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Abstract

We review weighting adjustment methods for panel attrition and suggest approaches for 

incorporating design variables, such as strata, clusters and baseline sample weights. Design 

information can typically be included in attrition analysis using multilevel models or decision tree 

methods such as the CHAID algorithm. We use simulation to show that these weighting 

approaches can effectively reduce bias in the survey estimates that would occur from omitting the 

effect of design factors on attrition while keeping the resulted weights stable. We provide a step-

by-step illustration on creating weighting adjustments for panel attrition in the Galveston Bay 

Recovery Study, a survey of residents in a community following a disaster, and provide 

suggestions to analysts in decision making about weighting approaches.
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1. Introduction

Panel surveys collect similar measurements on the same sample at multiple points of time 

[1]. As with other longitudinal studies, panel surveys are subject to dropout or panel 

attrition. If individuals who respond are different from those who drop out, statistical 

analysis based only on complete respondents can lead to biased statistical inference.
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In cross-sectional surveys, weighting adjustments are often made for unit nonresponse when 

a sampled individual does not respond to the entire survey, and imputation is commonly 

used to handle item nonresponse for individuals who do not respond to particular questions. 

Unit and item nonresponse also arise in panel surveys and can be handled similarly using 

weighting and imputation, respectively. However, the choice between weighting and 

imputation is more complicated with panel attrition. Specifically, with weighting, 

information collected for panel nonrespondents in the initial waves is discarded, which 

results in a waste of costly collected data. On the other hand, with imputation, missing 

responses in the entire wave need to be imputed, which causes concerns about attenuation of 

covariance between variables. Further discussion of weighting and imputation for panel 

attrition can be found elsewhere [2–5]. Imputation with well-chosen models is more efficient 

than weighting, but we focus on weighting in this paper given that weighting has been 

widely used in many public health studies.

To remove attrition bias in estimating population quantities, weighting adjustments need to 

account for the large amount of information available on both respondents and 

nonrespondents, such as the survey responses collected in the initial waves of the survey [6]. 

When complex designs are used in the baseline survey, the set of variables about the 

sampling design also need to be considered. Because of confidentiality restrictions, not all 

such variables might be available. Instead, it is common for datasets to include a single 

weight variable that accounts for both sampling design and unit nonresponse in the baseline, 

and also strata and clusters if stratified or cluster sampling is used. With the availability of 

design information in the forms of base weights, strata and clusters, no consensus exists as 

to the best way to incorporate design information into the weighting adjustment for panel 

attrition. Survey practitioners would benefit from clear guidelines on how to create 

weighting adjustments using all the available information, most notably with these three 

design variables.

This paper has four parts. First, we review weighting adjustment methods and suggest 

approaches for incorporating the design variables, such as base weights, strata and clusters. 

Second, we provide a step-by-step demonstration on the application of various weighting 

approaches for panel attrition in a real data example. Third, we illustrate through simulation 

that these approaches for incorporating design variables are effective in reducing attrition 

bias while keeping the resulted survey estimates stable. Finally, we make suggestions to 

analysts in decision making about weighting approaches for panel attrition.

2. Methods for Creating Weighting Adjustments

2.1. Adjustment Cell Weighting

A common method to compensating for panel attrition is to form weighting adjustment cells 

of homogeneous sample units based on p auxiliary variables, X = (X1, X2, …, Xp)T, that are 

observed for both respondents and nonrespondents [7]. Continuous variables are 

categorized, so that Xj has cj levels, j = 1, 2, …, p. These variables are cross-classified to 

form  adjustment cells, with nl units of respondents and nonrespondents 

combined in the lth adjustment cell, l = 1, 2, …, L. Let ril denote the panel response status 

Chen et al. Page 2

Stat Med. Author manuscript; available in PMC 2016 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for the ith unit in the lth cell, with 1 for respondents and 0 for nonrespondents, so that the 

number of respondents in the lth cell is . The response rate in the lth cell is then 

estimated using π̂l = ml/nl, and the weighting adjustment for respondents in the lth cell is 

1/πl̂. The nonresponse adjustment cell method requires both ml and nl to be large enough in 

each cell to obtain a stable response rate estimate. When p is large, some of the adjustment 

cells can be small. As a result, some cells may contain few or even no respondents, and the 

estimated response rates π̂l may vary a lot in different cells. Therefore, adjacent adjustment 

cells with similar estimated response rates are often collapsed to ensure a certain number of 

respondents and a certain ratio of respondents to nonrespondents in each cell.

When many variables are available, the chi-square automatic interaction detection (CHAID) 

algorithm [8] is often used to select variables for forming adjustment cells [3, 4, 9–11]. 

