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Abstract

Industrial and consumer product chemicals are widely used, leading to ubiquitous human exposure 

to the most common classes. Because these chemicals may affect developmental milestones, 

exposures in pregnant women and developing fetuses are of particular interest. In this review, we 

discuss the prevalence of chemical exposures in pregnant women, the chemical class-specific 

relationships between maternal and fetal exposures, and the major sources of exposures for six 

chemical classes of concern: phthalates, phenols, perfluorinated compounds (PFCs), flame 

retardants, polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCs). Additionally, 

we describe the current efforts to characterize cumulative exposures to synthetic chemicals during 

pregnancy. We conclude by highlighting gaps in the literature and discussing possible applications 

of the findings to reduce the prevalence of cumulative exposures during pregnancy.
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Introduction

Synthetic chemicals are ubiquitous in modern society. As of 2012, more than 80,000 

chemical substances are listed for use by the US Environmental Protection Agency, with 

about 1,500 new chemicals manufactured or imported each year [1]. Approximately 3,000 of 

these chemicals are used or imported in volumes greater than 1 million pounds per year, and 

are found in a wide variety of consumer products, including cleaning and personal care 
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products, building materials and home furnishings, electronics, food packaging, 

pharmaceuticals, and pesticides, leading to widespread human exposure [1, 2].

Pregnant women’s exposures to synthetic chemicals are especially important, because many 

chemicals may be transferred from mother to child across the placenta and via breast milk 

[3, 4]. Furthermore, synthetic chemicals may disrupt development even at low levels [5]. For 

the fetus and neonate, exposures to environmental toxicants may result in a wide range of 

adverse health consequences across the life course, and potentially be transmitted to the next 

generation [2].

Growing interest in the impacts of environmental chemicals on fetal growth and 

development, coupled with advances in analytical chemistry, has led to a substantial body of 

scientific literature characterizing exposures to chemicals across the maternal-fetal unit 

during pregnancy and early postpartum. These studies have largely relied on biomonitoring 

of human tissue matrices (e.g., serum, urine, and breast milk) to estimate internal exposures 

to a variety of contemporary and banned chemical classes.

In this review, we will describe the prevalence and sources of chemical exposures in 

pregnant women, and the relationships between maternal and fetal exposures, for 6 chemical 

classes of interest: phthalates, phenols, perfluorinated compounds, flame retardants, 

polychlorinated biphenyls, and organochlorine pesticides (see Table 1). We will also discuss 

the much smaller literature attempting to characterize cumulative exposures to these six 

classes during pregnancy. We will conclude by highlighting gaps in the literature and 

discussing possible scientific and public health implications of the findings. To ensure our 

review is current and focused, we will concentrate on literature from North America and 

Europe, published in the preceding five years.

Phthalates

Phthalates are used for a variety of purposes: as softeners in vinyl plastics, as solvents in 

personal care products, and as coatings in medications, among other uses [6]. Phthalates are 

non-persistent chemicals in humans, with half-lives of about 12–24 hours, so measured 

levels reflect recent exposures [7]. Younger age, greater use of cleaning products and 

personal care products, and a high-fat diet are associated with higher levels of phthalates in 

pregnant women [8–10]. Early life exposure to phthalates is associated with the 

development of allergic diseases, altered neurodevelopment, endocrine disruption including 

reduced anogenital distance in male infants [11, 12], and preterm birth [13].

