-conferring genes. Resistance 

mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase 

IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes 

and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in 

regulatory genes that control the expression of native efflux pumps localized in the bacterial 

membrane(s). These pumps have broad substrate profiles that include quinolones as well as other 

antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection 

pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer 

low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-

encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, 

one mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile 

efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances 

and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone 

resistance armamentarium is large.
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Introduction

Quinolones have been a widely used class of synthetic antimicrobials.1, 2 The initial member 

of the class, nalidixic acid, was identified as a byproduct of chloroquine synthesis in 1962 

and had limited clinical use because it was only sufficient for treatment of urinary tract 

infections and because of the early emergence of resistance.3 Chemical modifications of the 

core quinolone and related chemical scaffolds were, however, widely explored and 

generated compounds with greater potency, broader spectra of activity, improved 

pharmacokinetics, and lower frequency of development of resistance.4 A key modification 
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of a fluorine substituent at position 8 led to the development of many members of what 

became known as the fluoroquinolone class with the introductions of norfloxacin in 1986 

and ciprofloxacin in 1987 that exhibited substantially greater potency against gram-negative 

bacteria. Subsequently other fluoroquinolones, such as levofloxacin and moxifloxacin, were 

developed with enhanced activity against gram-positive bacteria. Because of their potency, 

spectrum of activity, oral bioavailability, and generally good safety profile, fluoroquinolones 

were used extensively for multiple clinical indications throughout the world. Although still 

clinically valuable, fluoroquinolone use has become limited in some clinical settings, as 

bacterial resistance has emerged over time. In the sections that follow we review the range 

of molecular mechanisms that underlie quinolone resistance.

Quinolone resistance due to mutation in chromosomal genes

Alterations in target enzymes

Quinolones target two essential bacterial type II topoisomerase enzymes, DNA gyrase and 

DNA topoisomerase IV.5 Each enzyme is a heterotetramer, with gyrase composed of 2 

GyrA and 2 GyrB subunits and topoisomerase IV composed of 2 ParC and 2 ParE subunits. 

GyrA is homologous to ParC, and GyrB to ParE.6 Both enzymes act by catalyzing a DNA 

double-strand break, passing another DNA strand through the break, and resealing the 

break.7 The enzymes’ DNA strand-passing domains are localized in GyrA and ParC, and the 

enzymes’ ATPase activity, which drives the catalytic cycle, is localized in domains of GyrB 

and ParE. Quinolones block the resealing of the DNA double-strand break and in so doing 

inhibit enzyme activity as well as stabilize catalytic intermediate covalent complexes of 

enzyme and DNA that serve as a barrier to movement of the DNA replication fork and can 

be converted to double-strand DNA breaks, which correlate with quinolone bactericidal 

activity.8–10

Single amino acid changes in either gyrase or topoisomerase IV can cause quinolone 

resistance. These resistance mutations have most commonly been localized to the amino 

terminal domains of GyrA (residues 67 to 106 for Escherichia coli numbering) or ParC 

(residues 63 to 102) and are in proximity to the active site tyrosines (Tyr122 for GyrA, 

Tyr120 for ParC), which are covalently linked to DNA in an enzyme intermediate, in both 

enzymes.11–14 This domain has been termed the quinolone resistance determining region 

(QRDR) of GyrA and ParC.15 The most common site of mutation in GyrA of E. coli is at 

Ser83 followed by Asp87, with similar predominance of mutations at equivalent positions in 

other species.7, 8, 16 There is conservation of an equivalent Ser and another acidic residue 

separated by four amino acids for GyrA in other species as well as for ParC, and likewise it 

is mutation in these residues that is most often present in resistant strains.7 Ser83Trp and 

Ser83Leu mutations of E. coli GyrA have been associated with reduced binding of the 

quinolone norfloxacin and enoxacin to gyrase-DNA complexes.17–19 Competition 

experiments with quinazolinediones and quinolones also suggest that the equivalent 

Ser81Phe resistance mutation in ParC of Bacillus anthracis causes selective decrease in 

quinolone affinity for the enzyme-DNA complex.20 Ser mutations in GyrA appear to have 

little effect on the E. coli gyrase catalytic efficiency, but mutations in the adjacent Asp87 (or 

other equivalently positioned acidic residues in other species) decrease overall catalytic 
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efficiency five- to tenfold.7, 21 A crystal structure of moxifloxacin with topoisomerase IV of 

Streptococcus pneumoniae (Fig. 1) positioned the quinolone in proximity with the Ser and 

nearby acidic residues but not sufficiently close to determine binding directly.13 A 

subsequent structure of fused ParC-ParE fragments of topoisomerase IV of Acinetobacter 

baumannii with moxifloxacin, however, found positioning of the quinolone with a 

magnesium ion coordinating direct water interactions with Ser84 and Glu88, suggesting 

bridged contacts between drug and these conserved amino acids, contacts that are 

presumably disrupted when these amino acids are mutated.7, 12

Mutations in specific domains of GyrB and ParE have also been shown to cause quinolone 

resistance,22, 23 although they are substantially less common in resistant clinical bacterial 

isolates than mutations in GyrA or ParC. GyrB resistance mutations have also been shown to 

have reduced binding of enoxacin to enzyme-DNA complexes.17 The QRDR of GyrB (or 

ParE) appears to be distant from the QRDR of GyrA (or ParC) based on the x-ray 

crystallographic structure of the homologous enzyme, topoisomerase II of yeast.24 Crystal 

structures of yeast topoisomerase II, however, identified other enzyme conformations in 

which the regions homologous to the QRDRs of GyrA and GyrB are in proximity,25 and the 