CHAID splits a dataset progressively via a tree structure by choosing variables that 

maximize a chi-square criterion in each split. Specifically, the algorithm proceeds with two 

steps: merging and splitting. For each predictor Xj, a chi-square test is used to test 

independence between any pair of categories and attrition. The pair of categories that has the 

largest p-value is merged into a single category if the p-value is larger than the user-

specified alpha-level for merging. The merging step continues until no more non-significant 

pairs of categories for each predictor. The p-value is then calculated using Bonferroni 

adjustments to account for the number of possible ways each predictor can be merged. These 

adjusted p-values are used to split the node. The predictor that has the smallest adjusted p-

value defines the first split. The tree-growing process continues until no more predictors 

have adjusted p-values less than a user-specified alpha-level for splitting or until the split of 

a node results in a child node that has too few cases. At the end of the tree-building process 

we have a series of terminal nodes that are significantly different from one another on the 

attrition rate. The terminal nodes define the adjustment cells.

2.2. Response Propensity Weighting

Another method frequently used to handle nonresponse in sample surveys is response 

propensity weighting, an extension of the propensity score method of Rosenbaum and Rubin 

[12] to survey nonresponse [13]. Let ri denote the panel response status for the ith unit in the 

sample and Xi = (Xi1, Xi2, …, Xip) denote auxiliary variables that are important predictors of 

ri. A logistic regression model is often used to estimate the response propensity:

(1)

To obtain the list of predictors Xi in model (1), an initial screening is often first performed to 

reduce the number of predictors to a more manageable size, by examining bivariable 

associations between each of the auxiliary variables and attrition. Model (1) is then fitted on 

the identified subset of auxiliary variables and coupled with additional steps such as variable 

selection and inclusion of interactions. Weighting adjustments for panel respondents are 

equal to the reciprocals of estimated response propensities  obtained from 

model (1).
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Response propensity weighting has been widely used in practice. Some applications include 

the Survey of Income and Program Participation Survey [9] and the Medical Expenditure 

Panel Survey [14, 15]. But the method has two potential limitations. First, the effect of 

weighting adjustments in reducing nonresponse bias largely relies on correct specification of 

the response propensity model. If model (1) is misspecified, the weighted estimators of the 

population quantities are likely to be biased. To remedy this problem, Giommi [16] proposes 

kernel smoothing and daSilva and Opsomer [17] propose local polynomial regression to 

estimate the response propensities. Secondly, some respondents can have very small 

estimated response propensities and thus receive very large weights, which in turn leads to 

high variance of the weighted estimators of the population quantities. A common remedy is 

to trim large weights [18–20]. The most common form of weight trimming method is to pick 

a cutpoint w0, force weights above this cutpoint to be w0, and multiply weights under this 

cutpoint by a constant so that the sum of the trimmed weights equal to the sum of weights 

before trimming.

Alternatively, Little [21] proposes a response propensity stratification method, which forms 

adjustment cells based on the estimated response propensities. Specifically, the estimated 

response propensities from model (1) are first ordered; respondents and nonrespondents with 

similar estimated response propensities are grouped to form adjustment cells; and 

respondents in each cell are weighted by the inverse of response rate in that cell. Since the 

estimated response propensities are used only for the purpose of forming adjustment cells, 

the response propensity stratification method relies less on correct specification of the 

response propensity model. Furthermore, by forming adjustment cells, we can avoid large 

weighting adjustments due to small estimated response propensities.

2.3. Auxiliary Variables for Weighting Adjustments

Rizzo, Kalton, and Brick [9] suggest that the choice of auxiliary variables could be more 

important than the choice of methods for creating weighting adjustments. The auxiliary 

variables used for weighting adjustments should be predictors of panel attrition and 

predictors of outcomes of interest, so that including these variables in creating weighting 

adjustments can generally reduce attrition bias and improve efficiency in the survey 

estimates [21–23]. Such variables include survey responses in the initial waves of the panel 

survey and variables measuring sample units’ cooperation. Variables measuring cooperation 

include the amount and patterns of item nonresponse in the initial waves of the survey and 

call history variables, such as number of calls and whether a respondent was ever a refusal in 

the baseline survey [24–27]. These cooperation variables can have great predictive power 

for panel attrition, because a sampled individual being hard to reach in the first wave 

interview can be considered as a negative reaction to the request to participate in the survey, 

thus increasing the probability of attrition in the subsequent waves. With a large number of 

candidate auxiliary variables, a desirable weighting adjustment method should be able to 

incorporate a large number of auxiliary variables without creating weighting adjustments 

that are too noisy to be useful.
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2.4. Simple Approaches for Incorporating Design Variables

When complex sample designs are used to select sample units in the initial waves of survey, 

design features also need to be considered in the weighting adjustment for panel attrition. 