Phthalate metabolites are frequently detected in the urine of pregnant women. Most 

measured metabolites are detected in 90–100% of maternal urine samples during pregnancy 

and immediately post-partum (e.g., [8, 14, 15]). Additionally, phthalates or phthalate 

metabolites can cross the placental membrane. Up to 18 phthalate metabolites have been 

detected in neonatal urine [16, 17], and phthalate metabolites are also detected at low levels 

in cord blood and amniotic fluid [18, 19], breast milk [14], and meconium [20]. Although 

phthalates or their metabolites may cross the placenta, the evidence suggests that they do not 

accumulate in the fetus. In one study, newborns’ urinary phthalate levels were generally 

similar to or lower than the levels found in their mothers’ urine [17]. Similarly, in a second 
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study levels of MEHP in maternal and cord blood were highly correlated, though levels in 

cord were slightly lower than maternal levels [20]. It is unclear whether phthalate 

metabolism or placental transfer varies during pregnancy. Two studies of maternal urinary 

phthalate metabolites reported either no differences by gestational age [8] or results that 

varied by metabolite [21]. However, two other studies in maternal urine and amniotic fluid 

suggested that some phthalate metabolite levels may increase with gestational week [18, 22].

Phenols

Phenols are used in a variety of consumer products, including in the lining of food cans, in 

plastic bottles, in dental sealants, as antimicrobials, and as preservatives [6, 23]. Phenols, 

including bisphenol A (BPA), triclosan, and parabens, are non-persistent chemicals that are 

rapidly metabolized and eliminated, with half-lives in the human body between 6 and 30 

hours [24]. Higher levels of phenols in pregnant women are associated with use of 

mouthwash and cosmetics, as well as higher BMI and higher education level [23, 25, 26]. 

Higher prenatal BPA has been associated with younger age, lower socioeconomic status, 

black race, and consumption of canned vegetables [27]. Early life BPA exposure is 

associated with impaired neurodevelopment, endocrine disruption, childhood asthma, and 

possibly cardiometabolic disorders [12, 28]. Other phenols, such as triclosan and parabens, 

may also act as endocrine disrupters but their human health effects are less well 

characterized [29, 30].

BPA is measurable in maternal urine throughout pregnancy and postpartum, frequently in 

80–100% of samples (e.g., [23, 25, 31–33]), and is also detected in maternal serum [34, 35] 

and breast milk [31, 32]. Triclosan is also frequently detected in maternal urine, serum, and 

breast milk [23, 25, 31–33]. Methyl and propyl parabens are detected in nearly 100% of 

maternal urine and breast milk, while butyl and ethyl parabens are detected less frequently 

[23, 25, 32, 33]. Detection of BPA and triclosan in neonatal urine [31], cord blood [34–36], 

placental tissue [37, 38], amniotic fluid [33, 39], meconium [31], and fetal liver [38] 

indicates that phenols are able to cross the placenta throughout pregnancy. Triclosan levels 

in infant meconium are highly correlated with levels in their mothers’ urine [31]. BPA levels 

in amniotic fluid are weakly correlated with maternal urinary levels [33], and BPA levels in 

the placenta are correlated with fetal liver levels [38]. However, phenols do not seem to 

accumulate in the fetus. BPA is typically found at much lower levels in amniotic fluid than 

in maternal urine [33], and at much lower levels in cord serum than maternal serum [35–37, 

40] (with exceptions [34]).

Perfluorinated chemicals

PFCs are persistent industrial chemicals used to impart water and stain resistance to 

consumer products [41]. PFCs preferentially bind to proteins such as albumin, and due to 

their highly stable chemical structure, they bioaccumulate and remain in the human body 

(and the environment) long after exposure [42]. In pregnant women, parity and previous 

breastfeeding duration are inversely associated with PFC level, while age and living in an 

industrialized environment are positively associated; mixed results have been found for 

BMI, smoking, and diet [43–48]. Developmental exposure to PFCs is associated with 

Mitro et al. Page 3

Curr Environ Health Rep. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reduced fetal growth [41] and possible endocrine disruption in females [49], but few other 

neonatal health effects have been strongly linked to PFC exposure.

