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Behavioral research has demonstrated that observers can extract
summary statistics from ensembles of multiple objects. We recently
showed that a region of anterior-medial ventral visual cortex, over-
lapping largely with the scene-sensitive parahippocampal place area
(PPA), participates in object-ensemble representation. Here we
investigated the encoding of ensemble density in this brain region
using fMRI-adaptation. In Experiment 1, we varied density by chan-
ging the spacing between objects and found no sensitivity in PPA to
such density changes. Thus, density may not be encoded in PPA,
possibly because object spacing is not perceived as an intrinsic
ensemble property. In Experiment 2, we varied relative density by
changing the ratio of 2 types of objects comprising an ensemble, and
observed significant sensitivity in PPA to such ratio change. Although
colorful ensembles were shown in Experiment 2, Experiment 3 demon-
strated that sensitivity to object ratio change was not driven mainly by
a change in the ratio of colors. Thus, while anterior-medial ventral
visual cortex is insensitive to density (object spacing) changes, it does
code relative density (object ratio) within an ensemble. Object-ensem-
ble processing in this region may thus depend on high-level visual in-
formation, such as object ratio, rather than low-level information, such
as spacing/spatial frequency.
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Introduction

The perception and recognition of single objects has been a
fruitful enterprise of cognitive neuroscientific research for
decades. While we have learned much from this research, it
remains that objects are rarely seen in isolation in everyday life,
and are often part of a larger collection, or ensemble, of mul-
tiple similar objects. Indeed, object ensembles are ubiquitous
in our visual world (e.g., leaves on a tree). Importantly, the
representation of summary statistics from ensembles of mul-
tiple objects complements and guides object-specific process-
ing since it allows the visual system to overcome the capacity
limitation inherent in object-based attention (e.g., Luck and
Vogel 1997; Pylyshyn and Storm, 1998; Xu 2002; Alvarez and
Cavanagh 2004). Within the past decade, behavioral studies
have demonstrated that observers can extract summary infor-
mation from large collections of objects, such as their mean
size, direction of motion, speed, orientation, and center loca-
tion, without being able to provide fine details about any indi-
vidual object in the ensemble (e.g., Williams and Sekuler 1984;
Watamaniuk and Duchon 1992; Ariely 2001; Parkes, et al.
2001; Chong and Treisman 2003; Alvarez and Oliva 2008). For
clarity, here “object ensemble” refers to a collection of objects

whose number exceeds the processing capacity of individual
object-based attention (i.e., above 4 or 5 objects), that are per-
ceptually grouped together using Gestalt principles such as
proximity. Our definition is in agreement with a recent review
on ensemble processing, which defines “ensemble representa-
tion” as a general process of computing information from mul-
tiple items, collapsing this information into useable and adaptive
forms such as summary statistics (Alvarez 2011), and argues that
ensemble processing applies to the extraction of statistical infor-
mation from both low-level (e.g., mean size: Ariely 2001; mean
brightness: Bauer 2009) and high-level visual information (e.g.,
mean emotion and gender of faces: Haberman and Whitney
2007).

Object ensembles resemble surface textures in that both
contain repeating structures with slight variations in features
such as size, orientation, and color (Portilla and Simoncelli
2000). Thus, the extraction of summary statistics is essential in
the representations of both ensembles and textures. Indeed, in
a recent series of fMRI experiments (Cant and Xu 2012), we
found that ensembles and textures share similar neural pro-
cessing substrates for summary statistics in anterior and medial
regions of the ventral visual cortex, along the collateral sulcus
and overlapping to a large extent with the parahippocampal
place area (PPA). Specifically, we observed fMRI adaptation in
this brain region whenever summary statistics repeated in
object ensembles and surface textures, even when local shape
features differed across images.

While the processing of surface texture in the general region
around PPA has been noted previously (Peuskens et al. 2004;
Cant and Goodale 2007, 2011; Cant et al. 2009), PPA is best
known for playing a large role in scene perception, specifically
by processing the 3D spatial structure, or geometry, of scenes
(Epstein and Kanwisher 1998). Meanwhile, scene processing
often requires the extraction of overall scene gist without repre-
senting the individual objects comprising the scene in great
detail (e.g., Oliva and Schyns 2000; Oliva and Torralba 2001).
Perhaps it is this aspect of scene processing that enables PPA
to represent ensemble and texture stimuli even though they
contain virtually no 3D spatial or scene information. Thus, PPA
may play a greater role in extracting summary statistics from a
variety of visual stimuli (including scenes, ensembles and tex-
tures), beyond its role in processing the 3D spatial structure of
scenes. It is worth stating, however, that summary representa-
tion is not a general processing feature of all scene-sensitive
regions in the brain, as it was not seen in the retrosplenial
complex (RSC) and the transverse occipital sulcus (TOS) in our
previous study (Cant and Xu 2012).

In the present study, we sought to further our understanding
of the nature of the neural object-ensemble representation in
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anterior-medial ventral visual cortex. There are a number of en-
semble visual properties that need to be investigated to
achieve this aim, and we have previously examined the re-
presentation of the size and color of ensembles as well as the
shape and texture of individual elements in ensemble process-
ing (Cant and Xu 2011, 2012). Other possible visual features
include the overall brightness of object ensembles, and their
location in the visual field, but such features are largely acci-
dental and thus may not be diagnostic of perceived ensemble
identity. In the present study, using the fMRI-adaptation
approach (Grill-Spector, Henson, and Martin 2006) that we
employed previously (Cant and Xu 2012), we conducted 3 ex-
periments to investigate 2 specific visual features that may play
a role in object-ensemble representation: absolute and relative
density. In Experiment 1, we investigated whether or not PPA
(see Fig. 1) would be sensitive to changes in the absolute
density (or spacing) of the elements that comprise a homoge-
neous object ensemble (i.e., an ensemble containing only one
type of object; see Fig. 2). On the one hand, naturally occurring
real-world object ensembles vary in density (e.g., the amount
of leaves on a tree over the course of a year), making density
an informative feature that would matter in ensemble represen-
tation. Moreover, density covaries with number, spatial fre-
quency and the level of clutter. As such, a change in density
could evoke a strong neural response in this brain region.
However, this also makes it difficult to attribute any neural re-
sponse uniquely to absolute density changes and not to
changes in number or spatial frequency. On the other hand,
density changes may be encoded and processed by early visual

areas, leaving later areas such as PPA to only encode higher-
level and more abstract visual information. Indeed, we have
previously shown that ensemble processing in PPA is not
modulated by an overall size change of the ensemble images
(Cant and Xu 2012). Density may also be considered as an acci-
dental, rather than a diagnostic, feature of an ensemble as a
change in density does not alter the mean features of the
objects comprising the ensemble (such as mean size and mean
texture). As such, a brain region computing and representing
ensemble statistics may not be sensitive to changes in absolute
density.

In Experiment 2, instead of focusing on the absolute density
of homogeneous ensembles, we investigated whether or not
PPA would show sensitivity to processing relative density by
varying the ratio, or proportion, of 2 types of objects compris-
ing a heterogeneous ensemble (see Fig. 3). Unlike the absolute
density changes studied in Experiment 1, the relative density
of 2 types of objects in an ensemble is a diagnostic and inform-
ative feature of an ensemble. For example, the ratio between
leaves and fruit on a tree can inform us whether or not a par-
ticular tree is a good source of food, and the ratio between
occupied and empty seats in a lecture hall can inform us
whether or not a lecture is popular. A brain region computing
and representing ensemble statistics should therefore be sensi-
tive to changes in the relative density of 2 types of objects com-
posing an ensemble.