However, the set of variables used in the sample design are usually not included in the 

datasets because of confidentiality restrictions. Instead, it is more common to only include a 

single base weight variable that reflects the complex sampling design and unit nonresponse 

in the baseline. If stratified or cluster sampling is used, the strata and clusters are also 

included. A question then arises on how to incorporate the base weights, strata and clusters 

into attrition analysis. In the adjustment cell method, it is common practice to include the 

base weights by calculating the weighting adjustment using the inverse of weighted response 

rate in each adjustment cell, where units are weighted by their base sample weights. In the 

response propensity model, the coefficients in model (1) are estimated using weighted 

logistic regression. Little and Vartivarian [28] show that the weighted response rate yields 

biased estimates of population quantities if design variables are related to nonresponse and is 

unnecessary if design variables are unrelated to nonresponse, and that weighting the logistic 

regression by the sample weight does not offer any advantage over unweighted regression. 

Instead they suggested cross-classifying design variables with other auxiliary variables to 

create weighting adjustment cells or including the design variables as predictors in the 

response propensity model.

Following Little and Vartivarian [28], we suggest some simple approaches for incorporating 

these three design variables in the adjustment cell and response propensity methods. Our 

goal is to create weighting adjustments that can minimize the bias that would occur from 

omitting key design factors while keeping the resulted weights stable. The first approach is 

to include design variables as categorical variables in the CHAID model for attrition. 

Specifically, the classification tree for panel attrition is built from inputs of (X, Z), where Z 
are design variables including strata, clusters and base weights and X are other auxiliary 

variables. Clusters with similar response rates are collapsed in the merging step of the 

CHAID algorithm and the collapsed clusters with response rates that are significantly 

different from others are used to split data into different adjustment cells. To account for the 

effect of stratification and weighting in the sample design, strata with similar response rates 

and proxy variables (e.g. geographically location) are first collapsed and the base weight is 

then dichotomized at the median in each collapsed stratum to catch the interaction effect 

between stratum and sample weight on attrition.

The second approach is to incorporate the design variables in the response propensity 

weighting using multilevel models. A multilevel response propensity model can naturally 

handle the cluster effect using varying intercepts across clusters. When there are no 

interaction effects on attrition between strata, base weights and other auxiliary variables X, 

they can all be included in the multilevel model as predictors. To avoid extremely large 

weights, propensity score categories with approximately equal numbers of cases are then 

created using the quintiles of the estimated response propensities. When the interaction 

effects on attrition exist, alternatively, an ad hoc two-step approach is considered. 

Specifically, the multilevel response propensity model with only X as predictors is first 

fitted to create propensity score categories, which are further cross-classified with the 
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stratum-weight variable used in the above CHAID approach to form weighting adjustment 

cells. This can be considered a hybrid approach of response propensity and adjustment cell 

methods, where the response propensity score of attrition, strata and base weights are used 

to form adjustment cells. Weighting adjustments are then taken to be the reciprocal of the 

unweighted response rate in each cell.

3. Application to the Galveston Bay Recovery Study

In this section we provide a step-by-step demonstration on how to incorporate base weights, 

strata, clusters and a large number of other auxiliary variables into weighting for panel 

attrition, using as an example the second wave of the Galveston Bay Recovery Study 

(GBRS). The GBRS was a three-wave panel survey conducted after Hurricane Ike struck the 

Galveston Bay area in Texas on September 13–14, 2008 [29]. The goal of the GBRS was to 

characterize trajectories and determinants of post-disaster mental health outcomes. The 

study population consists of residents living in Galveston and Chalmers counties who were 

present in the county when Hurricane Ike hit and had been living in the area for at least one 

month before the storm. The two-county area was divided into five damage geographic 

strata, with differing sampling rates to oversample the areas that were expected to be more 

affected by the storm. Seventy-seven area segments composed of Census blocks were then 

selected proportional to Census 2000 number of occupied households. Using an address list 

purchased from Experian with some basic household information, each household in the 

sampling frame was further classified as high versus low risk of experiencing post-traumatic 

stress disorder (PTSD) based on their household characteristics. Households with high risk 

of PTSD were over-sampled. There were 658 individuals participating in the baseline 

survey, with 239 from stratum 1, 68 from stratum 2, 123 from stratum 3, 33 from stratum 4, 

and 195 from stratum 5. Two follow-up interviews were conducted approximately two and 

twelve months after the baseline interview, with 529 participating in wave 2 and 487 

participating in wave 3. In this paper, we focus on the weighting adjustment for the wave 2 

attrition.