PFCs, particularly PFOS, PFOA, PFNA, PFDA, and PFHxS, are detected in the serum of 

nearly 100% of pregnant women (e.g., [43, 50, 51]); longer-chain compounds are also 

frequently detected, though sometimes at lower levels [43, 47, 50, 52]. PFCs have also been 

detected in breast milk [51, 53–55]. Widespread detection of PFCs in cord blood [47, 56], 

amniotic fluid [18, 52], and placental tissue [57, 58] indicates that PFCs can cross the 

placenta. The degree of placental transfer varies by the biochemical properties of each 

congener. Short-chain PFCs and PFCs that bind to fatty blood proteins are the most readily 

transferred from maternal serum to cord serum [50, 59, 60]. Depending on the congener, 

maternal PFC levels may be 1 to 6 times higher than cord levels [3, 45, 47, 50, 59]. 

Although fetal levels remain lower than maternal levels in most cases, placental transfer 

may occur in excess of maternal exposure. PFC levels in maternal serum decrease more than 

10% during pregnancy, with some congeners decreasing more than a third from pre-

pregnancy levels [43, 46, 47, 61]. These trends are likely due to both dilution from increased 

blood volume during pregnancy, and placental transfer [47, 61].

Breastfeeding is additionally thought to be a major source of neonatal PFC exposure. Lipid-

adjusted PFC levels in breast milk may be higher than maternal serum levels [57]. Maternal 

serum [43, 51] and breast milk [62] PFC levels decrease continuously with breastfeeding, 

and women who have previously breastfed have lower serum PFC levels [46, 54]. 

Additionally, longer breastfeeding and exclusive breastfeeding are associated with increased 

infant serum PFC levels [4].

Flame Retardants

Flame retardants are used in upholstered furniture, electronics, and textile products [6]. Most 

PBDE flame retardants are no longer used in the United States, and replacement flame 

retardants (RFRs) have been developed as alternatives. However, because flame retardants 

are lipophilic persistent chemicals, with half-lives between a few months to over 10 years in 

adult human adipose tissue, PBDEs as well as RFRs are still detected by biomonitoring [63]. 

Greater number of electronic appliances and pieces of stuffed furniture at home, non-

Hispanic ethnicity, and longer time living in the United States are associated with higher 

PBDEs in pregnant women [64–67]; low income pregnant women in California are very 

highly exposed, likely due to California furniture flammability standards [64]. PBDE 

exposure has been associated with reproductive toxicity [12], thyroid hormone disruption in 

pregnant women and newborns, and poorer mental and psychomotor development including 

decrements in IQ and poorer attention in children [68, 69], while the health effects of RFRs 

are not yet fully known.

PBDEs, especially BDEs -47 and -153, followed by BDEs -28, -99, -100, and -209, are 

detected in the serum of nearly all pregnant women (e.g., [64, 70–72]). PBDEs are also 

frequently detected in breast milk [65, 73]. RFRs have also been measured in maternal 

serum and breast milk [67, 74–76], and RFR metabolites are measurable in maternal urine 

[77]. Flame retardants are able to cross the placenta throughout pregnancy [72, 78], though 
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maternal levels do not decrease [77, 78]. PBDEs have been measured in cord serum [71, 73], 

placenta [72, 79], amniotic fluid [80], and colostrum [81]. RFRs have been measured in cord 

serum and the placenta [76]. PBDE metabolites (OH-PBDEs) are also found, at much lower 

levels, in both maternal and fetal matrices [55, 64, 70, 82]. The extent of placental transfer 

and possible accumulation varies by chemical (and is affected by lipid adjustment) [71]. 

Some PBDEs have consistent transfer patterns: BDE-153 is higher in maternal serum, 

BDE-99 is higher in cord serum, BDE-100 is similar across matrices [70, 71, 73], and OH-

PBDEs may be higher in cord serum [70, 83]. However, others, such as BDE-47 and -28, 

show a less consistent pattern [70, 71, 73, 74, 81]. Similarly, some RFRs are higher in 

maternal serum, but others are higher in cord serum [74, 76]. Several studies suggest that 

highly brominated PBDEs cross the placenta more readily than lower brominated PBDEs 

[73, 84], but one systematic review did not support that pattern [3].

