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Summary

Continuous time Markov chain (CTMC) models are often used to study the progression of chronic 

diseases in medical research, but rarely applied to studies of the process of behavioral change. In 

studies of interventions to modify behaviors, a widely used psychosocial model is based on the 

transtheoretical model (TTM) that often has more than three states (representing stages of change) 

and conceptually permits all possible instantaneous transitions. Very little attention is given to the 

study of the relationships between a CTMC model and associated covariates under the framework 

of TTM. We developed a Bayesian approach to evaluate the covariate effects on a CTMC model 

through a log-linear regression link. A simulation study of this approach showed that model 

parameters were accurately and precisely estimated. We analyzed an existing data set on stages of 

change in dietary intake from the Next Step Trial using the proposed method and the generalized 

multinomial logit model (GMLM). We found that the GMLM was not suitable for these data since 

it ignores the unbalanced data structure and temporal correlation between successive 

measurements. Our analysis not only confirms that the nutrition intervention was effective, but 

also provides information on how the intervention affected the transitions among the stages of 

change. We found that, compared to the control group, subjects in the intervention group, on 

average, spent substantively less time in the precontemplation stage and were more/less likely to 

move from an unhealthy/healthy state to a healthy/unhealthy state.

Keywords

Bayesian data analysis; Covariates; Markov chain models; Metropolis Hastings algorithm; 
Transtheoretical models

1 Introduction

Continuous time Markov chain (CTMC) models are often used to describe longitudinally 

measured categorical variables. In medical applications, the states of a Markov chain may 

refer to stages of a chronic disease, such as stages of breast cancer in cancer screening trials 

[1, 2], classifications of severity in studies of asthma control [3, 4] and stages of infection in 
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patients with HIV [5, 6]. Indeed, CTMC models are widely applied in the field of public 

health, including health promotion [7–9]. In these studies, subjects are often followed 

intermittently and the exact transition times between states are generally not observed. As a 

result, model fitting and model parameter estimation are complex since the exact likelihood 

function involves calculating a matrix exponential, which may require unstable numerical 

methods and cumbersome algebra[10, 11]. Much of the existing literature focuses on models 

in which one-step direct transitions are restricted or three/fewer states are allowed [12–15]. 

We define “one-step direct transitions” as instantaneous transitions across states that do not 

require any intermediate transitions from one state to another. In both cases, the likelihood 

function may be obtained analytically without requiring matrix exponentiation.

Furthermore, these analytic solutions are not available for a general form of CTMC model 

that has more than three states and allows for all possible instantaneous transitions. 

Examples of this type of data are the nutrition intervention study from the Next Step Trial 

[16] and the study of smoking cessation [17]. In these behavioral studies, the Markov chain 

states are “stages of change”, based on a well-developed psychosocial theory known as the 

transtheoretical model (TTM). Usually, the TTM has four or more states and assumes that 

an individual makes consistent, logical plans [18]. However, studies often show that 

individuals make “spontaneous” decisions such as unplanned attempts to quit smoking [19] 

or that they may progress from an unhealthy state by jumping to the healthy state without 

experiencing an intermediate stage of preparation [20]. Although these process 

characteristics fit well with the CTMC, the application of CTMC models to the TTM is very 

limited [17].

It is possible that the usefulness of CTMC models has not been well recognized in the 

community of psychosocial researchers, and that fitting general CTMC models is 

statistically challenging. A general framework for CTMC models was well developed by 

Kalbfleisch and Lawless [10], followed by some applications and extensions [4, 6]. A multi-

state Markov (MSM) R package was developed to implement some frequentist approaches, 

where the likelihood involves matrix exponentials, calculated using eigensystem 

decomposition (distinct eigenvalues) or Padé approximants (repeated eigenvalues) [11, 21]. 

Some researchers employed numerical integration techniques to approximate the likelihood 

[2] and others used the expectation-maximization algorithm for estimation [22]. However, 

the increased number of parameters complicates the likelihood function for general CTMC 

models, especially when covariates are incorporated [4]. To overcome these issues, the 

matrix exponential can be calculated numerically by solving an appropriate ordinal 

differential equation [23–25]. In our experience, this method has performed satisfactorily.