C7 basic substituents of ciprofloxacin and moxifloxacin were shown to be facing the GyrB 

subunit and could be cross-linked to GyrB Cys466.26 In addition, in the crystal structure of 

moxifloxacin and topoisomerase IV of A. baumannii, the quinolone C7 basic substituent is 

in proximity to Arg418, which is equivalent to Lys447 in E. coli.12 Notably mutations in 

acidic residues in this domain of GyrB in E. coli (Asp426Asn) and other species as well as 

in ParE have been shown to confer quinolone resistance, suggesting that drug-enzyme 

contacts in this region may be mediated by charge interactions.12 Thus, it appears that 

mutations in the QRDRs of both GyrA/ParC and GyrB/ParE act by reducing the affinity of 

quinolones for the enzyme-DNA complex. Although there are no direct quantitative data on 

quinolone binding to complexes of wild-type and mutant topoisomerase IV with DNA, the 

conservation of key resistance residues and the similarity of structures between gyrase and 

topoisomerase IV predict that resistance is also mediated by reduced drug affinity for the 

topoisomerase IV-DNA complex as it is for the gyrase-DNA complex.

The magnitude of resistance caused by single amino acid changes in the subunits of gyrase 

or topoisomerase IV varies by bacterial species and by quinolone.27, 28 The phenotype of a 

given resistance mutation is determined in part by the relative sensitivities of DNA gyrase 

and topoisomerase IV to a given quinolone. Because quinolone interaction with either target 

enzyme-DNA complex is sufficient to block cell growth and trigger cell death,9 the level of 

susceptibility of a wild-type bacterium is determined by the more sensitive of the two target 

enzymes. For many quinolones in clinical use, gyrase is the more sensitive enzyme in gram-

negative bacteria, and topoisomerase IV is the more sensitive enzyme in gram-positive 

bacteria, but exceptions occur.28, 29 Target mutations occurring from first-step selection with 

quinolones are generally in the more sensitive target enzyme, constituting a genetic 

definition of the primary drug target enzyme.23, 30, 31 The magnitude of the increase in 

resistance from such a first-step mutation can be determined by either the magnitude of the 

effect of the mutation on enzyme sensitivity or the intrinsic level of sensitivity of the 

secondary target enzyme. Thus, the sensitivity of the secondary target can set a ceiling on 
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the magnitude of resistance conferred by mutation in the primary target enzyme. This 

property implies that quinolones that have highly similar activities against both gyrase and 

topoisomerase IV of a given species may require mutations in both enzymes before the 

mutant bacterium exhibits a substantial resistance phenotype.32–34 For fluoroquinolones 

currently in clinical use, which generally have differences in potency between the two target 

enzymes, single target mutations typically result in an eight- to 16-fold increase in 

resistance.

Sequential mutations in both target enzymes have been shown to provide increasing levels 

of quinolone resistance. In many species high-level quinolone resistance is often associated 

with mutations in both gyrase and topoisomerase IV.35 There are also several species, 

Mycobacterium tuberculosis, Helicobacter pylori, and Treponema pallidum, for which 

genome sequencing has revealed the absence of genes for topoisomerase IV,16 indicating 

that for these organisms gyrase is the only quinolone target. Thus, selection of mutations 

with substantial resistance phenotypes is predicted to occur readily in these pathogens, an 

inference that is supported by clinical data indicating the frequent occurrence of resistance 

with clinical use of quinolones without use of other active agents to treat patients with 

infections with M. tuberculosis and H. pylori.36, 37

Altered drug permeation

Because gyrase and topoisomerase IV are cytoplasmic enzymes, quinolones must traverse 

the bacterial envelope to reach their targets, and mutations that result in reductions in 

cytoplasmic drug concentrations can confer resistance. This reduction is accomplished by 

active transport of quinolones out of the cell, reduced quinolone uptake, or a combination of 

the two. In Gram-positive bacteria active efflux transporters are the principal means of 

reducing cytoplasmic drug concentrations, and reduced diffusion across the cytoplasmic 

membrane has not been demonstrated as a mechanism of resistance. In contrast, in Gram-

negative bacteria reduction in outer membrane porin diffusion channels, through which 

quinolones enter the periplasmic space, can contribute to resistance and act in concert with 

basal or increased expression of efflux transporters.38 Quinolones themselves in general do 

not induce expression of efflux pumps. Acquired quinolone resistance by altered drug 

permeation occurs largely by mutations in genes encoding regulatory proteins that control 

the transcription of efflux pump or porin genes.39 Less often mutations in efflux pump 

structural genes have been associated with changes in pump substrate profiles that include 

quinolones.40

Altered permeation in Gram-positive bacteria

In Gram-positive bacteria, quinolone resistance by increased efflux has been most 

extensively studied in Staphylococcus aureus.38, 41 Overexpression of each of three efflux 

pumps, NorA,42, 43 NorB,44 and NorC45 has been shown to cause four- to eightfold 

increases in resistance to quinolones, with some variations in substrate profiles among the 

three pumps. All three pumps are members of the major facilitator superfamily (MFS) of 

transporters that are secondary transporters powered by the proton gradient across the 

cytoplasmic membrane. NorA expression confers resistance to hydrophilic quinolones, such 

as norfloxacin and ciprofloxacin, whereas NorB and NorC expression each confers 
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resistance to hydrophilic quinolones and hydrophobic quinolones, such as sparfloxacin and 

moxifloxacin; 43–45 these pumps also have substrate profiles extending beyond quinolones, 

in keeping with broad substrate profiles of many MFS transporters.