In Experiment 3, we examined in detail whether potential
sensitivity to ensemble ratio changes in PPA would be driven
by changes in low-level visual features. To achieve this we held
the shape and identity of objects within an ensemble constant
and defined a ratio change solely by a change in the color of
the ensemble elements (see Fig. 4). On the one hand, if PPA
does represent ensemble ratio but shows no sensitivity to pro-
cessing ratio changes defined by a change in color, then this
would argue that the ensemble representation in anterior-
medial ventral visual cortex may be based on relatively higher-
level visual information. On the other hand, if PPA shows
sensitivity to changes in the distribution of color within an en-
semble, then this would argue that the ensemble representa-
tion in this region of cortex may be based on lower-level visual
information.

In Experiments 1 and 2, besides PPA, we also examined pat-
terns of adaptation in other scene-processing regions (RSC and
TOS), and in all experiments we examined patterns of adapta-
tion in the lateral occipital area (LO), a region known to play a
key role in processing the shape of single objects (Malach et al.
1995; Grill-Spector, et al. 1998; Kourtzi and Kanwisher 2001;
Cant and Goodale 2007, 2011). We previously showed that LO
also extracts shape information from object ensembles (Cant
and Xu 2012), such that this brain region showed a release from
adaptation when local shape features varied across images, re-
gardless of whether or not summary statistics repeated in the
object ensembles. In addition to ROI-based analyses, we also
conducted whole-brain analyses to identify other brain regions
that may be involved in ensemble processing.

Materials and Methods

Observers
Experiment 1 included 8 paid observers (7 female, 1 male; mean age =
24.22, range = 19–31 years), Experiment 2 included 12 paid observers

Figure 1. Examples of ROIs in individual observers. The scene-selective PPA (Talairach
coordinates for the specific ROI example shown, x, y, z for right/left: +24/−26, −44/
−44, −1/−4) was defined by contrasting the activation for scenes against the
activation for both faces and objects. The object-selective LO (+36/−40, −77/−77,
+10/+4) was defined by contrasting the activation for objects against the activation
for scrambled objects. The scene-selective RSC (+17/−20, −56/−53, +22/+18)
and TOS (+35/−33, −78/−83, +10/+17) were defined by contrasting the activation
for scenes against the activation for both faces and objects. PPA, parahippocampal
place area; LO, lateral occipital area; RSC, restrosplenial complex; TOS, transverse
occipital sulcus.
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(7 female, 5 male; mean age = 24.85, range = 19–34 years; 4 of whom
had also participated in Experiment 1), and Experiment 3 included 10
paid observers (5 female, 5 male; mean age = 25.6; range = 21–35
years; none participated in Experiment 1 but 4 participated in Experi-
ment 2). All observers were recruited from the Harvard University
community, and all were right-handed, reported normal color vision,
normal or corrected-to-normal visual acuity, had no history of neuro-
logical disorder, and gave their informed consent to participate in the
study in accordance with the Declaration of Helsinki. The experiments
were approved by the Committee on the Use of Human Subjects at
Harvard University.

One additional female observer was tested in Experiments 1 and 2
but was excluded due to extremely low (<0.1%) averaged PPA activa-
tions across all stimulus conditions. This overall low fMRI response
made her data unreliable and difficult to interpret.

Stimuli and Procedures

Adaptation Experiments
A fast event-related fMRI-adaptation paradigm was used in all experi-
ments. Each trial contained a sequential presentation of either 4 or 5
images and observers were asked to report the exact number of images
shown in a trial by pressing the appropriate response button. The large
number of repetitions in this task allowed us to amplify the adaptation
effect, and thus increased the power to detect any changes in activation
in PPA and LO resulting from density or ratio changes. It should be
noted that while this task involved enumeration, it should not affect
the interpretation of our results because: (1) observers were not expli-
citly enumerating the number of objects presented in ensembles in all
experiments, (2) the same enumeration task was used in all the stimu-
lus conditions, so any difference in activation across conditions (and
experiments) could not be attributed to the enumeration task used
here, and (3) ensemble adaptation effects seen in Cant and Xu (2012)

in which different tasks were administered were replicated here with
the enumeration task.

The stimuli used in Experiment 1 were colored photographs of
20 different homogeneous object ensembles, with each containing a
repetition of the same type of object (see Fig. 2). All images subtended
12.5° × 12.5° of visual angle (this also applies to all images used in
Experiments 2 and 3 and in the object/scene localizer). The photo-
graphs were generated by a Nikon D3000 digital SLR camera (Nikon
Corporation, Tokyo, Japan) using a desktop photo studio set up. Of
the 20 different ensembles, 10 were composed of man-made objects,
such as stone beads, screws, and paper clips, and 10 were composed
of natural objects, such as nuts, spices, fruits, and vegetables. We
ensured that the background of each image was the same uniform
white by editing the images using Photoshop CS3 software (Adobe
Systems Inc., San Jose, USA). For each ensemble, we manipulated the
spacing between objects and created both a high- and a low-density
version of the ensemble, with the high-density version containing
twice as many objects as the low-density one (see Fig. 2). Four different
photographs of each version of each ensemble were then generated.
There were a total of 4 stimulus conditions: (1) identical—repeated
presentation of the same image (either dense or sparse); (2) shared—
presentation of different images of the same ensemble with no density
change (either dense or sparse); (3) density change—alternating pres-
entation of dense and sparse ensemble images containing the same
type of object; and (4) ensemble change—presentation of different
sparse ensemble images or different dense ensemble images, each con-
taining a different type of object. In a given run, a particular ensemble
was shown on average 5.6 times in the ensemble change condition (as
images from either 4 or 5 different ensembles were shown in each
trial), and on average 1.3 times in the other conditions. Because each
ensemble contained 8 different exemplar images (4 sparse exemplars
and 4 dense exemplars), the chance of any particular ensemble image
being shown once in each condition was <1.

In Experiment 2, instead of photographing real-world objects which
were harder to manipulate, we created computer-generated object

Figure 2. Example stimuli and results (N= 8) from Experiment 1. (a) Example stimuli used in the experiment. The stimuli used in the adaptation runs of Experiment 1 consisted of
20 different full-color photographs of homogeneous object ensembles. In each trial, observers saw a sequential presentation of 4 or 5 images that were either all identical (shown in
the gray box), all different (shown in the red box), shared object-ensemble features (shown in the blue box), or contained density changes between successive images (shown in
the orange box). To ensure attention to the images, observers were required to count the number of images presented in a trial and to press the appropriate button (i.e., either the
“4” or the “5” button). (b) Results from Experiment 1. fMRI responses were extracted from independently localized object (LO) and scene-sensitive (PPA) areas of cortex. PPA
showed equivalent levels of adaptation in the identical, shared, and density-change conditions when object-ensemble features were repeated, regardless of whether or not absolute
density varied. In contrast, LO exhibited an equivalent release from adaptation in the shared and density-change conditions (compared with the identical condition), where changes
to local shape information are evident, regardless of changes in absolute density, and showed an even higher release from adaptation when different ensembles were presented in
the ensemble-change condition. Error bars represent within-subject standard errors (i.e., with the between-subject variation removed; see Loftus and Mason 1994). (c) Additional
examples of stimuli used in Experiment 1. PPA = parahippocampal place area; LO = lateral occipital area; ns= not significant. *P< 0.05; **P<0.01; ***P<0.001.
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ensembles that were composed of 2 different types of objects (see
Fig. 3). The 2 types of objects in an ensemble were roughly the same
size but were otherwise highly distinguishable from each other, and