Recently, Ma [25] showed that in comparison to the MSM package, the Bayesian approach 

performed better in terms of biases and nominal coverage probabilities, especially when the 

number of parameters is large (e.g., five-state models with 20 parameters). The MSM 

package is a very useful tool when fitting CTMC models without covariates, but the 

parameter estimation failed to converge for the Next Step trial data when covariates were 

incorporated. This lack of convergence in parameter estimation was also reported by Mhoon 

et al. [7] when a general CTMC model with covariates was encountered. It may be that the 

maximum likelihood (ML) method searches the surface of the likelihood; whereas the 
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Bayesian approach samples from the posterior distributions. When the sample size of a data 

set is relatively small for a given number of parameters, the surface of the likelihood tends to 

be flat, causing convergence failure or unstable estimates [21, 26, 27]. In contrast, Bayesian 

methods average the posterior samples; hence, they may still offer reasonable estimates, and 

the estimation might be further improved by incorporating prior knowledge into the 

modeling process [27]. Bayesian approaches have been developed for CTMC models with 

covariates [23, 24]. However, to the best of our knowledge, Bayesian modeling methods for 

general four-state CTMC models with multiple covariates have not been examined yet.

In this article, we present a Bayesian estimating procedure that can simultaneously evaluate 

the effects of multiple covariates on the transition rates under a general CTMC framework. 

We conduct empirical studies to assess model performance. We illustrate the application of 

this method to the nutrition intervention data on stages of change from the Next Step Trial, 

including model selection, model checking and calculation of the mean sojourn times and 

one-year transition probabilities. In addition, we discuss differences between the CTMC and 

a generalized multinomial logit model (GMLM) when analyzing the stages of change in the 

original report on the nutrition intervention data [16].

2 Methods

2.1 Continuous time Markov chain models

Consider a longitudinal study consisting of M subjects, where each subject can move 

independently among S states within the state space of 1, 2, 3,…, S, (state and stage are 

synonymous in this article). Let y(tm,k) represent the outcome of the stage observed at time 

tm,k for m = 1, 2,… M and k = 1, 2, … Km, where Km represents the number of observations 

on subject m. Assume that the underlying process for each subject follows a first-order 

homogeneous continuous-time Markov chain that can be fully described by the infinitesimal 

rate matrix Q = {qi j} where qi j ≥ 0 for j ≠ i and −qii = Σi≠j qi j for i, j = 1, 2, 3,…, S. Under 

our assumption, the future and past states are independent given the present state, and 

transition rate qi j is constant over time. In this model, the time a subject spends in state i is 

exponentially distributed, with the mean of 1/qii. Further, the transition rate qi j can be 

interpreted as the hazard rate of change from state i to state j, which can be derived as in 

competing risk models [28]. The transition probability for subject m moving from state i at 

time tm,k−1 to state j at time tm,k is defined as pi j(t) = Pr{y(tm,k) = j|y(tm,k−1) = i}, where t = 

(tm,k − tm,k−1) ≥ 0 for i, j = 1, 2, 3,…, S and k = 2, 3,… Km. The S × S transition probability 

matrix P(t) = {pi j(t)} is determined by the infinitesimal rate matrix Q and can be expressed 

as  with P(0) = I. See Bhat and Miller [29] for more details of 

CTMC models.

2.2 Models with covariates

In practice, covariate effects on hazard rates are often of research interest, and can be 

evaluated by incorporating these covariates in the model as a regression-type relationship 

via a log transformation of the hazard rates qi j for i, j = 1, 2, 3,…, S and i ≠ j. To see this, let 

z = (z1, z2,…, zh) represent the covariate vector, and  be the regression 
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coefficients associated with vector z for the direct transition from i to j. The hazard rates 

depend on the covariate vector z through a log-linear model given by the following equation:

(1)

where  and each γi j represents the intercept of the log-transformed 

hazard rate for i, j = 1, 2, 3,…, S and i ≠ j.