Regulation of expression of these transporters is complex and mediated by an interplay of 

several regulatory proteins. MgrA, has been most extensively studied, and it acts as a 

positive regulator of norA expression and a negative regulator of norB and norC 

expression.44, 46 Post-translational phosphorylation of MgrA by the PknB kinase results in 

the loss of the ability of MgrA dimers to bind the norA promoter and an increase in their 

binding to the norB promoter.47, 48 Acidic conditions alter the proportions of phosphorylated 

and unphosphorylated MgrA, and oxidative and aeration conditions also affect dimerization 

and promoter binding.49–51 Thus, relative levels of expression of NorA, NorB, and NorC are 

modified in response to a variety of environmental conditions. Particularly notable is the 

increased expression of norB in an abscess environment in response to low-free iron 

conditions relative to growth in laboratory media and the contribution of NorB to fitness and 

bacterial survival in abscesses,52 a common clinical manifestation of S. aureus infection. 

These findings imply that NorB, and likely NorA and NorC pumps, have natural substrates 

other than quinolones, which are synthetic agents. They also imply that susceptibility and 

response to quinolones may differ at sites of infection in vivo relative to standard clinical 

laboratory predictive susceptibility criteria, which are based on tests in vitro.

Other regulators such as NorG, a member of the GntR-like transcriptional regulators, can 

modulate pump expression and levels of quinolone resistance; it is a direct activator of norA 

and norB expression but a direct repressor of norC expression.53, 54 ArlRS, a two-

component regulatory system, has been shown to affect expression of norA.55, 56 There are 

often hierarchies in regulatory networks, and other regulators can also affect expression of 

MgrA and NorG. Thus, there are additional complexities to the sum of various regulatory 

network contributors to what determines Nor pump expression under different conditions.

Other transporters in Gram-positive bacteria have also been shown to have effects on 

susceptibility to quinolones, but have been less extensively studied than the Nor pumps. In 

S. aureus overexpression of MFS transporters MdeA (norfloxacin, ciprofloxacin),57 SdrM 

(norfloxacin),58 QacB(III) (norfloxacin, ciprofloxacin),59 and LmrS (gatifloxacin)60 has also 

been shown to reduce susceptibility to quinolones. One member of the Multiple Antibiotic 

and Toxin Extrusion (MATE) family of secondary transporters, MepA, also confers 

resistance to norfloxacin, ciprofloxacin, moxifloxacin, and sparfloxacin in addition other 

antimicrobials and dyes.61 MepA is negatively regulated by MepR, and pentamidine, a 

MepA substrate, reduces MepR binding to the mepA promoter thereby increasing mepA 

expression. 62, 63 Thus, exposure to other agents may also affect quinolone susceptibility by 

upregulating broad-spectrum pumps. MFS transporters in other Gram-positive bacteria have 

also been shown to include quinolones in their substrate profiles. These transporters include 

those in the MFS group, Bmr, Bmr3, and Blt of Bacillus subtilis;64, 65 PmrA66 of 

Streptococcus pneumoniae; LmrP67 of Lactococcus lactis, and Lde68 of Listeria 

monocytogenes as well as those in the ABC transporter group, which are energized by ATP 

hydrolysis, PatAB69 of S. pneumoniae, SatAB70 of S. suis, and LmrA71 of L. lactis. In L. 

monocytogenes in addition, the FepA pump of the MATE family is overexpressed in 
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quinolone-resistant strains and is regulated by the FepR transcriptional regulator of the TetR 

family, mutation in which accounted for pump overexpression and the resistance 

phenotype.72

Altered permeation in Gram-negative bacteria

In Gram-negative bacteria, the expression levels of a number of efflux pumps, most in the 

Resistance-Nodulation-Division (RND) superfamily, have been shown to confer increased 

quinolone resistance.73 The RND pumps have three structural components, a pump protein 

localized in the cytoplasmic membrane, an outer membrane channel protein, and a 

membrane fusion protein that links the pump and the outer membrane protein.74 Some outer 

membrane components may link to more than one pump-fusion protein pair.38 This structure 

allows for export of substrates across both inner and outer membranes that is coupled to 

movement of protons in the opposite direction, termed antiport exchange. Best studied has 

been the AcrAB-TolC pump complex of E. coli. Crystal structures of the complex have 

revealed a trimer of AcrB pump monomers that rotate around a central axis perpendicular to 

the membrane, with each monomer assuming a different conformation associated with 

substrate binding and extrusion through the channel as its rotation position changes.75 The 

drug access point is the periplasmic space between the inner and outer membranes or the 

outer leaflet of the inner membrane. Binding sites for ciprofloxacin and other substrates of 

diverse chemical types have been identified in the central cavity of the periplasmic domain 

of AcrB,76–78 accounting for the multidrug resistance properties of this pump. 