3.1. Strata and Sample Weights

The wave 2 response rate in the five sampling strata is 84%, 84%, 75%, 91%, and 76%, 

respectively. Since sample size is relatively small in stratum 4 (n = 33), and the wave 2 

response rate is similar in the first two strata and is similar between stratum 3 and 5, and also 

strata 1–2 and strata 3–5 are geographically closer to each other, we create a new stratum 

indicator that combines strata 1–2 and strata 3–5, which in turn yields a new response rate of 

84% and 77%, respectively. Since sampling strata were ordered by the damage level with 

the worst damage in stratum 1 and the least damage in stratum 5, this suggests that people 

who were less affected by Hurricane Ike were more likely to drop out the study. To examine 

the effect of base weight on panel attrition, we further divide the sample units in each of the 

two newly combined strata by the median of the base weight, which is 98 in the combined 

stratum 1–2 and 255 in the combined stratum 3–5. As a result, the combined stratum 1–2 has 

a response rate of 86% in the small weight group and 82% in the large weight group, and the 

combined stratum 3–5 has a response rate of 76% and 79% in the small and large weight 

group, respectively. This suggests that sample units who had a large base weight were more 
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likely to drop out the study in the area with more damage, while were less likely to drop out 

in the area with less damage.

3.2. Other Auxiliary Variables for Weighting Adjustments

Other auxiliary variables that can be used to improve weighting adjustments include the 112 

survey response variables to the baseline survey and participants’ cooperation variables in 

the baseline interview (e.g., ever a refusal, number of calls, number of item nonresponse). 

Item nonresponse is less a concern here. The proportion of missing data for each individual 

variable is between zero and four percents. To avoid losing any observations in the 

weighting adjustments, missing survey responses are imputed using sequential regression 

imputation method [30]. Variables summarizing item nonresponse in the baseline survey are 

created, including number of item nonresponse and item nonresponse indicators for each of 

the 30 survey variables with more than 20 (3%) missing observations.

3.3. Screening for Important Predictors of Panel Attrition

Before attempting the adjustment cell or response propensity modeling, an initial screening 

analysis of the auxiliary variables is performed to reduce the large number of variables to a 

more manageable set. With the wave 2 panel attrition as the dependent variable, survey 

weighted logistic regression is used to examine the bivariable association between each 

auxiliary variable and the panel attrition. With a moderate sample size (n = 658), variables 

having p-values less than or equal to 0.1 are retained for later analysis. The screening 

analysis reduces the number of baseline survey variables from 112 to 26 and removes all the 

item nonresponse indicators.

3.4. The CHAID Model

We use the CHAID algorithm to create weighting adjustment cells. Predictors include the 26 

survey response variables identified in the screening step, three cooperation variables (ever 

being a refuser, number of calls and number of item nonresponse in the baseline survey), 

and the design variables (the new stratum-weight variable, area segments). A significance 

level of 0.05 is used for both merging categories of predictors and splitting a node. The 

CHAID model yields five terminal nodes. Figure 1 shows that the first split of node is 

determined by callnumcat (number of calls in the baseline survey; 1=1–5; 2=6–10; 3=11–15; 

4=15+ calls). The splitting of node 1 yields nodes 2 and 6, where node 2 includes 

individuals whom were called 1–15 times, and node 6 includes individuals whom were 

called more than 15 times in the baseline survey. The splitting of node 2 yields three 

terminal nodes 3–5, defined by the past month depression severity, with “1 = minimal” for 

node 3, “2 = mild & 3 = moderate” for node 4, and “4 = severity” for node 5. The splitting 

of node 6 yields two terminal nodes 7 and 8, defined by the stratum-weight variable, with 

“strata 3–5 and base weight ≤ 225” for node 8 and the others for node 7. The weighting 

adjustment from the CHAID model is then equal to the inverse of response rate in each of 

the five terminal nodes. The terminal nodes yield very different response rates, ranging from 

0.50 to 0.94, with the shaded area in the terminal nodes of Figure 1 representing proportions 

of response. The algorithm is implemented using the CHAID package in R.
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3.5. Response Propensity Model

We use a lasso logistic regression [31] to identify important predictors of panel attrition 

from the list of 26 survey response variables, the three cooperation variables and the four-

category stratum-weight variable. The lasso model selects 12 of them into the final model. 

To estimate the response propensity, we re-fit the response propensity model on these 12 

important predictors using a Bayesian multilevel model with varying intercepts to account 

for the effect of the area segment. The final model is shown in Table 1. In additional to the 

number of calls, past month depression severity variables, and stratum-weight variable 

identified in the CHAID model, variables used in the response propensity model also 

include education, self or household member performed dangerous activity during storm, 

number of previous hurricane exposure, displaced from home or financial loss due to Ike, 

post-disaster emotional support, lifetime generalized anxiety disorder severity, alcohol 

drinking, and use help services after Ike. We first calculate the response propensity (RP) 

adjustment using the reciprocal of the estimated response probability, which has a median of 

1.17 (min = 1.02, max = 4.48). We then order the estimated response propensities and divide 

the baseline sample units into five approximately equal-sized categories to obtain the 

response propensity stratification (RPS) adjustments. To practice the two-step hybrid 

approach, we repeat the above multilevel model without the stratum-weight variable. The 

resulted response propensity categories are further cross-classified with the stratum-weight 

variable resulting in 20 adjustment cells. The hybrid approach yields weighting adjustments 

varying from 1.00 to 2.41. The lasso logistic regression model is fitted using the glmnet 

package and the Bayesian model is fitted using the rstan package in R [32, 33].