PCBs

PCBs are industrial chemicals that were once widely used as lubricants and coolants, and 

now persist in the environment despite being banned [85]. PCBs are highly persistent, 

lipophilic chemicals that accumulate in humans and the environment, and have half-lives of 

10–20 years or longer in adipose tissue [86]. Because PCBs bioaccumulate, maternal levels 

are associated with age and birth year [87–89], and women who eat high quantities of fatty 

fish and game, such as Inuit and northern Norwegian mothers, are highly exposed [90, 91]. 

PCBs are reproductive toxicants [12] and developmental exposure to PCBs may adversely 

affect thyroid hormones, child neurodevelopment, and birth weight [69, 92].

PCB-138, -153, -170, and -180 are the most frequently detected congeners, typically 

detected in 80–100% of maternal serum samples [88, 93–97] as well as colostrum and breast 

milk [97–102]. PCBs are able to cross the placenta, and are widely detected in cord blood 

[103–105], placenta [106–108], meconium [94], and amniotic fluid [109, 110]. 

Hydroxylated PCB metabolites (OH-PCBs) are also detected in multiple matrices at lower 

levels than the parent PCBs [94, 106]. Nearly all PCBs are found in higher levels in 

maternal than cord serum [103, 111–113], with only a few congeners found at similar levels 

across both or higher in cord [103, 113, 114]. Two recent studies suggest that lower 

chlorinated PCB congeners are more readily transferred than highly chlorinated ones [111, 

112], though other studies, including an earlier systematic review, did not support that 

pattern [3, 103, 114]. Placental transfer may decrease as congener molecular weight 

increases [111] or as congener lipophilicity increases [103]. Parity also may contribute to 

inter-individual differences in placental transfer: one study reported a higher rate of 

placental transfer of PCB-157 in primiparous women, though placental transfer rates for 

other organochlorines were higher in multiparas [114]. Although most studies find that lipid-

adjusted PCB levels decrease during pregnancy, the effect is likely due to dilution as blood 

volume increases [115].

After birth, PCBs are likely transferred to the neonate during breastfeeding. PCB levels are 

somewhat higher in colostrum than in mature milk [98], and multiparous women have lower 

serum PCB levels [116]. Two studies found that PCB levels in breast milk significantly 
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decrease over the course of breastfeeding [62, 99], though a third found no decline in serum 

or milk levels [97].

Organochlorine pesticides

OCs are persistent lipophilic chemicals that accumulate in adipose tissue [117]. Therefore, 

despite being banned decades ago, OCs persist in the environment and human tissue [110]. 

Maternal OC levels are closely associated with recent exposure to pesticides; women who 

live in Latin America and other regions that use OCs for pest control or agriculture have 

comparatively higher OC levels [104, 118, 119]. OC exposure may be associated with 

adverse psychomotor and attention development, immune suppression, and endocrine 

disruption, among other effects [12, 69, 96, 120].

Dichlorodiphenyldichloroethylene (DDE), hexachlorobenzene (HCB), and trans-nonachlor 

are typically detected in over 90% of samples across matrices, including maternal serum [88, 

93, 95, 105], breast milk [97, 100, 101, 121]. Oxychlordane and β-hexachlorocyclohexane 

(β-HCH) are detected less frequently, but still often present in over half of maternal samples 

[93, 97, 105]. OCs are able to cross the placenta and are detected in cord serum [104, 122, 

123], meconium [94], placenta [124] and amniotic fluid [109, 110]. Using wet weights, OC 

levels are higher in maternal than cord blood, though the difference is slight for some 

compounds [113, 114, 125]. Using lipid-adjusted measures, OC levels are typically slightly 

higher in cord than maternal serum, though the levels are not different enough to imply fetal 

accumulation [114, 125, 126]. Additionally, levels of DDE and 

dichlorodiphenyltrichloroethane (DDT) in maternal serum do not differ across trimesters of 

pregnancy [116, 127, 128]. Breast milk may also be a vehicle of transfer for OCs. OC levels 

are higher in breast milk than maternal serum [97, 129], and levels in breast milk fat decline 

during the first month postpartum [130]. However, it is unclear whether maternal serum OC 

levels change during breastfeeding [97, 131].