Fluoroquinolones as zwitterionic compounds are presumed to cross the outer membrane 

through porin diffusion channels OmpF and OmpC, and downregulation of these channels or 

mutation in their structural genes may also contribute as a resistance mechanism. Notably 

quinolone resistance mutations in the MarR regulator result in both an increase in acrB 

expression as well as a decrease in ompF expression.79 Thus, reduced quinolone influx 

through porin channels acts in concert with increased effux to generate a resistance 

phenotype. In addition to the Mar regulon, mutations in the E. coli SoxRS80, 81 and Rob82 

regulons can also effect resistance to fluoroquinolones in part related to reductions in OmpF 

and in a manner that is dependent on AcrAB-TolC, similar to what occurs in mar mutants. 

Although initially quinolone and other antimicrobial resistances conferred by AcrAB-TolC 

were the phenotype most studied, this pump complex also confers resistance to bile salts and 

its expression is induced by bile salts,83 suggesting that one of its natural functions is to 

facilitate the ability of E. coli to thrive in its natural habitat, the lower gastrointestinal tract.

In Pseudomonas aeruginosa the OprF porin channel has permeability two orders of 

magnitude lower than that of OmpF in E. coli,84 accounting in part for its intrinsic relative 

resistance to quinolones and other antimicrobial agents. In addition, the MexAB-OprM 

efflux pump, an RND pump similar to AcrAB-TolC, is expressed in wildtype strains and 

acts in concert with the low permeability OprF to increase further the intrinsic level of 

resistance to fluoroquinolones, which is higher in P. aeruginosa than in E. coli.85 Both mexA 

and oprM structural gene mutants exhibit increased uptake of norfloxacin and increased 

susceptibility to fluoroquinolones.86 Overexpression of MexAB-OprM due to mutations in 

the MexR negative regulator causes increased resistance to ciprofloxacin and nalidixic acid, 

and mexR mutants can be selected with exposure to fluoroquinolones.87 P. aeruginosa also 
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has three other efflux pump systems that include quinolones in their substrate profiles, 

MexCD-OprJ, MexEF-OprN, and MexXY-OprM.88 These pumps have limited or variable 

expression in wildtype strains expressing MexAB-OprM,89 but mutants overexpressing 

these pumps can be selected with fluoroquinolones and other antimicrobial substrates.90 

Mutation in the NfxB repressor, which is encoded upstream of the mexCD-oprJ operon, 

results in increased expression of MexCD-OprJ and increased resistance to 

fluoroquinolones.91 MexEF-OprN expression varies inversely with the level of expression 

of MexAB-OprM, as does MexCD-OprJ expression. 89 Mutation in nfxC results in 

overexpression of MexEF-OprN, but details of the regulatory mechanism remain to be 

elucidated.92 Mutations in the global regulator MvaT, which affects quorum sensing and 

virulence, also causes increased expression of mexEF-oprM and resistance to norfloxacin. 93 

Mutations in the MexZ repressor cause overexpression of MexXY-OprM and resistance to 

fluoroquinolones in addition to resistance to aminoglycosides and other pump 

substrates.94, 95 Notably, specific quinolones differ in which mutations they most commonly 

select. 90 Quinolones with a fluorine at position 6 and a positively charged substituent at 

position 7 (e.g., norfloxacin, ciprofloxacin, levofloxacin, moxifloxacin), which characterizes 

most quinolones currently in clinical use, tend to select nfxB-type mutants. In contrast, 

quinolones lacking a positive charge at position 7 (e.g., nalidixic acid) tend to select mexR 

and nfxC-type mutants, differences presumably reflecting differences in the relative 

efficiencies of efflux of different quinolones by the pumps overexpressed by a given 

mutation.

Other less extensively studied efflux pump systems that can confer quinolone resistance 

have been identified in many Gram-negative bacteria.38 In E. coli, EmrAB-TolC, a MFS 

pump that functions in tripartite structure like the RND pumps, is negatively regulated by 

EmrR and can confer resistance to nalidixic acid but not fluoroquinolones.96 MdfA, another 

MFS pump that was originally termed CmlA because of its ability to confer resistance to 

chloramphenicol, also confers resistance to fluoroquinolones.97 In Klebsiella pneumoniae, 

the OqxAB-TolC RND pump has been found on the chromosomes of most strains.98 

Although originally identified on plasmids in E. coli isolated from pigs due to its ability to 

cause resistance to olaquindox, a growth promotant used in swine production, it also confers 

resistance to quinolones (see section on plasmid-mediated quinolone resistance below). Both 

Salmonella spp. 99 and Enterobacter aerogenes100 have AcrAB homologs the increased 

expression of which has been associated with quinolone resistance. The CmeABC RND 

pump of Campylobacter jejuni has been shown to contribute to the resistance of 

enrofloxacin-selected mutants.101, 102 The NorM MATE family pump can confer quinolone 

resistance in Vibrio parahaemolyticus.103 The NorA pump104 of Bacteroides fragilis and the 

BexA pump105 of B. thetaiotaomicron have also been shown to efflux fluoroquinolones.

Among non-enteric bacteria, in A. baumannii the AdeIJK RND pump106 is constitutively 

expressed and confers resistance to a large number of agents, including fluoroquinolones. In 

addition, overexpression of the AdeABC and AdeFGH RND pumps due to mutation in their 

respective regulators, AdeRS, a two-component sensor-regulator system, and AdeL, a LysR 

family regulator, can also confer a similarly broad resistance profile. Notably pump-

overexpressing mutants exhibited decreased ability to form biofilms and accept plasmid 
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DNA transfer.107, 108 In Stenotrophomonas maltophilia the SmeDEF RND pump109, 110 has 

been shown to contribute to resistance based on knock-out mutants with increased 

susceptibility and resistant strains with increased expression as well as its ability to confer 

quinolone resistance when overexpressed in E. coli.