3.6. Final Panel Weights

As a final step, the base weight is multiplied by the panel attrition weighting adjustment and 

post-stratified to obtain the final wave 2 weight using the raking method. The post-

stratification is conducted using American Community Survey data for the relevant counties 

based on the post-stratification variables: age, gender, marital status, race/ethnicity, whether 

born in the United States, education, employment status, and household income. The raking 

is implemented using the survey package in R.

3.7. Survey Data Analysis

Figure 2 shows the results of the population mean estimate of the baseline post-disaster 

stress disorder score among wave 2 respondents (n = 529) using the final panel weights. To 

serve as a benchmark for comparison, we also provide the estimate using the complete wave 

1 sample (n = 658) and the base weight. Without adjustment for panel attrition, using the 

wave 2 respondents and the base weight the NULL estimate is about one point lower than 

the other estimates. The four weighted estimators (RP, RPS, Hybrid, and CHAID) are 

effective in reducing bias in estimating the population mean of the stress score, with their 

point estimates close to the benchmark estimate. The point estimates from the CHAID and 

hybrid approaches are closer to the benchmark than that of RPS, which might be explained 

by the interaction effect between the stratum-weight variable and other covariates as shown 

in the CHAID analysis. CHAID yields the largest standard error among all the approaches.
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4. Simulation Study

4.1. Design of the Simulation Study

We use a simulation to show that the weighting approaches discussed in Section 2.4 that 

incorporate design variables, such as base weights, strata and clusters, in the attrition 

analysis can effectively reduce bias when attrition is related to design features. The 

simulation is conducted using the data of the 658 individuals who participated in the wave 1 

data collection of the Galveston Bay Recovery Study. Let X be the age of sample units at the 

first wave of data collection and Z be the natural log-transformed base weight. Both X and Z 

are standardized to have zero mean and unit standard deviation. We generate three outcome 

variables: Y1|X, Z ~ Norm(0, 1), Y2|X, Z ~ Norm(X, 1), and Y3|X, Z ~ Norm(X + Z, 1), and 

consider the following four different wave 2 response propensity models:

and

where q1 is the first quartile of Z. These models result in an average response rate of 60% – 

70%.

We compare eight attrition weighting adjustments, including a naive method without any 

adjustment (NULL), two CHAID models (CHAID[x], CHAID[x,z]), two response propensity 

models (RP[x], RP[x,z]) and their corresponding response propensity stratification 

adjustments (RPS[x], RPS[x,z]), and the hybrid approach that cross-classifies RPS[x] with 

design variables (Hybrid[x,z]). For CHAID[x] and CHAID[x,z], we first categorize the 

continuous X and Z into quartiles. A significance level of 0.05 is used both for merging of 

predictor categories and for splitting of a node. The subscript [x] and [x, z] denote which 

variables are used to grow the trees. Similar subscript notations are also used to denote 

which variables are included as predictors in the response propensity model (1), with [x] for 

main effect of X and [x, z] for the main effects of X and Z plus their interaction. The 

response propensity categories are created using the quintiles of the predicted response 

propensities from the corresponding models. Finally, the weighting adjustment of Hybrid[x,z] 

is created by cross-classifying the response propensity strata of RPS[x] with Z that is 

dichotomized at the median. Let wnr denote any of the eight panel attrition adjustment and 

w1 be the base weight. The attrition adjusted weight w2 for the wave 2 respondents is

(2)
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For each response model, we replicate 1000 simulations and compare the absolute empirical 

bias and root mean squared error (RMSE) of the eight adjustments in estimating mean Y:

where, μ̂(t) is the Hájek estimate of mean Y [34] in the tth replicate of simulation using the 

attrition adjusted weight among the m respondents,

and μ̃ is the Hájek estimate of mean Y using the base weight and the n complete data without 

dropout,

Weighting adjustments that yield smaller values of absolute bias and RMSE are desirable.

4.2. Simulation Results

Table 2 displays the absolute empirical bias of the estimates of mean Y using the eight 

weighting adjustments. In the response model R1 where response is independent of X and Z, 

the bias is close to zero for all eight weighting adjustments. In the response models R2 – R4, 

the NULL estimator performs poorly with large bias, especially when Y is related to X or Z. 

In the response model R2 where response is related to X only, the two RP adjustments 

achieve the smallest bias followed by the Hybrid[x,z] adjustment. In the response model R3 

where response is related to both X and Z, the adjustments that account for the design 

variable Z (CHAID[x,z], RP[x,z], RPS[x,z], and Hybrid[x,z]) yield smaller bias than the 

corresponding adjustments that do not account for Z, and RP[x,z] achieves the smallest bias. 