were drawn randomly from a pool of 40 different line-drawing objects
(24 of which were man-made objects, and of 16 which were natural
objects, i.e., fruits, vegetables, insects, and flowers). These 40 objects
were a subset of the colored line-drawing objects developed by
Rossion and Pourtois (2004). Since objects appeared in different orien-
tations in the ensemble, only objects that could naturally appear in
random orientations were included. Each ensemble contained 25
objects, with 8 of type A and 17 of type B objects. There were a total of
4 stimulus conditions: (1) identical—repeated presentation of the same
image; (2) shared—presentation of different images of the same en-
semble with no object ratio change; (3) ratio change—alternating pres-
entation of 8A/17B and 17A/8B ensembles; and (4) ensemble change
—presentation of different ensembles containing different objects with
no ratio change. Conditions (1) and (4) provided anchor points for
comparison of the amount of adaptation in a given condition, whereas
conditions (2) and (3) allowed us to examine the impact of object ratio
change on ensemble representation. To match the number of individ-
ual object changes between successive displays in conditions (2) and
(3), 16 individual objects changed identity in condition (2) and 15 indi-
vidual objects changed identity in condition (3) (see examples shown
in Fig. 3). As such, if condition (3) elicited a higher brain response than
condition (2), it could not be attributed to the difference in the amount
of local object changes (i.e., shape and orientation changes of local
contours).

In Experiment 3, we used the computer-generated ensembles that
were employed in Experiment 2 but manipulated ratio change by chan-
ging the distribution of color in the ensembles, with shape and object
identity held constant (see Fig. 4). All other aspects of this experiment
were identical to those reported in Experiment 2, with the exception
that only the shared and ratio-change conditions were included in this
experiment as these were the 2 conditions critical to testing whether

Figure 3. Example stimuli and results (N= 12) from Experiment 2. (a) Example stimuli used in the experiment. The stimuli used in the adaptation runs of Experiment 2 consisted
of full-color heterogeneous object-ensemble images, created by combining 2 different types of cartoon objects together in a ratio of roughly 2 to 1 (25 objects were shown in each
ensemble, 17 of which were one type of object, and 8 of which were a different type of object). In each trial, observers saw a sequential presentation of 4 or 5 images that were
either all identical (shown in the gray box), all different (shown in the red box), shared object-ensemble features (shown in the blue box), or contained ratio changes between
successive images (shown in the orange box). The latter 2 conditions were matched in the amount of local object changes (see Materials and methods). To ensure attention to the
images, observers were required to count the number of images presented in a trial and to press the appropriate button (i.e., either the “4” or the “5” button). (b) Results from
Experiment 2. Replicating the results from Experiment 1, PPA again showed equivalent levels of adaptation when object-ensemble features were repeated in the identical and
shared conditions, but showed equivalent releases from adaptation when either the ratio or the identity of the objects comprising the ensemble changed. In contrast, LO exhibited
equivalent releases from adaptation when local shape information varied in the shared and ratio-change conditions (compared with the identical condition), regardless of whether or
not relative density changed, and showed a second-level release from adaptation when the identity of the objects comprising the ensemble changed. Error bars represent
within-subject standard errors (i.e., with the between-subject variation removed; see Loftus and Mason 1994). (c) Additional examples of stimuli used in Experiment 2. PPA,
parahippocampal place area; LO, lateral occipital area; ns, not significant. *P< 0.05; **P<0.01;*** P<0.001.

Figure 4. Example stimuli and results from Experiment 3 (N= 10). (a) Example
stimuli used in the experiment. In Experiment 3, the change in the ratio of an ensemble
was defined solely by a change in the color of ensemble elements, with shape and
object identity being held constant. Only the shared and ratio-change conditions were
included in the experiment. (b) In contrast to the results in Experiment 2, in Experiment
3 the levels of adaptation in the shared and ratio-change conditions in PPA were not
significantly different, indicating that the release from adaptation in the ratio-change
condition in PPA in Experiment 2 (compared with the shared condition) could not be
driven entirely by a color ratio change of the ensembles. The same result was observed
in LO. Error bars represent within-subject standard errors (i.e., with the
between-subject variation removed; see Loftus and Mason 1994). PPA,
parahippocampal place area; LO, lateral occipital area; ns, not significant.
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ensemble representation in PPA is sensitive to processing changes in
lower-level visual features (i.e., color).

Each trial lasted 6 s, beginning with a 500 ms fixation, followed by
either 4 or 5 sequentially presented images (each consisting of a
200 ms image presentation and a 600 ms blank fixation), and ending
with either a 2300 ms (for the 4-image trials) or 1500 ms (for the
5-image trials) blank screen. Observers were asked to report whether
each trial contained 4 or 5 images by pressing the appropriate response
button (the number of 4-image and 5-image trials were equal across
all conditions). Besides the stimulus trials, there was also 6-s blank
fixation trials in which no images were presented. Trial order was
pseudorandom and balanced for trial history (e.g., trials from all condi-
tions including fixation were preceded and followed equally often by
trials from all the conditions, including itself, for one trial back and
forward; see Kourtzi and Kanwisher 2001; Xu and Chun 2006). To
further balance trial history, trial order was rotated among the condi-
tions in different runs and among different observers. Each adaptation
run lasted 7 min and 48 s and contained 15 trials for each stimulus
condition. In Experiment 1, 4 observers took part in 3 adaptation runs,
and the remaining 5 observes took part in 2 adaptation runs. In Experi-
ment 2, all observers took part in 2 adaptation runs, and in Experiment
3, all observers took part in one adaptation run (note that the number
of shared and ratio-change trials was equal in Experiments 2 and 3,
since eliminating the identical and ensemble-change conditions in
Experiment 3 enabled us to present twice as many shared and ratio-
change trials within a single run).

Object/Scene Localizer
The stimuli used to localize object and scene-sensitive areas of cortex
consisted of photographs of various indoor and outdoor scenes (e.g.,
furnished rooms, buildings, city landscapes, and natural landscapes),
both male and female faces, common objects (e.g., cars, chairs, food,
and tools), and phase-scrambled versions of the common objects.

A single run consisted of presenting 4 blocks each of scenes, faces,
intact objects, and phase-scrambled objects. Each stimulus block was
16-s long and contained 20 different images, each lasting 750 ms and
followed by a 50 ms blank period. No images were repeated within or
across blocks in a given run. To ensure attention to the displays, obser-
vers fixated at the center and detected a slight spatial jitter, occurring
randomly in 1 out of every 10 images. Besides the stimulus blocks,
there were also 8-s fixation blocks presented at the beginning, middle,
and end of each run. Following Kanwisher et al. (1997) and Epstein
and Kanwisher (1998), we used 2 unique and balanced run orders.
Each run lasted 4 min and 40 s. All observers took part in 3 runs of this
localizer. This localizer had already been acquired in a prior experi-
ment in 5 of the observers in Experiment 1, 4 of the observers in
Experiment 2, and 4 of the observers in Experiment 3. For these obser-
vers, instead of repeating the localizer in this study, the localizer data
from the prior scanning session were aligned with the adaptation data
using our fMRI data analysis software.

Apparatus
Stimulus presentation and the collection of behavioral responses (via a
response pad placed in the observer’s right hand) were controlled by
an Apple MacBook Pro (Apple Corporation, CA, USA) running Matlab
with Psychtoolbox extensions (Brainard 1997; Pelli 1997). Each image
was rear projected via an LCD projector (Sharp Notevision XG-C465X,
resolution of 1024 × 768, Sharp Corporation, PA, USA) onto a screen
mounted behind the observer as he or she lay in the scanner bore. The
observer viewed the images through a mirror mounted to the head coil
directly above the eyes.