In addition, there have been other examples in both Gram-positive and Gram-negative 

bacteria in which a relevant pump, its regulator, or a specific mutation have not been 

identified specifically but in which there is evidence of efflux in quinolone-resistant isolates 

determined by either reduction in resistance with addition of a broad efflux pump inhibitor 

or reduced quinolone accumulation in resistant cells.38, 75 Information on efflux mechanisms 

and resistance in over 50 bacterial species has recently been extensively reviewed and is 

beyond the scope of this review.38 Thus, efflux-mediated resistance to quinolones and many 

other antimicrobials is widespread, and since most efflux pumps effecting quinolone 

resistance have broad substrate profiles, efflux generally links quinolone resistance to 

multidrug resistance, as often also occurs with plasmid-mediated quinolone resistance 

discussed in the next section.

Plasmid-mediated quinolone resistance

Plasmid-mediated quinolone resistance was discovered inadvertently while studying β-

lactam resistance produced by a multiresistance plasmid on transfer to a porin-deficient 

strain of K. pneumoniae. Ciprofloxacin resistance was evaluated as a control with the 

unexpected finding that it increased from 4 to 32 µg/ml on plasmid acquisition.111 The 

increase in resistance was much less marked in E. coli or K. pneumoniae with intact porins, 

but the plasmid was readily transferred and decreased quinolone susceptibility in strains of 

Citrobacter, Salmonella, and even P. aeruginosa. The responsible resistance gene was 

named qnr, later amended to qnrA, as additional alleles were discovered. Investigation of a 

qnrA plasmid from Shanghai that conferred more than the expected level of ciprofloxacin 

resistance resulted in the discovery of a second plasmid-mediated mechanism: modification 

of certain quinolones by a particular aminoglycoside acetyltransferase, AAC(6 ′)-Ib-cr.112 A 

third mechanism of plasmid-mediated quinolone resistance (PMQR) was added with the 

discovery of plasmid-mediated quinolone efflux pumps QepA 113, 114 and OqxAB.115 In the 

last decade PMQR genes have been found in bacterial isolates worldwide. They reduce 

bacterial susceptibility to quinolones, usually not to the level of clinical nonsusceptibility, 

but facilitate the selection of mutants with higher level quinolone resistance and promote 

treatment failure.

Qnr structure and function

Cloning and sequencing qnrA disclosed that it coded for a protein of 218 amino acids with a 

tandem repeat unit of five amino acids indicating membership in the large (more than 1000 

member) pentapeptide repeat family of proteins.116 Knowledge of the sequence allowed 

search for qnrA by PCR, and it was soon discovered in E. coli, K. pneumoniae, and S. 

enterica strains from around the world.117–121 qnrA was followed by the discovery of 

plasmid-mediated qnrS,122 qnrB,123 qnrC,124 qnrD,125 and most recently qnrVC.126, 127 

These qnr genes generally differ in sequence by 35% or more from qnrA and from each 

other. Allelic variants differing by 10% or less have also been described in almost every 
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family: currently a single allele for qnrC, 2 for qnrD, 7 each for qnrA and qnrVC, 9 for qnrS, 

and 78 for qnrB.128

The first pentapeptide repeat protein to have its structure determined by X-ray 

crystallography was MfpA, encoded by the chromosome of mycobacterial species, where its 

deletion increases and its overexpression decreases fluoroquinolone susceptibility.129 MfpA 

is a dimer linked C-terminus to C-terminus and folded into a right-handed quadrilateral β 

helix with size, shape, and charge mimicking the B-form of DNA.130 The 5 unit repeat 

occupies one face of the quadrilateral with each of the 8 helical coils of the MfpA monomer 

thus consisting of 20 residues. The central, usually hydrophobic, amino acid (i) of the 

pentapeptide repeat and the first polar or hydrophobic residue (i-2) generally point inward 

forming the core of the molecule, while the remaining amino acids (i-1, i+1, i+2) are 

oriented outward, presenting an anionic surface. Hydrogen bonding between backbone 

atoms of neighboring coils stabilizes the helix, which is just the size to fit into the cationic G 

segment DNA binding saddle of DNA gyrase and topoisomerase IV.130

The three-dimensional structure of three Qnr proteins has been determined by x-ray 

crystallography: chromosomally-encoded EfsQnr from Enterococcus faecalis, 131 

chromosomally encoded AhQnr from Aeromonas hydrophila,132 and plasmid-mediated 

QnrB1.133 All are rod-like dimers (Fig. 1). The monomers of QnrB1 and AhQnr have 

projecting loops of 8 and 12 amino acids that are important for their activity. Deletion of the 

smaller A loop reduces quinolone protection, while deletion of the larger B loop or both 

loops destroys protective activity. Deletion of even a single amino acid in the larger loop 

compromises protection.134 Other essential residues in QnrB are found in pentapeptide 

repeat positions i and i-2 where alanine substitution for the native amino acid eliminates 

protection as does deletion of more than 10 amino acids at the N-terminus or as few as 3 

amino acids from the dimerization module at the C-terminus.134 MfpA and EfsQnr lack 

loops, but EfsQnr differs from MfpA in having an additional β-helical rung, a capping 

peptide, and a 25-amino acid flexible extension that interacts with a lengthwise grove along 

the β-helix and is required for full protective activity.131

Although quinolones can bind gyrase alone in some species,135 DNA enhances and 

increases the binding specificity to the enzyme-DNA complex.136, 137 Thus, a molecule like 