This is not surprising because the true response model is used in RP[x,z]. In the response 

model R4 where response is a step function of X and Z, the CHAID[x,z] performs best in this 

case with close to zero bias followed by the Hybrid[x,z] adjustment, while the estimates using 

RP[x,z] and RPS[x,z] are subject to some degree of bias due to model misspecification. 

Overall the weighting approaches using [x, z] perform well in all scenarios with small bias.

Table 3 compares the RMSE of the eight weighting adjustments. For Y1 that is not related to 

X or Z, all eight weighting adjustments yield small RMSE in all response models and the 

NULL achieves the smallest RMSE in most of cases. This suggests that while weighting can 

effectively reduce attrition bias, the increase in variance due to weighting can lead to a 

slightly increased RMSE than the NULL when Y is independent of X and Z. When Y is 
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related to either X or Z, the NULL is subject to not only large bias but also large RMSE, and 

weighting adjustments improve efficiency in the survey estimates. In the response models of 

R3 and R4, the adjustments that account for Z yield smaller RMSE than the corresponding 

adjustments that fail to do that. In the response models of R1 and R2 where response is 

unrelated to Z, there is minimal penalty by including Z. The CHAID[x,z] yields a slightly 

larger RMSE than the counterparts.

5. Discussion

In public health research it is standard to use weighting to adjust for panel attrition. Given 

that weighting is being widely used, our goal of this paper is review weighting approaches 

and provide suggestions to analysts in decision making in weighting for panel attrition. In 

the attrition analysis, we need to consider not only the large amount of auxiliary information 

available on both respondents and nonrespondents, but also the set of variables about the 

sampling design. Since the variables about sampling designs are often not available to 

analysts because of confidentiality restrictions, we focus on the attrition analysis that uses 

base weights, strata and clusters. We review two commonly used weighting methods, i.e. the 

adjustment cell weighting and the response propensity weighting. We explore the 

application of these two weighting methods to panel attrition using the CHAID algorithm 

and multilevel models, both of which are appealing in that they can handle a large number of 

auxiliary variables and can naturally incorporate the design variables into weighting.

To form adjustment cells using the CHAID algorithm, the data are partitioned into mutually 

exclusive, exhaustive adjustment cells that best describe the panel attrition using all 

auxiliary variables including base weights, strata and clusters. The CHAID algorithm 

requires all the continuous predictors to be converted into categorical variables. In practice, 

we can divide the continuous predictors into a number of categories with an approximately 

equal number of observations. For the continuous base weight variable, we suggest to 

dichotomize it at its median within each stratum because the range of base weight tends to 

vary across strata. To incorporate the cluster effect, the CHAID algorithm merges clusters 

that are similar in the response rates and splits nodes when the smallest adjusted p-value is 

smaller than an alpha-level for splitting. The CHAID requires rather large sample sizes, so 

that the number of cases in each terminal nodes would not be too small to yield reliable 

estimate of response rate. The CHAID has advantageous features. Specifically, it can 

naturally handle interactions between various auxiliary variables, and its output is highly 

visual and easy to understand.

For response propensity models, Little and Vartivarian [28] suggest including design 

variables as predictors. With the limited available design information in the forms of base 

weights, strata and clusters, we suggest using multilevel models where the cluster effect is 

taken into account by allowing intercepts to vary across clusters. All the other auxiliary 

variables can be included as predictors in the model. To allow for possible modification 

effects of strata and base weights on other auxiliary variables, we consider a two-step hybrid 

approach. We first obtain response propensity categories based on the multilevel model, and 

then cross-classify the propensity categories with strata and the dichotomized base weights 

within each stratum. In panel surveys with many auxiliary variables, it is often not a trivial 
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task to include design variables as predictors, because the models need to include not only 

the correct functional forms of the design variables but also their possible interactions with 

other predictors. Simply including design variables as predictors in the propensity models 

can yield biased survey estimates when model is misspecified, but model misspecification is 

less a concern in the two-step approach, as shown in the simulation study. However, the 

two-step approach is rather ad hoc and involves a number of arbitrary decisions. Multilevel 

models that can incorporate base weights and strata and are robust to model misspecification 

will be the focus of future research.

Both the adjustment cell weighting using the CHAID algorithm and the response propensity 

weighting using multilevel models are easy to implement. Both approaches are shown to 

work well in the simulation study and the real data application. They both can effectively 

reduce the attrition bias that would occur by omitting important auxiliary variables and 

design factors that are related to attrition, although the CHAID algorithm tends to yield 

larger mean squared errors in the survey estimates than the other weighting approaches. The 

simulation study also shows that when the design features are not related to panel attrition 

there is minimal penalty for including well-constructed design variables.