Cumulative Exposures

In addition to the extensive literature measuring single chemical classes in the maternal-fetal 

unit, some recent studies have measured cumulative exposures to multiple chemical classes. 

Of studies measuring multiple chemicals, most have measured the chemicals of interest in a 

single matrix (e.g., maternal urine or maternal serum; Table 2). Certain classes are 

frequently measured together: for example, non-persistent phthalates and phenols are often 

measured in urine, whereas persistent chemicals such as PFCs, flame retardants, OCs, and 

PCBs are commonly measured in serum or breast milk. However, few papers have 

attempted to capture a complete picture across classes and matrices.

Cumulative exposure studies measuring only non-persistent chemicals typically report that 

around a third to half of the measured chemicals are detected in all participants. One study 

measuring 26 phenol and phthalate metabolites found a median of 16 chemicals in each 

pregnant woman, with more than half the chemicals detected in the majority of women 

[132]. Another two studies, both measuring 20 phenol and phthalate metabolites, reported 

that every woman had detectable levels of 7 [133] or 8 of the chemicals [134], respectively, 

while 1–2 additional chemicals in each study were detected in all but a few women.

Mitro et al. Page 6

Curr Environ Health Rep. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cumulative exposure studies measuring only persistent chemicals have also reported 

widespread simultaneous exposure to many chemicals. Two studies of placental tissue both 

reported universal detection of about 20–25% of measured PBDEs and organochlorine 

compounds [107, 135]. Studies measuring maternal serum reported simultaneous detection 

of between 2–5 chemicals in all samples, representing between 11% and 57% of chemicals 

measured [82, 95, 118, 135–138], although fewer chemicals were detected in all cord blood 

samples [135, 139]. Similarly, in breast milk, studies reported the simultaneous detection of 

at least 20% of the measured chemicals in every woman’s milk, with most studies detecting 

around a third of the measured chemicals in all samples [100, 101, 140, 141]. One study 

detected fully half the chemicals it measured in every breast milk sample (16/31 chemicals 

[97]).

Several studies measuring total cumulative exposure detect a multitude of chemicals from 

many classes, including both persistent and non-persistent chemicals. In one US study 

measuring 52 total chemicals, including phthalates, BPA, PFCs, OCs, PCBs, and PBDEs, at 

least 21 chemicals were detected in every woman; the median number of chemicals 

measured was 44, and all 52 chemicals were measured in some women [142]. In a nationally 

representative US study, eight chemicals were detected in every pregnant woman including 

three PCBs, two OCs, one PBDE, one phenol, and two phthalate metabolites; fifteen 

chemicals were detected in at least 99% of women [2]. Finally, a Swiss study measuring 39 

phenols, phthalate metabolites, PCBs, PBDEs, and pesticides in breast milk found 15 of the 

chemicals in every sample [121].

Despite widespread exposure to multiple classes of chemicals, chemical levels between 

classes are not well correlated. PCB and PBDE levels tend to be poorly correlated in 

maternal serum, breast milk, and placental tissue [82, 107, 137, 138, 143, 144]. Phthalates 

and phenols are weakly correlated in some studies [134, 145], and more strongly correlated 

in others [132, 146]. Because exposure to high levels of one class does not appear to be 

consistently predictive of exposure levels within other classes, modeling (or predicting) 

cumulative exposures is likely to be complex.

Discussion

Pregnant women are exposed to a large number of synthetic chemicals, including both 

banned and contemporary contaminants, and existing data form only a partial picture of the 

prevalence of cumulative exposures. Several chemicals from each class are routinely 

detected at close to 100% across studies, suggesting that those chemicals are likely present 

in all pregnant women or fetuses, even when not explicitly measured. However, few studies 

with data on multiple contaminants in pregnancy cohorts have conducted cumulative 

impacts analyses.