MfpA that mimics and competes with DNA can decrease quinolone susceptibility by 

reducing the number of lethal double stranded breaks that result from quinolone stabilization 

of the cleavage complex. It lacks a protective effect against ciprofloxacin and only inhibits 

DNA gyrase in vitro.130, 138 In contrast QnrA,116, 139 QnrB,123, 134, 138 QnrS,140 AhQnr,132 

and EfsQnr131 have been shown to protect purified DNA gyrase from quinolone inhibition . 

Protection occurs at low concentrations of Qnr relative to quinolone. For DNA gyrase 

inhibited by 6 µM (2 µg/ml) ciprofloxacin, half protection required only 0.5 nM QnrB1, and 

some protective effect was seen with as little at 5 pM.123 At high Qnr concentrations (25–30 

µM) gyrase inhibition is observed. 123, 138 EfsQnr is intermediate in effect. It partially 

protects E. coli gyrase against ciprofloxacin inhibition but also inhibits ATP-dependent 

supercoiling activity of gyrase with an IC50 of 1.2 µM.131 Evidently added structural 

features (loops, N-terminal extension) of Qnr proteins allow interactions with regions of 
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gyrase besides the DNA binding groove132 and could allow more specific binding to and 

destabilization of the topoisomerase-DNA-quinolone cleavage complex.133

Qnr Origin

Qnr homologs can be found on the chromosome of many γ-Proteobacteria, Firmicutes, and 

Actinomycetales, including species of Bacillus, Enterococcus, Listeria, and Mycobacterium, 

as well as anaerobes such as Clostridium difficile and Clostridium perfringens.141–144 

Nearly 50 allelic variants have been found on the chromosome of S. maltophilia.141, 145–148 

Aquatic bacteria are especially well represented, including species of Aeromonas, 

Photobacterium, Shewanella, and Vibrio.149–151 QnrA1 is 98% identical to the 

chromosomally determined Qnr of Shewanella algae.151 QnrS1 is 83% identical to Qnr 

from Vibrio splendidus,152 and QnrC is 72% identical to chromosomal Qnr in V. orientalis 

or V. cholerae.124 QnrB homologs, on the other hand, are encoded by the chromosome of 

members of the Citrobacter freundii complex of both clinical153 and environmental154 

origin. The small, nonconjugative plasmids that carry qnrD can be found in other 

Enterobacteriaceae but are especially likely to be found in Proteeae, such as Proteus 

mirabilis, Proteus vulgaris, and Providencia rettgeri 155 and may have originated 

there.156, 157

The worldwide distribution of qnr suggests an origin well before quinolones were 

discovered Indeed, qnrB genes and pseudogenes have been discovered on the chromosome 

of C. freundii strains collected in the 1930s.158

Qnr Plasmids

PMQR genes have been found on plasmids varying in size and incompatibility specificity 

(Table 1), indicating that the spread of multiple plasmid types has been responsible for the 

dissemination of this resistance around the world. Such plasmid heterogeneity also indicates 

that plasmid acquisition of qnr and other quinolone resistance determinants occurred 

independently multiple times. qnr genes are almost invariably associated with a mobile or 

transposable element, especially ISCR1 and IS26 (Table 1). qnrD and qnrS2 are located 

within mobile insertion cassettes, elements with bracketing inverted repeats but lacking a 

transposase,157, 159 while qnrVC is so far the only qnr gene located in a cassette with a 

linked attC site.159a

qnr genes are usually found in multiresistance plasmids linked to other resistance 

determinants. β-lactamase genes, including genes for extended spectrum β-lactamases 

(ESBLs), AmpC enzymes, and carbapenemases, have been conspicuously common, 

(reviewed in Ref. 160). qnrB alleles are also frequently found in plasmids linked to variable 

portions of the operons for psp (phage shock protein) and sap (peptide ABC transporter, 

ATP-binding protein) genes. These genes flank qnrB on the chromosome of several 

Citrobacter spp., and their co-acquisition with qnrB is one of the arguments for Citrobacter 

as the source of qnrB alleles.153
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Spread of qnr plasmids

PMQR genes have been found in a variety of Enterobacteriaceae, especially E. coli and 

species of Enterobacter, Klebsiella, and Salmonella (reviewed in Ref. 160). They have been 

conspicuously rare in non-fermenters but have occasionally been reported in P. aeruginosa, 

other Pseudomonas spp., A. baumannii, and S. maltophilia. qnr genes are found in a variety 

of Gram-positive organisms but are chromosomal and not plasmid-mediated. Of the various 

qnr varieties, qnrB seems somewhat more common than qnrA or qnrS, which are more 

common than qnrD.161–163 Only a single isolate of qnrC is known.124 The earliest known 

qnr outside of Citrobacter spp., dates from 1988.164 Studies in the last decade suggest that 

qnr detection is increasing but is still usually less than 10% in unselected clinical isolates 

with the exception of a qnr prevalence of 39%, which was reached in an unselected sample 

of E. cloacae isolates at one hospital in China.165 Higher frequencies result if samples are 

preselected for ESBL or other resistance phenotypes.163, 165, 166

Although most prevalence studies have surveyed hospital isolates, animals have not been 

neglected. PMQR genes have been found in a great variety of wild and domestic animals, 

including samples from birds, cats, cattle, chickens, dogs, ducks, fish, geese, horses, pigs, 

reptiles, sheep, turkeys, and zoo animals (reviewed in Ref.160).