Fitting a general CTMC model with covariates can be complicated and computationally 

expensive due to a potentially large number of parameters. The total number of parameters 

in a model is S × (S−1) × (1 + number of covariates). Saint-Pierre et al. [4] pointed out that 

the more parameters in the model, the more information and more computational resources 

that are required. As a consequence, convergence issues and numerical problems have been 

reported [6, 21]. There are two ways to reduce the number of parameters and to retain a 

model that well describes the data. One approach is to put constraints on some one-step 

transitions. Jackson [21] argued that some one-step transitions may occur only between 

“adjacent” states for a chronic disease; thus, an observation of transition from state 1 to 3 

must have gone through state 2, for instance. This is a reasonable assumption and has been 

adopted by many researchers [24, 30–32]. If some one-step direct transitions are not 

allowed, the transition rates and corresponding covariate effects are automatically dropped 

from the model. The other method is to decrease the number of coefficients on the 

parameters. For example, we can assume that , i.e., the hth covariate 

effects are the same on all hazard rates from state i to any other state [7].

Following the above argument, we assume that we have three covariates z = (z1, z2, z3) in a 

four-state model with coefficient vector of  for the one-step transition 

from i to j. The infinitesimal matrix is given as

(2)

where each diagonal element equals the negative value of the sum of all hazard rates in their 

corresponding row. Assume for a moment that there is only one treatment covariate (e.g., 

intervention versus control) in this model. As discussed in Section 2.1, the hazard rates of 

change from state i to state j, except for the zero covariate effect terms, are  and eγi j, 

respectively, for subjects in the intervention and control groups. The interpretation of the 

coefficient  is the log hazard rate ratio of change from state i to state j for the intervention 

compared to the control. Note that the model described by the above matrix Q is the same as 

assuming zero covariate effects on the hazard rates of 1 → 4, 2 → 4, 3 → 1, 4 → 1. In 

principle, one can fit CTMC models with any number of zero covariate effects and/or put 

restrictions on any one-step transition. However, the model has to be biologically reasonable 

and must have enough data for estimation.
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2.3 Bayesian model implementation

The likelihood function can be written as 

 , where θ is the vector of the model 

parameters that does not explicitly appear in the above expression. We selected a set of 

independent N(0,σ2) as priors for the parameters of interest. Often σ2 = 100 is large enough 

to cover the parameter space and is considered as a flat prior. The implementation of the 

proposed Bayesian approach is similar to what was described in Ma [25]. Under that 

Bayesian approach for estimating general CTMC models without covariates [25], the 

likelihood was numerically evaluated using ordinary differential equations (GSL-GNU 

scientific library; http://www.gnu.org/software/gsl/). Specifically, the method of fourth-

order Rungekutta was used to solve the transition probability of py(tm,k−1)y(tm,k)(tm,k − 

tm,k−1). We developed a C program to sample the posterior distribution with the generic 

Metropolis Hastings algorithm. The C code is available at http://go.uth.edu/ctmc-with-

covariate.

Informative priors can be employed as well, and may be derived using data from similar, 

previous studies. For example, the mean of qi j can be approximately estimated for models 

without covariates [12]. Using historical data, we can specify a prior as a normal distribution 

with relatively small variance (e.g., 1) and centered at the resulting quantity for the mean of 

qi j. Similarly, we may stratify the data to derive informative priors for covariate coefficients 

[7]. With different prior distributions, the posterior inferences will be inevitably affected, 

especially when the sample size is small [33]. Because prior knowledge is difficult to 

precisely specify, studies on prior sensitivities are conducted by comparing posterior 

inferences with a set of reasonable priors [33]. In this article, we exploited the flat priors of 

N(0, σ2 = 100) for both our empirical and case studies. This setting of the prior distributions 

worked very well in both cases; hence, we did not further explore other priors.