Imaging Parameters
This study was conducted on a 3.0 Tesla Siemens MAGNETOM Tim
Trio (Erlangen, Germany) whole-body imaging MRI system at the
Center for Brain Science, Harvard University (Cambridge, MA, USA).
A Siemens radio-frequency (RF) 32-channel head coil was used to
collect blood oxygen level-dependent (BOLD) weighted images (Ogawa
et al. 1992). For high-resolution anatomical images, T1-weighted 3-D

magnetization prepared rapid acquisition gradient echo (MPRAGE) sa-
gittal slices covering the whole brain were collected (inversion time
1100 ms, echo time, or TE, 1.54 ms, repetition time, or TR, 2200 ms,
flip angle 7°, 256 × 256 matrix size, 144 slices, 1.0 × 1.0 × 1.0 mm voxel
size). For the functional runs, a T2*-weighted echo-planar gradient
echo pulse sequence (72 × 72 matrix size, field of view 21.6 cm) with
TR of 1.5 s was used in all adaptation experiments (TE 29 ms, flip
angle 90°, 312 volumes). Another pulse sequence with TR of 2.0 s was
used for the localizer runs (TE 30 ms, flip angle 85°, 140 volumes).
Twenty-four 5-mm-thick (3 × 3 mm in-plane, 0 mm skip) slices parallel
to the anterior and posterior commissure line were collected in all the
functional runs.

Data Analysis

FMRI data Analysis
fMRI data were analyzed with Brain Voyager QX (Brain Innovation,
Maastricht, the Netherlands). Data preprocessing included slice acqui-
sition time correction, 3D motion correction, linear trend removal, and
Talairach space transformation (Talairach and Tournoux 1988).

Data from object/scene localizer was analyzed using a general linear
model (GLM), accounting for hemodynamic lag (Friston et al. 1995).
Following Epstein and Kanwisher (1998), the PPA ROI was defined as
regions in the collateral sulcus and parahippocampal gyrus whose acti-
vations were higher for scenes than for faces and objects (false discov-
ery rate q < 0.05; this threshold applies to all functional regions
localized in individual observers) (see Fig. 1). Following Epstein and
Higgins (2007), the RSC and TOS ROIs were defined as regions in re-
strosplenial cortex-posterior cingulate-medial parietal cortex, and
transverse occipital cortex, respectively, whose activations were higher
for scenes than for faces and objects. Following Grill-Spector et al.
(2000), LO was defined as a region in lateral occipital cortex near the
posterior inferotemporal sulcus whose activations were higher for
intact objects than for phase-scrambled objects. Finally, following
known anatomical criteria, a retinotopic region in early visual cortex
was defined as a region around the Calcarine sulcus whose activations
were higher for phase-scrambled objects than for intact objects (e.g.,
Grill-Spector et al. 1998; James et al. 2003; MacEvoy and Epstein 2011)
(see Fig. 6). All regions were successfully identified in both hemi-
spheres separately for each individual that took part in the study.

Following the standard ROI-based analysis approach (see Saxe et al.
2006), we overlaid the ROIs from each observer onto their data from
the main adaptation experiment and extracted time courses from that
observer. The activation levels for all conditions were then converted
to percentage BOLD signal change from baseline, by subtracting the
corresponding activation from the fixation trials and then dividing by
this value. Peak responses for each condition were obtained by collaps-
ing the time courses for all of the conditions and then identifying the
time point of greatest signal amplitude in the average response,
thereby ensuring that the time point selected was not biased to the
level of activation for any one condition in particular (e.g., Xu and
Chun 2006; Xu 2010). This was done separately for each observer in
each ROI, and these resulting peak responses were then averaged
across all observers. Finally, the average levels of activation for each
condition were subjected to a repeated-measures ANOVA, performed
separately on each ROI (SPSS, Chicago, IL, USA). The amount of repeti-
tion suppression, or adaptation, for a given condition was evaluated by
comparing the average level of activation for that condition against the
average level of activation observed in the identical and ensemble-
change conditions, using post hoc t-tests.

Behavioral Data Analysis
Behavioral performance measures of reaction time (only adaptation
runs) and accuracy (both adaptation and localizer runs) were recorded
by Matlab (running the Psychtoolbox) and were analyzed with SPSS
(Chicago, IL, USA), by performing one-way repeated-measures ANOVAs to
assess differences across the conditions in the adaptation and the localizer
runs.
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Results

PPA is not Sensitive to Changes in the Absolute Density
of Object Ensembles
Observers were presented with a sequence of real-world
object-ensemble photographs that were either (1) all identical
(i.e., the same sparse or dense object-ensemble photo was re-
peated successively), (2) shared object-ensemble and density
features (i.e., different photos of the same ensemble, either
all sparse or all dense), (3) differed in density but otherwise
shared ensemble features (i.e., different images of the same
ensemble, with density varying between sparse and dense on
successive image presentations, or vice versa), or (4) were
completely different, with density repeating (i.e., different en-
sembles, either all dense or all sparse; see Fig. 2A for exam-
ples). Each image was presented for 200 ms with a 600 ms
inter-stimulus-interval. Observers were asked to report the
number of images presented in each trial (either 4 or 5) by
pressing the appropriate response key (due to issues of statis-
tical power, we were not able to analyze neural activation in
4-image and 5-image trials separately, and thus restricted our
analysis to activation across both of these responses com-
bined). We used a counter-balanced trial history design and
calculated percent-signal change compared with fixation dir-
ectly from the raw MRI signal (see Kourtzi and Kanwisher
2001; Todd and Marois 2004; Xu and Chun 2006; Xu 2010;
Dilks et al. 2011; Todd et al. 2011; Cant and Xu 2012).

We examined responses in independently localized LO and
PPA ROIs. Left and right hemisphere ROIs were combined in
both regions since no differences in activation were observed
between the hemispheres. In PPA, the main effect of stimulus
condition was significant (F3,21 = 10.13, P < 0.001). Planned
pairwise comparisons revealed a similar level of adaptation
when object-ensemble features were repeated (identical vs.
shared: t7 = 1.11, P > 0.50, one-tailed, and Bonferroni corrected
for multiple comparisons; this applies to all subsequent
planned comparisons except where noted), and a release from
adaptation when the identity of the objects comprising the
ensembles changed (identical vs. ensemble change: t7 = 5.38,
P < 0.005; shared vs. ensemble change (marginally significant):
t7 = 3.07, P = 0.054; see Fig. 2B). These results replicate our
previous findings (Cant and Xu 2012) and show that PPA is in-
sensitive to image changes so long as ensemble features
remain the same. Interestingly, a change in object density did
not evoke a release from adaptation and showed the same
amount of adaptation as the identical and the shared condi-
tions (identical vs. density change: t7 = 0.07, P > 0.50; shared
vs. density change: t7 < 1.41, P > 0.50; and density change vs.
ensemble change t7 = 5.77, P < 0.005). These results indicate
that absolute density is not a part of the ensemble representa-
tion formed in PPA. Since this claim rests on a null result from
8 observers, it is important to evaluate the possibility that we
are simply underpowered in our ability to detect a release from
adaptation in the density-change condition. To investigate the
issue of power, we conducted a power analysis, and found that
we would need 45 observers to find a difference between the
shared and the density-change condition (with power = 0.90).
However, since the effect is actually in the opposite direction
(i.e., higher activation in the shared compared with the
density-change condition), the inclusion of more participants
will only further confirm the lack of ensemble density encod-
ing in PPA. We are thus confident in concluding that we are

not underpowered and that PPA is not sensitive to changes in
the absolute density of object ensembles.