Although our limited simulation does not show any adverse effect of including irrelevant 

variables in the weighting adjustment, the inclusion of many irrelevant auxiliary and design 

variables might increase the variability in the adjusted weight and thus in survey estimates. 

Caution is needed in selecting variables for weighting adjustment. In practice, we often 

screen important predictors of panel attrition prior to the CHAID or multilevel models. We 

would include all the auxiliary variables that are predictors of not only attrition but also 

survey outcomes. Including predictors of survey outcomes in the attrition analysis has been 

shown to improve efficiency in the survey estimates in our simulation study and in literature 

[21–23]. We also suggest to collapse small sampling strata with similar proxy variables (e.g. 

geographic location) that yield similar panel response rates and dichotomize the base weight 

by their medians in each collapsed stratum. The ultimate goal of weighting is to reduce 

attrition bias without a serious loss of precision in the survey estimates.

In this paper we focus on attrition in panel surveys with two waves of data collection, but 

these weighting approaches can also be applied to panel surveys with three or more waves, 

in which adjustments need to be repeated in each of the follow-up waves [35]. For example 

in a three-wave panel survey, to create weighting adjustments for wave 3 respondents, the 

attrition analysis will be conducted among the sampled units who respond to wave 2 and use 

survey responses in both waves 1 and 2 as auxiliary variables in the CHAID and multilevel 

models. The weighting adjustments for non-attrition nonresponse can be more challenging. 

Analysts can consider turning non-attrition patterns into attrition patterns either through 

imputation or discarding interviews that fall outside the attrition patterns [3, 5] and then 

apply the weighting approaches for panel attritions.
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Figure 1. 
Using the CHAID algorithm to model panel attrition in the wave 2 survey of the Galveston 

Bay Recovery Study. The weighting adjustment cells are formed by number of calls in the 

baseline survey (callnumcat; 1=1–5, 2=6–10, 3=11–15, and 4=15+ calls), past month 

depression severity (t1phqpmcat; 1=minimal, 2=mild, 3=moderate, and 4=severity), and the 

design variable (stratumWeight; 1=strata 1–2 and base weight > 98, 2=strata 1–2 and base 

weight ≤ 98, 3=strata 3–5 and base weight > 225, and 4=strata 3–5 and base weight ≤ 225). 

The shaded area in the terminal nodes represents proportions of response in each terminal 

node.
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Figure 2. 
The estimates of mean postdisaster stress disorder score measured at the baseline survey of 

the Galveston Bay Recovery Study. The estimates using the wave 2 survey respondents and 

the final wave 2 panel weights (including no adjustment or using the response propensity 

(RP), the response propensity stratification (RPS), the hybrid adjustment or the CHAID 

algorithm to adjust for the panel attrition) are compared to the benchmark estimate using the 

complete data in the baseline survey. The black dots represent point estimates and the bars 

represent one standard error.
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Table 1

Odds ratio (OR) estimates and 95% credible intervals (CI) of the response propensity model for response to 

the wave 2 survey of the Galveston Bay Recovery Study.

Predictors OR (95% CI)

Number of calls (15+ vs. 1–15) 0.4 (0.2, 0.6)

Past month depression severity (moderately severe vs. others) 0.4 (0.2, 1.3)

Highest level of education completed (>high school vs. ≤high school) 1.4 (0.9, 2.2)

Self or houseold member performed dangerous activity during storm (yes vs. no) 0.6 (0.3, 1.2)

Number of previous hurricane exposure (3 vs. others) 1.7 (1.0, 3.1)

Displaced from home for > 1 week (yes vs. no) 1.3 (0.8, 2.2)

Financial loss as a result of Ike (yes vs. no) 0.7 (0.4, 1.0)

Postdisaster emotional support (median vs. low) 0.7 (0.4, 1.2)

Postdisaster emotional support (high vs. low) 1.5 (0.9, 2.6)

Lifetime generalized anxiety disorder severity (severe vs. others) 0.5 (0.2, 1.0)

Ever had ≥3 alcoholic drinks within a 3 hour period on ≥3 occasions 1.6 (1.0, 2.4)

Need help and use services (yes vs. no) 1.8 (0.9, 3.4)

Strata 1–2 and weight lower than median 1.1 (0.6, 2.1)

Strata 3–5 and weight lower than median 0.8 (0.4, 1.3)

Stat Med. Author manuscript; available in PMC 2016 December 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 18

T
ab

le
 2

C
om

pa
ri

so
n 

of
 a

bs
ol

ut
e 

bi
as

 o
f 

th
e 

es
tim

at
es

 o
f 

m
ea

n 
Y

 b
et

w
ee

n 
va

ri
ou

s 
w

ei
gh

tin
g 

ad
ju

st
m

en
ts

 u
nd

er
 f

ou
r 

re
sp

on
se

 p
ro

pe
ns

ity
 m

od
el

s 
in

 th
e 

si
m

ul
at

io
n 

st
ud

y:
 Y

1|
X

, Z
 ~

 N
or

m
(0

, 1
),

 Y
2|

X
, Z

 ~
 N

or
m

(X
, 1

),
 a

nd
 Y

3|
X

, Z
 ~

 N
or

m
(X

 +
 Z

, 1
).