2.4 Model comparisons and goodness-of-fit

We ran three parallel chains with over-dispersed initial values for both the empirical studies 

and analysis of the Next Step Trial data. We used the Brooks-Gelman statistic R̂ to monitor 

the convergence; if it was less than or equal to 1.1, the chains are considered to have 

converged [32]. Note that all results reported in this article meet the convergence criteria of 

R ≤ 1.1. Models are compared with the deviance information criterion (DIC), a broadly used 

Bayesian equivalent to Akaike’s information criterion (AIC) [32, 34–36]. Let y and θ denote 

the data and parameters, respectively. The DIC is based on the posterior distribution of the 

deviance statistic of D(y, θ) = −2log(L(y|θ)) and is defined as , 

where θ̄ is a vector for the posterior means and  is the average of the deviance over 

the posterior distribution. Similar to the formula of the AIC, the DIC can be defined as 

. A smaller value of DIC indicates a better fitting model. The term of 

 is an approximation of E{D(y, θ)} that captures the model fit; and the increasing 

model complexity is penalized by the effective number of parameters, which is defined as 

.
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Much literature has addressed goodness-of-fit for CTMC models. Often this can be done by 

comparing the observed value to the expected value on the basis of a model [4, 6, 10, 21, 

37]. A Pearson-type goodness-of-fit test statistic was derived to examine the stationary 

assumption of the Markov process; however, the test statistic does not have a known 

distribution [38]. Indeed, a bootstrap-based test was recommended [38]. Titman [39] 

recently developed a method that offers an improved approximation to the distribution of the 

Pearson-type test statistic. Under the Bayesian framework, we utilize the posterior predictive 

method to check the goodness-of-fit, which is similar to the bootstrap technique [25, 32, 38]. 

Let yrep represent the predicted values of the data from our model and T(y, θ) be the test 

quantity (i.e., number of observed transitions in this study). The discrepancy between the 

fitted model and the data is measured by the Bayesian predictive p value, which is defined as 

pB = Pr{T(yrep, θ) ≥ T(y, θ)} [32]. A serious lack of fit is suggested if we observe that pB ≥ 

0.95 or pB ≤ 0.05.

3 Empirical studies

In this section, we assess the accuracy of estimation for the proposed method. A total of one 

thousand duplicated data sets were simulated for a four-state CTMC model with three 

covariates, i.e., one binary type, one categorical type and one continuous type. For each 

generated data set, six hundred subjects were measured twenty-one times with observation 

time intervals equal to one. A Bernoulli distribution with probability equal to 0.5 was 

selected for the binary covariate. For the categorical covariate, a random sample from (0,1,2) 

was generated for each subject with probability of (1/3,1/3,1/3). The continuous covariate 

was generated from a normal distribution with N(0,36). The outcomes were assumed to 

follow a continuous time Markov chain with 4 possible states (1, 2, 3 or 4) specified in the 

infinitesimal rate matrix Q (equation 2) in Section 2.2. The true parameters are given in 

Tables 1 and 2. The observation time intervals were set to be equal to one for all subjects. 

For details of simulating continuous Markov chain data, see Ma [25]. Tables 1 and 2 are 

based on 933 data sets that have results that met the convergence criteria. A total of 80,000 

samples were generated for each data set for implementing the Bayesian procedure, and the 

first half were dropped, leaving the second half for inferences. The sampling acceptance 

rates (the fraction of candidate draws that are accepted) were about 24%.

This model contains a relatively large number of parameters. To fully examine the proposed 

method, the percentage of bias (PB) for each parameter is reported along with its bias, 

standard deviation (SD), square root of the mean of the estimated variance (SE), mean of the 

squared error (MSE), and nominal coverage probability (CP). Note that the percentage bias 

is calculated as the bias divided by the true value times 100. As we can see, all the biases are 

small, albeit there are three parameters with PB around 10% in Table 2. In addition, most 

parameters have a nominal coverage probability near 95%, and the range of the CP for all 

parameters is between 92.4% and 96.0%. We conclude that, overall, the proposed method 

offers accurate and precise estimates. The R package of MSM has the option to fit models 

with covariates [21]. Using that package, we experienced a high rate of convergence failure; 

therefore, we did not apply that package here.

Ma et al. Page 6

Stat Med. Author manuscript; available in PMC 2016 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4 Case study

In this section, we introduce data from the Next Step Trial and then describe our application 

of the proposed method of CTMC models.

4.1 The Next Step Trial

We used the CTMC model to examine the nutrition intervention effect on stages of change 

in fat intake using data from the Next Step Trial, a randomized trial of colorectal cancer 

screening promotion and nutrition intervention programs. In this two-year study, twenty-

eight worksites were randomized to a control program (a company-sponsored screening 

program) or an intervention program (an enhanced screening program) [40–42]. The sites 

randomized to the screening intervention were also given the Next Step Trial nutrition 

intervention. The control sites were not given the nutrition intervention. Less than 5% of the 

participants were female; therefore, the female participants were excluded from the analysis. 