It is worth noting that the amount of activation for ensem-
bles in PPA is lower than what is typically observed for natural
scenes. We could not directly compare scene and ensemble ac-
tivity in PPA in this study, due to the fact that scene images
were shown in blocked design localizer runs whereas ensem-
ble images were shown in event-related runs with different
stimulus presentation durations and baselines. We did, how-
ever, directly compare PPA response to ensembles and scenes
in our previous study (see Fig. 5 in Cant and Xu 2012) and
found that scenes elicited roughly double the amount of activa-
tion in PPA compared with object ensembles. This is not sur-
prising, given that natural scenes contain many more instances
of object ensembles and are far more complex, both in terms
of scene content and scene spatial boundary (Park et al. 2011),
than the images used in our previous experiment and in all ex-
periments of the present study. Moreover, the response to
scenes in PPA is likely based upon both spatial and nonspatial
information, and our ensemble images only contain the latter
type of visual information. Thus, a difference in overall activa-
tion in PPA for object ensembles compared with natural scenes
is to be expected, but this should not undermine the signifi-
cance of object-ensemble representation in this brain region.

In LO, the main effect of condition was also significant
(F3,21 = 19.57, P < 0.001), but planned pairwise comparisons re-
vealed a different pattern of results compared with that of PPA.
Specifically, there was a release from adaptation for object en-
sembles in LO when local shape or contours changed between
successively presented images (identical vs. shared: t7 = 4.90,
P < 0.01; identical vs. density-change (marginally significant):
t7 = 3.00, P = 0.057; identical vs. ensemble change: t7 = 7.27,
P < 0.001; see Fig. 2B), again replicating our previous results
(Cant and Xu 2012). With the present paradigm in which either
4 or 5 images were presented (as opposed to the presentation
of only 2 or 3 images in our previous study), we also observed
an additional release from adaptation when the objects com-
prising the ensemble changed identity, as greater response
amplitude was seen in the ensemble change than in the
shared and the density-change conditions (shared vs. ensemble-
change: t7 = 4.29, P < 0.05; density-change vs. ensemble-change:
t7 = 4.92, P < 0.01; the shared and density-change conditions did
not differ: t7 = 0.23, P > 0.5). This significant repetition attenu-
ation in the shared condition (compared with the ensemble-
change condition), which was not observed in our previous
study (Cant and Xu 2012), may have arisen from the combin-
ation of a number of factors. First, presenting more images per
trial in our present paradigm led to greater sensitivity in detect-
ing adaptation effects ( just as blocked fMRI designs, which
present more images per block, have better detection power
than event-related designs, which present fewer images per
event; see Huettel et al. 2009). Second, in the shared condition,
the arrangement/orientation of contours varied but the contours
themselves repeated, whereas in the ensemble-change condi-
tion both the arrangement and the contours varied. This add-
itional shape variation, in combination with the increased
number of image repetitions, may account for the release from
adaptation in the ensemble-change condition compared with
the shared (and density-change) conditions. This may also
explain why we failed to observe this effect in our previous
study (Cant and Xu 2012), which had a fewer number of image
repetitions per trial. Finally, it is also possible that differences in
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the particular tasks used led to differences in the patterns of
adaptation observed in LO here compared with our previous
study, but we think this is unlikely because we found the same
pattern of activation in LO in our previous study despite using 2
different tasks. In any regard, differences in the patterns of
adaptation between PPA and LO in the present experiment
reached significance (i.e., the interaction between brain region
and stimulus condition, F3, 21 = 4.78, P < 0.05), demonstrating
that these 2 brain areas extract different types of information
from the same visual input.

To assess the reliability of these results, we also conducted a
standard GLM analysis to derive beta weights for each condi-
tion in both PPA and LO. The patterns of adaptation obtained
from these beta weight measures, and the results of the statis-
tical tests applied to them, were identical to those obtained
from the percent-signal change analysis in both PPA and LO.
This confirms the reliability and validity of the counter-
balanced trial history design and the use of the percent-signal
change analysis. As such, in all subsequent analyses we report
results using this analysis.

These data show that the density-change condition behaved
just like the shared ensemble condition, with both showing
adaptation in PPA but a release from adaptation in LO. In other
words, PPA is insensitive to changes in the absolute density
(i.e., spacing) of the objects comprising an ensemble, suggest-
ing that absolute density is not part of the neural ensemble
representation in anterior-medial ventral visual cortex. It is
likely that density is treated as an accidental feature, rather than
as an intrinsic and diagnostic feature of an ensemble in this
brain region, as a change in density does not alter the mean fea-
tures of the objects comprising an ensemble (such as mean size

and mean texture). This is consistent with our earlier findings
showing that PPA is not modulated by an overall size change of
an ensemble image (Cant and Xu 2012).

PPA is Sensitive to Changes in the Relative Density
of Object Ensembles
Instead of varying absolute density by varying the spacing
between the objects within a homogeneous ensemble as we
did in Experiment 1, in Experiment 2, we varied relative density
by varying the ratio, or proportion, of 2 types of objects com-
prising a heterogeneous ensemble to examine whether or not
such a feature is part of the neural ensemble representation in
anterior-medial ventral visual cortex (see Fig. 3A). Critically,
we matched the number of local shape changes between the
shared and the ratio-change conditions (see Materials and
methods), ensuring that any activation differences obtained
between these 2 conditions could not be attributed to a differ-
ence in the amount of local object shape changes. We used the
same 4 conditions as in Experiment 1, but replaced the density-
change condition with a ratio-change condition.

In PPA, the main effect of condition was significant (F3,33 =
12.278, P < 0.001). Planned pairwise comparisons revealed
similar levels of fMRI-adaptation when object-ensemble fea-
tures repeated (i.e., identical vs. shared: t11 = 0.71, P = 0.50; see
Fig. 3B), and a significant release from adaptation when the
identity of the objects comprising the ensembles changed
(identical vs. ensemble-change: t11 = 5.60, P < 0.001; shared vs.

Figure 5. Adaptation results in RSC and TOS in Experiments 1 and 2. RSC and TOS
were defined with the same contrast used to define PPA (i.e., contrasting the
activation for scenes with the activation for faces and objects). (a) Results in RSC from
Experiments 1 and 2. No differential adaptation effects were observed in RSC in either
experiment. (b) Results in TOS from Experiments 1 and 2. In Experiment 1, only the
shared and ensemble-change conditions showed a significant release from adaptation
(compared with the identical condition), and in Experiment 2 no differential adaptation
effects were observed in TOS. Taken together, these results are decidedly different
than those observed in PPA, and suggest that sensitivity to processing object
ensembles is not a general phenomenon seen throughout the entire human
scene-processing network. Instead, these results suggest a functional dissociation
between scene-processing regions, with PPA being sensitive to both spatial (e.g.,
spatial expanse; see Kravitz, Peng, and Baker 2011) and nonspatial (i.e., object
ensembles and textures; see Cant and Xu 2012) aspects of visual scenes, whereas
RSC and TOS may only participate in spatial aspects of visual scene processing. Error
bars represent within-subject standard errors (i.e., with the between-subject variation
removed; see Loftus and Mason 1994). RSC, retrosplenial complex; TOS, transverse
occipital sulcus; ns, not significant. *P<0.05.