R
es

po
ns

e 
m

od
el

R
1

R
2

R
3

R
4

O
ut

co
m

e
Y

1
Y

2
Y

3
Y

1
Y

2
Y

3
Y

1
Y

2
Y

3
Y

1
Y

2
Y

3

N
U

L
L

.0
00

.0
00

.0
05

.0
24

.3
63

.3
44

.0
16

.3
13

.4
07

.0
14

.1
39

.1
52

C
H

A
ID

[x
]

.0
00

.0
01

.0
05

.0
14

.0
33

.0
40

.0
06

.1
61

.2
45

.0
11

.0
55

.0
24

C
H

A
ID

[x
,z

]
.0

00
.0

01
.0

06
.0

14
.0

33
.0

41
.0

16
.0

76
.0

78
.0

00
.0

03
.0

03

R
P [

x]
.0

00
.0

00
.0

05
.0

01
.0

03
.0

02
.0

01
.1

52
.2

32
.0

02
.0

55
.0

28

R
P [

x,
z]

.0
00

.0
01

.0
02

.0
01

.0
06

.0
00

.0
01

.0
12

.0
04

.0
16

.0
42

.0
35

R
PS

[x
]

.0
00

.0
00

.0
04

.0
01

.0
29

.0
22

.0
03

.1
65

.2
34

.0
04

.0
38

.0
18

R
PS

[x
,z

]
.0

00
.0

01
.0

03
.0

04
.0

35
.0

20
.0

00
.0

78
.0

40
.0

16
.0

39
.0

33

H
yb

ri
d [

x,
z]

.0
00

.0
00

.0
04

.0
02

.0
18

.0
15

.0
01

.0
69

.0
64

.0
03

.0
08

.0
14

Stat Med. Author manuscript; available in PMC 2016 December 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 19

T
ab

le
 3

C
om

pa
ri

so
n 

of
 r

oo
t m

ea
n 

sq
ua

re
 e

rr
or

 o
f 

th
e 

es
tim

at
es

 o
f 

m
ea

n 
Y

 b
et

w
ee

n 
va

ri
ou

s 
w

ei
gh

tin
g 

ad
ju

st
m

en
ts

 u
nd

er
 f

ou
r 

re
sp

on
se

 p
ro

pe
ns

ity
 m

od
el

s 
in

 th
e 

si
m

ul
at

io
n 

st
ud

y:
 Y

1|
X

, Z
 ~

 N
or

m
(0

, 1
),

 Y
2|

X
, Z

 ~
 N

or
m

(X
, 1

),
 a

nd
 Y

3|
X

, Z
 ~

 N
or

m
(X

 +
 Z

, 1
).

R
es

po
ns

e 
m

od
el

R
1

R
2

R
3

R
4

O
ut

co
m

e
Y

1
Y

2
Y

3
Y

1
Y

2
Y

3
Y

1
Y

2
Y

3
Y

1
Y

2
Y

3

N
U

L
L

.0
46

.0
91

.1
08

.0
46

.3
73

.3
55

.0
28

.3
17

.4
09

.0
39

.1
57

.1
72

C
H

A
ID

[x
]

.0
46

.0
90

.1
08

.0
55

.1
06

.0
99

.0
34

.1
70

.2
48

.0
42

.0
94

.0
82

C
H

A
ID

[x
,z

]
.0

46
.0

90
.1

08
.0

56
.1

09
.0

99
.0

43
.0

98
.0

88
.0

38
.0

72
.0

77

R
P [

x]
.0

46
.0

85
.1

05
.0

55
.1

04
.0

91
.0

31
.1

61
.2

35
.0

40
.0

91
.0

81

R
P [

x,
z]

.0
46

.0
77

.0
90

.0
56

.0
91

.0
84

.0
58

.0
90

.0
61

.0
39

.0
70

.0
73

R
PS

[x
]

.0
46

.0
86

.1
05

.0
55

.1
07

.0
91

.0
34

.1
75

.2
37

.0
40

.0
81

.0
78

R
PS

[x
,z

]
.0

46
.0

80
.0

94
.0

54
.0

98
.0

85
.0

44
.1

03
.0

57
.0

38
.0

70
.0

78

H
yb

ri
d [

x,
z]

.0
46

.0
84

.1
04

.0
57

.1
02

.0
88

.0
44

.0
97

.0
75

.0
38

.0
67

.0
75

Stat Med. Author manuscript; available in PMC 2016 December 10.