Of the 4,845 male subjects enrolled at baseline, 56.8% (n=2,754) completed dietary 

assessments with no missing values for the stages of change in fat intake. We included only 

subjects with a baseline assessment of the stages of change, for reasons discussed by Tilley 

et al. [42] and as in the Catch trial [43].

In the Catch trial, subjects who did not give blood samples at baseline were excluded. In the 

Next Step Trial, subjects who did not have the stages of change measured at baseline were 

excluded from the analysis of the stages of change. In addition, to compare our results to 

those of Kristal et al.[16], we included only the subgroup of 1,758 (response rate of 63.8%) 

subjects who completed the dietary assessments at three survey time points: baseline, year 1 

and year 2. Among the subjects in this subgroup, the mean age at baseline (±SE) was 58.3 ± 

10.6 years and the mean years of education (±SE) was 13.6 ± 2.6. Almost half of this study 

population was retired (48.5%); the majority was white (97%) and married (90%). 

Compared to the total male subjects (n=4,845) enrolled at baseline, subjects included in this 

analysis (n=1,758) were more likely to be older, retired, married, and white. Given the 

randomized design, the Next Step Trial investigators concluded that, “comparison of 

intervention and control worksites {the 2,754 subjects who completed the baseline survey} 

would not be biased unless there was a differential response to the survey between 

intervention and control sites, a situation that did not occur” [40], p. 234. There was also no 

difference in response by the intervention and control in the 1,758 subjects (p-value=0.18). 

Sixteen subjects who had missing values of years of education, were also excluded from the 

data analysis. The observational time intervals varied among subjects. The average length of 

observational time intervals between surveys in the 1,758 subjects was 1.04 years, and the 

median was 1.03 years (95% were within 0.78–1.29 years).

The Next Step Trial was randomized by worksites rather than by subjects. We investigated 

how the intervention, and the age and educational levels of the subjects affected the stages 

of change in fat intake. Years of education was redefined as educational levels with three 

categories: less than or equal to 12 years, greater than 12 years and less than 16 years, and 

equal to or greater than 16 years. Age was centered at the mean to avoid numerical issues. 

Originally, there were five stages of the outcome variable under the TTM framework: 

precontemplation, contemplation, preparation, action, and maintenance [44]. The number of 
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observed transitions from/to the stage of preparation was not large enough for estimation, 

and it was combined with the stage of contemplation. Thus, there were four stages of the 

outcome variable: precontemplation (P, coded as 1), contemplation (C, coded as 2), action 

(A, coded as 3), and maintenance (M, coded as 4). The number of observed transitions were 

(125, 65, 74, 23) from stage P to stages P, C, A and M; (72, 217, 265, 58) from stage C to 

stages P, C, A and M; (54, 220, 896, 305) from stage A to stages P, C, A and M; and (32, 83, 

259, 736) from stage M to stages P, C, A and M, respectively.

4.2 Results from CTMC models

Three parallel Markov chain Monte Carlo (MCMC) chains were run for each model, and 

each chain was generated with 120,000 iterations. The first half of the iterations was 

discarded as burn-in, and inferences were based on the second half of the samples. All 

results reported here were with R ≤ 1.1. The acceptance rates were all around 23%.

When fitting CTMC models, especially models with covariates, it is important to know that 

some parameters may not be well estimated due to the lack of information from the data. 

Numerical problems may occur and some additional assumptions may be needed for 

estimation[6]. In the study of Ma [25], a model with the same data set without any 

covariates was run, and the hazard rates were estimated as 0.002 and 0.017 for one-step 

transitions of 2 → 4 and 3 → 1. Thus, we did not allow for the one-step transition of 2 → 4 

for all models, but allowed for the one-step transition of 3 → 1 for some models (Table 3).