Figure 6. Results from early visual cortex in Experiments 1 (N=8) and 2 (N=12).
(a) Example of early visual cortex ROI (Talairach x, y, z coordinates: 0, −86, 8) from one
observer (defined using the contrast of phase-scrambled objects > intact objects from
the object/scene localizer and the calcarine sulcus as an anatomical landmark). (b) In
both Experiments 1 and 2, there was an equivalent release from adaptation (compared
with the identical condition) in early visual cortex whenever local shape information
changed across successive images, which occurred in the shared, density-change
(Experiment 1), ratio-change (Experiment 2), and ensemble-change conditions.
Importantly, in both Experiments, the pattern of adaptation observed in early visual
cortex was significantly different from the patterns observed in both LO and PPA, which
suggests that early visual cortex extracts different kinds of visual information from
object ensembles compared with LO and PPA. Specifically, low-level visual information
(e.g., spatial frequency, oriented line segments) is likely extracted in early visual cortex,
whereas higher-level visual information is likely extracted in LO (e.g., closed contours)
and PPA (e.g., ensemble statistics). Error bars represent within-subject standard errors
(i.e., with the between-subject variation removed; see Loftus and Mason 1994). ns,
not significant. *P< 0.05.
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ensemble-change: t11 = 4.04, P < 0.01). These results replicate
those from Experiment 1 and our previous study (Cant and Xu
2012) and show that PPA is insensitive to image changes so
long as ensemble features within the images remain the same.
Importantly for the purpose of this experiment, we observed
a significant release from adaptation when the relative density
of an object ensemble varied (identical vs. ratio-change: t11 =
4.07, P < 0.01; and shared vs. ratio-change: t11 = 3.46, P < 0.05).
In fact, changing the relative density of an ensemble produced
a release from adaptation that was comparable with that
observed when changing the identity of the objects comprising
an ensemble (ratio-change vs. ensemble-change: t11 = 2.00,
P > 0.20). Since we matched the number of local shape and
orientation changes across the shared and the ratio-change con-
ditions, it is unlikely that the higher activation in the ratio-
change condition is attributed to differences in local shape and
orientation across these conditions.

One may note that because colorful object images were
used, an object ratio change in Experiment 2 was always ac-
companied by a color ratio change. Thus, it is possible that any
object ratio-related effect in PPA could be entirely attributed to
a color ratio-related effect. We investigated this possibility in
Experiment 3, where the change in the ratio of an ensemble
was defined solely by a change in the color of ensemble ele-
ments (with shape and object identity being held constant; see
Fig. 4A). In contrast to the results in Experiment 2, in Experi-
ment 3 we did not observe a difference in activation between
the shared and ratio-change conditions in PPA (t9 = 1.08,
P > 0.30 see Fig. 4B). Taken together, the results of Experiment
2 indicate that ratio, or the relative density of the 2 types of
objects comprising an ensemble, is part of the neural ensemble
representation formed in PPA, and the results of Experiment 3
rule out the possibility that this representation is solely based
on differences in the color of the elements constituting an
ensemble.

In Experiment 2, the main effect of condition in LO was
significant (F3,33 = 21.08, P < 0.001). Planned pairwise com-
parisons showed a release from adaptation whenever local
shape or contour varied in an ensemble, which occurred in the
shared, ratio-change, and ensemble-change conditions (identi-
cal vs. shared: t11 = 4.74, P < 0.005; identical vs. ratio-change:
t11 = 5.94, P < 0.001; and identical vs. ensemble-change:
t11 = 9.21, P < 0.001; see Fig. 3B). There was no difference
between the shared and the ratio-change conditions (t11 = 0.32,
P = 0.50), confirming that our manipulation was successful in
matching the total number of local shape changes between these
2 conditions. As in Experiment 1, we also observed an add-
itional release from adaptation when the objects comprising
the ensemble changed identity, as greater response amplitude
was seen in the ensemble-change than in the shared (which
approached significance; t11 = 2.75, P = 0.063) and the ratio-
change conditions (t11 = 3.08, P < 0.05). Again, this is likely ex-
plained by the number of image repetitions used in this study
(compared with Cant and Xu 2012, which used fewer repeti-
tions and did not observe this effect) and the additional shape
variation in the ensemble-change condition compared with the
shared (and ratio-change) conditions. Differences in the pat-
terns of adaptation between PPA and LO were significant
(interaction between brain region and all stimulus conditions:
F3, 33 = 4.94, P < 0.01; and interaction between brain region
and just the shared and the ratio-change conditions: F1,
11 = 5.14, P < 0.05), again showing that these 2 regions extract

different types of information from the same visual input.
Finally, in Experiment 3, we observed similar levels of adapta-
tion in the shared and ratio-change conditions in LO (t9 = 0.17,
P > 0.86; see Fig. 4B), a pattern that we also observed in Ex-
periment 2. Differences in the patterns of adaptation between
PPA and LO were not significant in Experiment 3 (F1, 9 = 0.88,
P = 0.37), suggesting that ratio changes defined solely on the
basis of a change in the color of ensemble elements are not
able to differentiate the processing carried out by these 2
regions.

Taken together, the results from Experiments 1 to 3 demon-
strate that PPA is not sensitive to processing changes in the
absolute density of homogeneous object ensembles, but is sen-
sitive to processing changes in the relative density, or ratio, of
heterogeneous ensembles. To provide a more direct measure
of this functional difference, we used the data from the 8 obser-
vers who were unique to Experiments 1 and 2 and examined
the patterns of adaptation in PPA across both experiments.
Importantly, the patterns of adaptation in PPA across the 2
experiments were significantly different (interaction between
Experiment and the shared and ratio-change conditions: F1,
14 = 7.98, P < 0.05), providing strong evidence that PPA is sen-
sitive to processing relative, rather than absolute, changes in
density. Moreover, the patterns of adaptation in LO were not
significantly different across the 2 experiments (F1, 14 = 0.27,
P > 0.61), suggesting that, compared with LO, PPA was more
sensitive to the difference between the shared and ratio-change
conditions in Experiment 2. Since this difference cannot be at-
tributed solely to variations in visual features such as color
ratio, this suggests that PPA is sensitive to processing higher-
level changes in the ratio of the elements that constitute an
object ensemble. Further investigation is needed to determine
whether this higher-level ratio representation reflects a
summary ratio representation of multiple low-level features or
whether it instead reflects a high-level object identity ratio re-
presentation independent of low-level features.

The Encoding of Density and Ratio Outside PPA
There exists an extensive literature demonstrating that regions
in posterior parietal cortex and prefrontal cortex participate in
numerical perception (for review, see Nieder 2005; see also
Jacob et al. 2012). Although results from Experiment 2 showed
that PPA is sensitive to object ratio changes in an ensemble,
this should not be taken as evidence that PPA is a number-
processing region, as it did not show sensitivity to changes in
absolute density in Experiment 1 in which the number of items
either doubled or halved between successive displays. More-
over, a recent study reported that number representation may
be distinct from texture processing (Stoianov and Zorzi 2012;
see also Ross and Burr 2012). Since PPA responds similarly to
object ensembles and textures (Cant and Xu 2012), it is likely
that both texture and object ensembles are processed distinctly
from number.

Nevertheless, given that both density and ratio manipula-
tions are related to numerical processing, here we conducted
whole-brain random effect analyses on the group adaptation
data from Experiments 1 and 2 to investigate whether or not
regions outside of occipito-temporal cortex, especially those in
the parietal and prefrontal regions, participate in the process-
ing of density and ratio. We should note that these analyses
serve primarily exploratory purposes, as adaptation data
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typically produce small effects and group-averaged data do not
capture common activations if anatomical variations across ob-
servers are large.

In these analyses, we looked for regions that showed a
release from adaptation in the density-change (Experiment 1)
and the ratio-change (Experiment 2) conditions, compared
with only the shared condition, to ensure that any release from
adaptation that we observed in a region was driven by a
change in density or ratio, and not simply by the basic adapta-
tion effect (i.e., identical < different). In Experiment 1, with
8 observers, at P < 0.01, uncorrected, no regions showed sensi-
tivity to density changes; at P < 0.05, uncorrected, the only sig-
nificantly active region resided in the left anterior temporal
cortex (x, y, z Talairach coordinates: −30, 2, −35, cluster size =
21 voxels, with each voxel being 1 × 1 × 1 mm). In Experiment
2, with 12 observers, at P < 0.01, uncorrected, 4 regions
showed sensitivity to ratio changes: one in the right posterior-
medial parietal cortex (9, −61, 31, 263 voxels), 2 separate
regions in right inferior frontal cortex (first region: 10, 35, −6,
64 voxels; second region: 18, 33, −11, 59 voxels), and one in
left anterior temporal cortex (−39, 20, −29, 63 voxels).