Cumulative exposure assessment could be used to understand interactions between chemical 

classes on a particular health outcome of interest, and to control potential confounding and 

isolate the effects of a single class of compounds. Individually, many synthetic chemicals 

have been associated with similar adverse health endpoints, such as altered hormonal action 

in both the pregnant woman and fetus, and altered behavioral and cognitive development in 
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children [11, 28, 69] (Table 1). Because pregnant women and fetuses are cumulatively 

exposed to multiple chemicals, these exposures may interact with one another, amplifying 

health effects. Indeed, the National Academy of Sciences recently recommended that risk 

assessment of multiple chemicals expand to account for the possibility of compounded 

effects on the outcomes of concern [147].

Another important extension of cumulative exposure assessment is exposure source 

reduction, both through changes in individual behavior and changes in policy to protect the 

population on a broader scale. Because the chemical classes described largely come from 

different sources, small changes in individual behavior are unlikely to reduce overall 

exposures. However, given the prevalence of phthalates, phenols, flame retardants, and 

PFCs in some household items, personal care products, and certain foods, pregnant women 

may consider reducing their exposure to those sources where possible.

Because many of these chemicals are produced and used in high volumes, policy changes 

may reduce exposures more effectively than individual behavioral changes. For example, the 

phase out of PBDE flame retardants in US and Europe has led to lower exposures in both 

breast milk [148] and maternal serum levels during pregnancy [82]. However, in response to 

the phase out, the chemical industry introduced replacement chemicals, often very similar in 

structure and with equal or uncharacterized toxicity; these substitutes were soon measured in 

pregnant women’s bodies [67, 75]. Therefore, a meaningful reduction in cumulative 

chemical exposures will likely entail chemical policy reform that requires more adequate 

assessment of health and safety concerns before market introduction, as well as a reduction 

in the overall use of synthetic chemicals in commerce.

Our understanding of chemical exposure during preconception and early- to mid-gestation, 

as well as longitudinal exposure levels, is somewhat limited by access to relevant study 

populations and the necessary biological matrices for chemical analysis. For example, 

although cord blood can provide information about fetal exposure at birth, it may not 

accurately reflect fetal exposures during early gestation, which may also have profound 

developmental effects. Additionally, neonatal urine and meconium provide metabolites, 

rather than parent compounds, for analysis. It can be difficult to determine whether these 

metabolites resulted from placental transfer or were created in the fetus directly, and in cases 

where metabolites are not specific to a parent compound, it may be unclear which parent 

compound preceded the metabolite. In some cases, the metabolite itself may be found in the 

environment (e.g., [149]). Finally, amniotic fluid has been used to gather data on gestational 

exposure, but the relationship between amniotic fluid levels and internal fetal levels is 

unknown, and amniotic fluid is often contaminated with maternal blood [150]. Fetal 

exposures throughout pregnancy might be estimated from maternal levels using known 

placental transfer rates, though some unanswered questions – e.g., whether the transfer rate 

varies during pregnancy, why certain chemicals are transferred more than others, and 

whether metabolites are more readily transferred than parent chemicals—currently limit 

interpretation of maternal levels. Therefore, measuring cumulative exposures during 

pregnancy and early development may require sequential measurements of multiple matrices 

beginning in preconception and extending through post-partum.
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Conclusions

Although a substantial number of recent studies have collected data on environmental 

exposures during pregnancy, few have adequately characterized cumulative exposures and 

their consequent effects on the developing fetus. Future research should focus on 

characterizing cumulative maternal and fetal exposure from preconception to postpartum 

and investigating possible additive or multiplicative clinical effects of multiple cumulative 

exposures using appropriate statistical tools. Moreover, educational materials on chemical 

exposures should focus on modifiable risk factors, such as diet, that are associated with 

multiple classes of chemicals, in attempt to reduce the cumulative chemical exposure load 

currently experienced by pregnant women. Because synthetic chemicals are now global 

contaminants, it is increasingly important to create opportunities for environmental health 

prevention through understanding and ultimately reducing cumulative exposures during 

pregnancy and early development.
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