The goal is to find the most parsimonious model that adequately describes the data. This can 

be done through model selection strategies using DIC. Five models were considered and 

their corresponding specifications along with the values of DIC are displayed in Table 3. In 

model A, three covariates were considered: intervention (binary), educational levels 

(categorical) and age (continuous). Also, the one-step transition of 2 → 4 was not allowed 

(or equivalently γ24 = −∞); and parameters of  and 

were set equal to zero due to the convergence issue. Indeed, β13 and β41 were set equal to 0 

for all models in Table 3. Similarly, specifications of models B, C, D and E can be found in 

Table 3. Educational level had no statistically significant effect on any hazard rates, so it is 

not surprising that models D and E have relatively large values of DIC compared to the 

others. Model B had the smallest value of DIC, thus we consider it to be the best model 

among those we investigated here. The results for model B are displayed in Tables 4 and 5. 

The goodness-of-fit was also checked (Figure 1). Since all Bayesian p values are moderate, 

we conclude that there is no observed discrepancy between the fitted model and the data.

As we can see in Table 5, there was a statistically significant effect of the intervention on the 

hazard rate from precontemplation to contemplation,  (0.968, CI: 0.471–1.476). The 

abbreviation CI represents the Bayesian 95% credible interval throughout this article, unless 

otherwise specified. The coefficients can be interpreted as log hazard rate ratios as in the 

Cox model [13, 21]. The hazard rate ratio is defined, for example, as , and can be 

calculated from the posterior MCMC samples, which is 2.77 (CI: 1.601–4.378). Note that all 

the hazard rate ratios hereafter are similarly calculated. Thus for subjects in the intervention 

group, the hazard rate of the change in state from precontemplation to contemplation (a 
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relatively higher and healthier status), on average, was about 2.77 times the hazard rate for 

subjects in the control group after adjusting for age. Note that the hazard rate ratio and the 

95% credible interval were calculated using an MCMC algorithm, with half of the posterior 

samples. Further, for age, the hazard rate ratio for the one-step transition from action to 

maintenance was 1.027 (CI: 1.016–1.039) in the model that includes the intervention. 

Hence, on average, the hazard rate increases 1.027 times for every one-year increase in age 

after adjusting for the intervention.

In practice, we may be interested in the mean sojourn time on each state and the one-year 

transition probabilities for a subgroup or a specific subject. These statistics were calculated 

with an MCMC algorithm, using the samples for the posterior distributions. The results 

shown in Table 6 and Table 7 are based on model B. Table 6 presents the one-year transition 

probabilities for subjects who were 58.3 years of age (the mean age of the population) in the 

control and intervention groups, respectively; and the differences between these probabilities 

were also calculated. As one can see from Table 6, a subject who was 58.3 years of age and 

was treated with the control program had higher probability of transferring from relatively 

higher stages to lower stages. These differences (and their credible intervals) in the 

probability of transferring stages are reported as M→C (0.01; CI: 0–0.021), M→P (0.006; 

CI: 0.001–0.011), and A→C (0.042; CI: 0.006–0.076). Similarly, this individual had lower 

probability of moving from relatively lower stages to higher stages, with differences in the 

probabilities reported as P→C (−0.118; CI: −0.183–0.044), P→A (−0.1; CI: −0.164–0.042), 

C→M (−0.025;CI: −0.049–0.002) and A→M (−0.044; CI:−0.083–0.006). One may also 

notice that this individual had much higher probability of being at stage P, with the 

difference in the probability (and the credible interval) P→P (0.231; CI: 0.113–0.335). This 

is reflected by the mean sojourn time in Table 7, i.e., on overage, an individual spent 0.752 

(CI:0.343–1.166) more years in the stage of precontemplation when randomized to the 

control group compared with those in the intervention group who were of the same age (58.3 

years).

5 Discussion

We reanalyzed the Next Step Trial data using a generalized multinomial logit model. We 

included only age and the intervention as covariates. The dependent variables were all the 

possible transitions, consisting of sixteen categories for the entire duration of the study. The 

transition from precontemplation to precontemplation was used as the referent outcome. 