The frontal and parietal regions found here are consistent
with previous studies reporting that both of these brain
regions are involved in absolute number and ratio representa-
tions (Dehaene et al. 1999; Ischebeck, Schocke, and Delazer,
2009; Piazza et al. 2007; Jacob and Nieder, 2009a,b; see Jacob
et al. 2012 for a recent review), although our frontal activations
are located a little more inferior than what is typically reported.
Since numerical processing is not typically observed in anter-
ior temporal cortex, it is unclear whether the anterior temporal
activations observed in this study represent numerical process-
ing of density and ratio, or instead reflect processing unrelated
to number, such as the extraction of statistical information
from ensembles, or the processing of semantic and/or visual
features of the objects within the ensembles. Further studies
are needed to fully understand this anterior temporal activa-
tion, and how anterior-medial ventral visual cortex and parietal
and frontal regions coordinate to represent ratio in the human
brain.

To understand whether ensemble ratio representation is
common across the scene-processing regions, in addition to
PPA, we also examined the patterns of adaptation in RSC and
TOS, 2 regions that, along with PPA, comprise the human
scene-processing network (see Epstein et al. 2005; Epstein
2008). The main results within RSC and TOS in Experiments
1 and 2 are shown in Figure 5. In Experiment 1, the main effect
of condition in RSC was not significant (F3, 24 = 0.08, P = 0.97),
and none of the 4 conditions differed from each other (all
t’s < 1.50). Similarly, in Experiment 2 the main effect of con-
dition in RSC was not significant (F3, 36 = 0.18, P = 0.907), and
none of the 4 conditions differed from each other (all
t’s < 1.50). Importantly, differences in the patterns of adaption
between PPA and RSC were significant in both experiments
(Experiment 1, region-by-condition interaction: F3, 24 = 8.57,
P = 0.001; Experiment 2, region-by-condition interaction: F3,
36 = 2.89, P = 0.049), strongly suggesting that, unlike PPA, RSC
is not sensitive to processing object ensembles.

In Experiment 1, the main effect of condition in TOS was
significant (F3, 24 = 5.09, P = 0.007). Planned pairwise compari-
sons revealed that there was a significant release from adapta-
tion, compared with the identical condition, in both the shared
(t8 = 3.61, P = 0.021) and ensemble-change (t8 = 3.22, P = 0.039)

conditions. All other comparisons failed to reach significance
(all other t’s < 2.64). In contrast, in Experiment 2, the main effect
of condition in TOS was not significant (F3, 33 = 1.26, P = 0.303),
and none of the 4 conditions differed from each other (all
t’s < 2.18). Differences in the patterns of adaptation between
PPA and TOS did not reach significance in Experiment 1
(region-by-condition interaction: F3, 24 = 1.70, P = 0.194) but
approached significance in Experiment 2 (region-by-condition
interaction: F3, 33 = 2.41, P = 0.085). These nonsignificant region-
by-condition interactions, however, do not provide compelling
evidence for the notion that PPA and TOS process object ensem-
bles in similar manners. First, the activation in the shared condi-
tion (where the arrangement of ensemble elements varies but
importantly, the high-level ensemble identity remains constant)
in TOS in Experiment 1 is quite different from that observed in
PPA in the same experiment: in TOS, the contrast of shared
versus identical was significant but the contrast of shared versus
ensemble-change was not; in PPA these significant and null
results were switched. That is, shared versus identical was not
significant but shared versus ensemble-change was. A region
that is sensitive to processing high-order ensemble information
should demonstrate equivalent levels of adaptation when
ensemble information repeats (i.e., in the identical and shared
conditions), and a release from adaptation when ensemble in-
formation varies (i.e., in the ensemble-change condition, com-
pared with the shared condition). TOS did not show either of
these effects in Experiment 1. Second, none of the 4 adaptation
conditions differed from each other in TOS in Experiment 2,
showing that, unlike PPA, TOS is not sensitive to processing
object ensembles. [We did not examine patterns of adaptation in
RSC and TOS in Experiment 3 because the stimuli used in Ex-
periments 2 and 3 were similar (i.e., ensemble ratio stimuli), and
results from Experiment 2 revealed that there was no differential
sensitivity to processing ensemble ratio stimuli in RSC and TOS
(i.e., no basic adaptation effect of identical < ensemble-change)].

Taken together, we have provided evidence that the contri-
bution of object-ensemble information to scene representation
is likely restricted to processing in PPA, and is not a general
phenomenon seen throughout the entire scene-processing
network. Together with our previous findings (Cant and Xu
2012), these results suggest the existence of a functional dis-
sociation in the human scene-processing network. Specifically,
PPA may be involved in both spatial (e.g., spatial expanse;
Kravitz et al. 2011) and nonspatial aspects of visual processing
(e.g., object-ensemble and texture processing; Cant and Xu
2012), whereas RSC and TOS may only participate in spatial
aspects of visual processing. This suggestion is certainly con-
sistent with the separate (but complementary) functional roles
posited for these 3 regions in the representation of scenes (see
Epstein 2008, for review).

Finally, it is likely that retinotopic regions of early visual
cortex participate in the processing of ensemble density and
ratio, since changes in absolute and relative density naturally
entail changes in low-level visual information (e.g., spatial fre-
quency, oriented line segments). Although we did not conduct
retinotopic mapping in this study, we were able to localize
early visual cortex by using known anatomical makers and our
object/scene localizer. Specifically, we defined early visual
cortex as a region encompassing the calcarine sulcus whose ac-
tivation was higher for phase-scrambled than intact objects
(e.g., Grill-Spector et al. 1998; James et al. 2003) (see Fig. 6A).
We localized this region independently in all observers, and
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examined the patterns of activation across the 4 stimulus condi-
tions in Experiments 1 and 2.

In Experiment 1, the main effect of stimulus condition was
significant (F3,21 = 5.35, P < 0.01). Planned pairwise compari-
sons revealed a release from adaptation in early visual cortex,
compared with the identical condition, whenever the local
contours changed across images (identical vs. shared: t7 = 3.04,
marginally significant at P = 0.058; identical vs. density
change: t7 = 5.45, P < 0.005; identical vs. ensemble change:
t7 = 3.93, P < 0.05; see Fig. 6B). The activation observed in
these latter 3 conditions did not differ (ts < 0.63, Ps > 0.50). Im-
portantly, the adaptation pattern observed here is significantly
different from that observed in PPA (interaction between brain
region and all stimulus conditions: F3, 21 = 10.01, P < 0.001)
and LO (F3, 21 = 5.97, P < 0.005). These differences indicate that
the patterns of activation observed in PPA and LO are not
direct reflections of low-level visual information encoded in
early visual areas.