Regulation of qnr

Environmental conditions affect expression of qnr genes and may offer clues concerning the 

native function of these genes. Expression of the qnrA gene of S. algae, an organism adapted 

to growth at low temperature, is stimulated up to 8-fold by cold shock but not by other 

conditions such as DNA damage, oxidative or osmotic stress, starvation, or heat shock. 167 

Expression of qnrB alleles, on the other hand, is augmented up to 9-fold by exposure to 

DNA damaging agents such as ciprofloxacin or mitomycin C via an upstream LexA binding 

site and the classical SOS system.168, 169 qnrD and the chromosomal qnr of S. marcescens 

are similarly regulated.170 Expression of plasmid-mediated qnrS1 or the related 

chromosomal qnrVS1 of V. splendidus is also stimulated by ciprofloxacin up to 30-fold, but 

by a mechanism independent of the SOS system. No LexA binding site is found upstream 

from these qnr genes, but upstream sequence is required for quinolone induction to occur.171 

Some naturally occurring quinolone-like compounds such as quinine, 2-hydroxyquinoline, 

4-hydroxyquinoline, or the Pseudomonas quinolone signal for quorum sensing also induce 

qnrS1, but not qnrVS1.172

AAC(6′)-Ib-cr

AAC(6′)-Ib-cr is a bifunctional variant of a common acetyltransferase active on such 

aminoglycosides as amikacin, kanamycin, and tobramycin but also able to acetylate those 

fluoroquinolones with an amino nitrogen on the piperazinyl ring, such as ciprofloxacin and 

norfloxacin.112 Compared to other AAC(6′)-Ib enzymes, the –cr variant has two unique 

amino acid substitutions: Trp102Arg and Asp179Tyr, both of which are required for 

quinolone acetylating activity. Models of enzyme action suggest that the Asp179Tyr 

replacement is particularly important in permitting π-stacking interactions with the 

quinolone ring to facilitate quinolone binding. The role of Trp102Arg is to position the Tyr 
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face for optimal interaction173 or to hydrogen bond to keto or carboxyl groups of the 

quinolone to anchor it in place.174

The aac(6′)-Ib-cr gene is usually found in a cassette as part of an integron in a 

multiresistance plasmid, which may contain other PMQR genes. Association with ESBL 

CTX-M-15 is particularly common. A mobile genetic element, especially IS26, is often 

associated.175 aac(6′)-Ib-cr may also be chromosomal.176, 177 The gene has been found 

world-wide in a variety of Enterobacteriaceae and even in P. aeruginosa.178 It is more 

prevalent in E. coli than other Enterobacteriaceae,179–182 and is more common than qnr 

alleles in some samples.183 184

QepA and OqxAB

QepA is a plasmid-mediated efflux pump in the major facilitator (MFS) family that 

decreases susceptibility to hydrophilic fluoroquinolones, especially ciprofloxacin and 

norfloxacin.113, 114qepA has often been found on plasmids also encoding aminoglycoside 

ribosomal methylase rmtB.114, 185–187 Substantial differences in quinolone resistance 

produced by different qepA transconjugants suggest variability in the level of qepA 

expression, by mechanisms as yet to be defined. 186

OqxAB is an efflux pump in the RND family that was initially recognized on transmissible 

plasmids responsible for resistance to olaquindox used for growth enhancement in 

pigs.188, 189 It has a wide substrate specificity, including chloramphenicol, trimethoprim, 

and quinolones such as ciprofloxacin, norfloxacin, and nalidixic acid.115 oqxAB has been 

found on plasmids in clinical isolates of E. coli and K. pneumoniae and in the chromosome 

and on plasmids of S. enteritis flanked in both locations by IS26-like elements.190–195 In E. 

coli isolates from farms in China where olaquindox was in use, oqxAB was found on 

transmissible plasmids in 39% of isolates from animals and 30% of isolates from farm 

workers.192 Linkage of oqxAB with genes for CTX-M-14 and other plasmid-mediated CTX-

M alleles has been noted.196 It is common (usually 75% or more) on the chromosome of K. 

pneumoniae isolates, where up to 20-fold variation in expression implies the presence of 

regulatory control.191, 194, 197–199 In K. pneumoniae overexpression of the nearby rarA gene 

is associated with increased oqxAB expression, while increased expression of adjacent oqxR 

gene down regulates OqxAB production.200, 201

Resistance produced by PMQR determinants

Table 2 shows the minimum inhibitory concentration (MIC) produced in an E. coli strain by 