Some confusing results were found in this analysis. For example, the calculated odds ratio of 

making a transition from A to C was 2.005 (confidence interval: 1.248–3.221) for subjects in 

the intervention group compared with those in the control group; however, the results in 

Table 6 show that subjects in the intervention group had lower probabilities of moving from 

A to C. Further investigation revealed that the proportions in the action state at baseline 

were 43.7% and 38.4% for the intervention and control groups, respectively. As a result, the 

odds ratio was still large even though the transition probability from A to C was lower in the 

intervention group compared with the control group (Table 6). This is well understood 

because the temporal correlation between successive measurements is ignored by the 

GMLM. In addition, a more sensible modeling strategy is to fit multiple GMLMs with 

outcome variables (transitions) conditional on the previous states. Specifically, each GMLM 
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has S-level outcomes that represent the state at the next observation, conditional on the state 

at the current observation. This approach correctly models the relations between the 

covariates and transitions; however, it still does not take into account the varying time 

intervals between observations. Its application is limited to studies in which the 

observational time intervals are fixed. Hence, predictions may not be made for time intervals 

other than the fixed intervals [17].

In contrast, CTMC models incorporate the information of the observation time intervals, 

which is especially useful when time intervals are unequally spaced, such as in our case 

study. Results from this method consistently show the existence of the intervention effects. 

For example, a statistically significant hazard rate ratio in favor of the intervention was 

found for the transition rate moving from precontemplation to contemplation (Table 5). The 

absolute differences in the transition probabilities between the control and intervention 

groups were 0.231, −0.118 and −0.1 for transition probabilities from precontemplation to 

precontemplation, and contemplation, respectively (Table 6). The hazard rate ratios for the 

intervention of moving from action to contemplation and maintenance were 0.776 (CI: 

0.537–1.095) and 1.212 (CI: 0.950–1.521), respectively (calculated from posterior samples). 

Although the hazard rate ratio for change from action to maintenance was not statistically 

significant, its lower bound is close to 1. Similarly, for the hazard rate of the change from 

action to contemplation, it seems that subjects in the intervention group had less risk of 

moving to a relatively less healthy state, though the finding was not statistically significant. 

These are reflected by differences (between the control and intervention groups) in the 

transition probabilities from action to maintenance (−0.044, CI: −0.083–0.006) and 

contemplation (0.042, CI: 0.006–0.076), respectively.

When fitting a CTMC model, several researchers have reported a numerical issue and 

suggested some strategies to handle these problems [4, 6, 7, 21, 24]. In our approach, we 

first fit the model without the covariates, and assign zero to those hazard rates that are 

around zero. In some cases, we only assign zero to coefficients of that one-step transition 

and keep the hazard rate positive. Indeed, we estimated covariate effects on adjacent states 

while keeping all intercepts of the log-transformed hazard rates in our case study, except for 

the one-step transition of contemplation to maintenance. A common model fitting strategy 

available in the literature is to assume the same covariate effects as discussed in Section 2.2. 

In this approach, although parameters are dramatically reduced, the assumptions are stronger 

and hence less attractive. While researchers try to find a model that answers the scientific 

question, model assumptions and issues of estimations need to be carefully considered.

From the methodology point of view, the proposed method is attractive in that the 

complicated analytical form can be avoided and the method can be easily extended to 

models with more than four states. However, models must be biologically reasonable and 

have enough data for estimation. Another benefit of using the Bayesian approach in 

estimating the CTMC model is that many statistics can be calculated using an MCMC 

technique, as illustrated in Section 4.2. Since these statistics are often functions of model 

parameters, the asymptotic normality assumptions may be required to calculate the standard 

errors under the frequentist framework. Due to the complex form of the likelihood function, 

the asymptotic assumption may not work as desired. Previous knowledge may be 
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incorporated as informative priors under our Bayesian framework, which is helpful, 

especially in scenarios when a data set is relatively small for a given number of parameters 

[27, 32]. However, one shall be cautious in assigning priors that reflect substantive 

information. As Muller [27] demonstrated, models that use “incorrect” priors are unstable 

and may generate misleading results.

6 Limitations and conclusions

It is important to acknowledge that the approach for estimating the intervention effects in 

our analysis has some limitations, and the results found in this article may only apply to our 

baseline population with complete information. Compared to the total survey response 

sample (n=2,754) with at least one measurement, participants (n=1,758) who completed all 

three assessments were more likely to be older and retired. Compared to subjects (n=996) 

who completed the baseline assessment but not all the follow-up assessments, subjects 

included in this analysis (n=1,758) were more likely to be older, married and retired [16]. 

However, the response rates are similar between the intervention and control groups. In 

addition, there were no detected differential responses in terms of age, race, employee status 

(retirees versus active employees), or marital status (married versus others) for the 

intervention and control groups. Thus, we believe the comparison of intervention and 

control groups are unlikely to be biased due to response bias, as discussed by Tilley et al. 

[40].

Another limitation is the complexity of the CTMC models. We considered only three 

covariates of intervention, age and educational levels, and did not adjust for marital status 

and employee status. We fitted a GMLM with intervention, age and an interaction term 

against transitions for stages of change in fat intake; we found that the interaction term was 

not statistically significant using the likelihood ratio test. Similar results were found for the 

covariates of marital status and employee status. Thus, age, marital status and employee 

status were unlikely to be confounders.

Moreover, we ignored the fact that the Next Step Trial was randomized by twenty-eight 

work-sites, and therefore the correlation among subjects within the same worksite was not 

taken into consideration in our models. As a result, our findings of the intervention effects 

may be less conservative compared with results that adjusted for the within-cluster 

correlation. One way to handle this issue is to use random-effect models to account for the 

cluster effects. Although using random-effect models is not new in CTMC models [14, 22, 

23], applications in our setting, e.g., general CTMC models, have not yet been published. In 

future research, we will evaluate the intervention effects of the Next Step Trial data while 

considering the cluster effects due to the worksite randomization. In our analysis, subjects 

are assumed to follow a homogeneous first-order continuous time Markov process, but this 

assumption may be violated. Some methods have been proposed to address situations where 

the homogeneity does not hold, e.g., using piecewise constant transition intensities [4], or 

using time transformation [45]. This can be another direction for future applications of our 

modeling approach.
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An important question for our study is whether it is plausible in psychological studies that 

individuals change their current states directly to any of the other states, including jumping, 

say, from contemplation to maintenance. This issue is important when fitting CTMC models 

as they must be biologically reasonable [6]. Regarding behavioral changes, several studies 

showed that individuals make “spontaneous” decisions. For instance, more than half of the 

smokers in one study made sudden decisions to attempt to quit smoking without making any 

preparations [19]. Another study reported that quite a few individuals experienced 

progressions from pre-action stages to the maintenance stage, and the authors argued that 

“spontaneous transitions in stages of change may occur” [20], p. 5. Furthermore, discrete 

time Markov chain models have been employed in the setting of TTM, and the authors have 

correctly pointed out that this approach is limited due to the lack of providing important 

information of the process within the observational time intervals [17]. Nevertheless, 

without considering any covariates, we conducted an analysis, assuming only adjacent 

instantaneous transitions in both directions, between P and C, between C and A, and 

between A and M. The goodness-of-fit test detected obvious discrepancies (Bayesian p-

values greater than 0.95 or less than 0.05) between the data and the model (results not 

shown); hence, alternative models may fit the data well [25]. Though these results are 

supportive, further investigations might be needed; however, these are beyond the scope of 

this article.

The proposed CTMC model incorporates the observational time intervals and is very useful 

when these intervals are unequally spaced. This novel Bayesian approach enabled us to fit 

different CTMC models without requiring an analytical form of the likelihood, which can be 

mathematically difficult [12]. The CTMC model was evaluated via a simulation study that 

showed that the parameters were accurately and precisely estimated. This model not only 

confirms that the nutrition intervention in the Next Step Trial was effective, but also 

provides information on how the intervention affected the transitions among the stages of 

change. Information on the patterns of transition may be helpful to improve the intervention 

design for future studies in health promotion. To the best of our knowledge, this is the first 

use of the Bayesian approach to analyze the relationship between longitudinal categorical 

outcome data and multiple covariates under the framework of the general four-state CTMC 

model.
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Figure 1. 
Bayesian predictive p-values for Model B and results are based on 1000 duplicated data sets. 

The dark lines represent the observed transition counts. Precontemplation, contemplation, 

action and maintenance are represented by 1, 2, 3, and 4, respectively; TC12, for example, is 

for transitions from precontemplation to contemplation
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