PMQR genes. qnr genes produce about the same resistance to ciprofloxacin and 

levofloxacin as single mutations in gyrA, but have less effect on susceptibility to nalidixic 

acid. Thus, reduced susceptibility to fluoroquinolones combined with susceptibility to 

nalidixic acid is a clue to the presence of PMQR and potentially resistance to other agents 

because of their linkage to qnr.202, 203 aac(6′)-Ib-cr and qepA give lower levels of 

resistance, which is confined to ciprofloxacin and norfloxacin in the case of aac(6′)-Ib-cr 

because of its substrate specificity. All provide a decrease in susceptibility that does not 

reach the clinical breakpoint for even intermediate resistance, but PMQR genes are 

important because they facilitate the selection of higher levels of quinolone resistance.
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If E. coli J53 pMG252 is exposed to increasing concentrations of ciprofloxacin, a 

diminishing number survives until a concentration of more than 1 µg/ml ciprofloxacin is 

reached. This limiting concentration has been termed the mutant prevention concentration 

(MPC), and the concentration between the MIC and MPC at which mutants are selected is 

the mutant selection window.204 PMQR genes exert their influence by widening the mutant 

selection window and elevating the MPC, as shown for qnr,205, 206 aac(6′)-Ib-cr,112, 207 and 

oqxAB.207 Surprisingly, in qnr-harboring E. coli gyrA resistance mutants are rarely 

selected,208 although resistance produced by qnr and gyrA is additive.209–211 Rather higher 

level ciprofloxacin resistant derivatives of E. coli J53 pMG252 (qnrA1) have mutations in 

regulatory genes marR or soxR leading to increased expression of the AcrAB pump or 

mutations in rfaD or rfaE associated with defects in lipopolysaccharide biosynthesis.212

It should be noted that higher levels of quinolone resistance are seen if a plasmid or strain 

carries two or more genes for quinolone resistance, such as both qnr and aac(6′)-Ib-cr , and 

that ciprofloxacin MICs of 2 µg/ml can be reached with qnrA in E. coli overexpressing the 

AcrAB multi-drug efflux pump.213 A fully resistant E. coli with a ciprofloxacin MIC of 4 

µg/ml has been reported with plasmid-mediated qnrS1 and oqxAB as well as overexpression 

of AcrAB and other efflux pumps.214

Areas for future study

Much has been learned about the mechanisms of quinolone resistance over many years, but 

a number of areas await further studies. Because quinolones are synthetic compounds, those 

efflux pumps and plasmid-encoded proteins that confer resistance, although advantageous to 

the bacterium in the presence of quinolone use in humans and animals, likely have functions 

in addition to resistance mediation in Nature. Further understanding of their natural 

functions, the determinants of their mobilization, and the regulation of their expression 

should better inform the links between bacterial physiology, adaptation to environmental 

conditions, and virulence with antimicrobial resistance, an understanding that will be 

important for future strategies for optimizing antimicrobial use.
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Figure 1. 
Structure of Streptococcus pneumoniae topoisomerase IV-DNA-moxifloxacin complex. 

From reference 13.
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Figure 2. 
3-D representation of pentapeptide repeat proteins. (A) MfpA from M. tuberculosis (PDB 

ID: 2BM6), (B) EfsQnr from E. faecalis (PDB ID: 2W7Z), (C) AhQnr from A. hydrophila 

(PDB ID: 3PSS) and (D) plasmid-mediated QnrB1 (PDB ID: 2XTW)
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Table 1

Plasmids and mobilizing elements associated with PMQR genes

PMQR gene Plasmid Inc groups Mobilizing
element

References

qnrA1 A/C2, FII, HI2, I1, L/M, N ISCR1 111, 116, 215–217

qnrA3 N ISCR1, IS26 216, 218

qnrA6 A/C ISCR1 219

qnrB1 FIIK, H family, L/M Orf1005, IS26 123, 199, 216, 220, 221

qnrB2 FIA, FII, L/M, N ISCR1 199, 216, 222–224

qnrB4 FIA, FIIAs, L/M, R ISCR1 216, 225, 226

qnrB6 FIIAs ISCR1 216, 227

qnrB10 UTa ISCR1 199, 228

qnrB19 ColE, L/M, N ISEcp1, IS26 199, 216, 223, 228, 229

qnrB20 Orf1005, IS26 230

qnrS1 ColE, FI, HI1, HI2, I1, L/M, N, NT, R, UT, X1, X2 IS2, IS26, ISEcl2 122, 199, 215, 223, 224, 228, 231–234

qnrS2 Q, U micb 216, 235

qnrC ISPmi1 124

qnrD1 UT mic 125, 155, 157, 236

qnrVC1 attC 126,159a

qnrVC4 ISCR1 237

aac(6’)-Ib-cr ColE, FII, L/M, N, R IS26, attC 175, 216, 226, 238–240

oqxAB F, FII, HI2, N, X1 IS26 190, 195, 240–242

qepA1 FII, HI2 IS26, ISCR3C 113, 228, 243, 244

qepA2 FI ISCR3C 216, 243

a
UT= untypable

b
mic = mobile insertion cassette
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Table 2

Effect of different quinolone resistance mechanisms on quinolone susceptibility ofE. coli

E. coli Strain MIC (µg/ml)

Ciprofloxacin Levofloxacin Nalidixic acid

J53 0.008 0.015 4

J53 gyrA (S83L) 0.25 0.5 ≥256

J53 pMG252 (qnrA1) 0.25 0.5 16

J53 pMG298 (qnrB1) 0.25 0.5 16

J53 pMG306 (qnrS1) 0.25 0.38 16

J53 pMG320 (aac(6’)-Ib-cr) 0.06 0.015 4

J53 pAT851 (qepA) 0.064 0.032 4

CLSI susceptibility breakpoint ≤1.0 ≤2.0 ≤16
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