In Experiment 2, the main effect of stimulus condition was
significant (F3,33 = 6.11, P < 0.005), and planned pairwise com-
parisons revealed a pattern of activation in early visual cortex
similar to that seen in Experiment 1. Specifically, compared
with the identical condition, there was a release from adapta-
tion in all the other stimulus conditions (identical vs. shared:
t11 = 3.72, P < 0.05; identical vs. ratio change: t11 = 2.78, mar-
ginally significant at P = 0.054; and identical vs. ensemble
change: t11 = 3.46, P < 0.05). As in Experiment 1, the activation
levels in these 3 latter conditions did not differ (ts < 1.18,
Ps > 0.50). Finally, the patterns of adaptation in early visual
cortex differed from those in LO (interaction between brain
region and all stimulus conditions: F3, 33 = 3.33, P < 0.05) and
PPA (marginally significant, F3, 33 = 2.39, P = 0.087). These
results, together with those from Experiment 1, indicate that
early visual cortex extracts different kinds of visual information
from object ensembles compared with LO and PPA. This differ-
ence likely reflects the extraction of low-level visual informa-
tion in early visual cortex (e.g., spatial frequency, oriented line
segments) and more high-level information in LO (e.g., closed
contours) and PPA (ensemble statistics).

Behavioral Results
In the adaptation runs of all Experiments, observers were
asked to count the number of images presented in each trial
(either 4 or 5 images), and in the object/scene localizer runs,
observers were asked to detect an occasional spatial jitter of
the images. All behavioral results are presented in Table 1. No
behavioral comparison reached significance. This indicates
that behavioral response patterns did not match the fMRI re-
sponse patterns, making it unlikely that behavioral responses
directly contributed to the observed fMRI results. This is con-
sistent with the findings by Xu et al. (2007), who also showed
that fMRI-adaptation responses in PPA are dissociable from be-
havioral responses.

Discussion

Object-ensemble perception is an important aspect of visual
processing and involves the extraction of summary statistical
information from large sets of objects, thus circumventing the
capacity limitation inherent in object-based visual representa-
tion (e.g., Luck and Vogel 1997; Pylyshyn and Storm, 1998; see
also Cowan 2001). We have previously demonstrated that
anterior-medial ventral visual cortex, along the collateral
sulcus and parahippocampal gyrus and overlapping with the
scene-sensitive PPA, is involved in processing object ensem-
bles (Cant and Xu 2012). The present study explored the
nature of object-ensemble representation in this brain region
by examining the encoding of the absolute and relative dens-
ities of object ensembles. Here, absolute density refers to the
amount of spacing between the objects comprising an ensem-
ble and relative density refers to the ratio, or proportion, of 2
different types of objects comprising an ensemble. Using the
fMRI-adaptation method and an independent ROI-based ana-
lysis to define PPA, we found that while this brain region was
not sensitive to changes in absolute density, it did respond to
changes in relative density.

In contrast, the object-selective region LO responded when-
ever local shape contours changed, even when ensemble

Table 1
Percent correct accuracies and response latencies (in ms) of correct trials for the localizer and adaptation runs in all 3 experiments

Object/scene localizer accuracy
Objects Scenes Faces Scrambled objects

Experiment 1 94.79 ± 2.58 96.88 ± 2.05 96.35 ± 2.00 97.40 ± 1.35
Experiment 2 94.27 ± 1.80 92.88 ± 2.47 93.06 ± 1.80 93.40 ± 1.88
Experiment 3 93.75 ± 1.55 95.42 ± 1.70 95.00 ± 1.74 95.83 ± 1.96

Adaptation runs accuracy
Same Shared Density change (Exp. 1) Ensemble change

Ratio change (Exp. 2/3)
Experiment 1 96.40 ± 1.01 95.65 ± 1.24 96.69 ± 1.33 95.92 ± 1.31
Experiment 2 94.08 ± 2.41 95.50 ± 2.32 96.33 ± 1.67 93.29 ± 2.18
Experiment 3 95.33 ± 1.87 96.33 ± 1.68

Adaptation runs response latency
Same Shared Density change (Exp. 1) Ensemble change

Ratio change (Exp. 2/3)
Experiment 1 1100 ± 46 1121 ± 46 1108 ± 48 1122 ± 49
Experiment 2 1159 ± 45 1149 ± 36 1146 ± 42 1161 ± 40
Experiment 3 1175 ± 27 1150 ± 25

Note: Response latencies were not collected for the localizer runs. All values represent means with standard errors. There were no significant main effects of condition in any of the object/scene localizer
(Experiment 1: F3,21 = 0.42, P> 0.74; Experiment 2: F3,33 = 0.13, P> 0.94; Experiment 3: F3,27 = 0.45, P> 0.72) or adaptation runs (accuracy in Experiment 1: F3,21 = 0.26, P> 0.85; accuracy in
Experiment 2: F3,33 = 1.44, P> 0.24; response latency in Experiment 1: F3,21 = 1.40, P> 0.26; response latency in Experiment 2: F3,33 = 0.85, P > 0.47; there were no main effects of accuracy or
response latency in the adaptation runs of Experiment 3 because only 2 conditions were used in each run). No pairwise comparison between conditions in any accuracy or response-latency analysis reached
significance (all 2-tailed and Bonferroni corrected).
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features repeated. This replicates our previous findings (Cant
and Xu 2012) and demonstrates that, in addition to processing
the shape of single objects (e.g., Malach et al. 1995; Grill-
Spector, et al. 1998; Kourtzi and Kanwisher 2001), LO is also
involved in processing shape features from ensembles of mul-
tiple objects. Finally, patterns of adaptation in early visual
cortex were different from patterns observed in both PPA and
LO, suggesting that the former region extracts low-level visual
information from object ensembles (e.g., spatial frequency, or-
iented line segments), whereas the latter 2 regions extract
more high-level visual information (i.e., ensemble statistics in
PPA and closed contours in LO).

The Nature of Object-Ensemble Representation
in Anterior-medial Ventral Visual Cortex
A change in the absolute density of an object ensemble is often
associated with a change in both the number of objects in the
ensemble and the spatial frequency of the image. The finding
that PPA is not sensitive to changes in absolute density (and is
thus insensitive to changes in number and spatial frequency)
shows that this brain region is tuned to process higher level,
rather than lower level, aspects of object ensembles. This is
consistent with our previous finding showing that PPA is not
sensitive to a change in the size of an ensemble image (Cant
and Xu 2012). Moreover, when we held absolute density,
number and spatial frequency constant, but varied the ratio of
the 2 types of objects comprising an ensemble, we observed a
release from adaption in PPA, demonstrating a sensitivity to
changes in relative density and lending further support to the
notion that anterior-medial ventral visual cortex processes
higher-level features of object ensembles.

What is the nature of the ratio representation in anterior-
medial ventral visual cortex? A number of behavioral studies
have shown that observers can quickly extract useful ensemble
statistics, such as mean size, speed and orientation, from a
display without encoding specific details of any single object
within the display (e.g., Williams and Sekuler 1984; Watama-
niuk and Duchon 1992; Ariely 2001; Parkes, et al. 2001; Chong
and Treisman 2003; 2005a, b; Alvarez and Oliva 2008, 2009;
also see Alvarez 2011). Note that although mean features are
informative in describing a homogenous ensemble, they are
not particularly useful in describing a heterogeneous ensemble
(e.g., the average features from apples and oranges are not in-
formative). Instead, the exact compositions and the amount of
variations of the different visual features of objects can provide
diagnostic characteristics of a heterogeneous ensemble. It is
possible that anterior-medial ventral visual cortex represents
precisely this type of ensemble statistical information (i.e., the
statistical distribution of visual features in an ensemble), and
that a ratio change simply alters such representations. Another
possibility is that ‘ratio’ could be a high-level feature reflecting
the composition of the individual object identities within an
ensemble, and thus ratio representation is independent of the
specific ensemble feature from which it was computed. In this
sense, ‘ratio’ is associated more with numerical processing
than it is with visual feature processing. Although we have evi-
dence arguing against a purely numerical account of ratio re-
presentation in anterior-medial ventral visual cortex (see
Results), further work is need to fully distinguish between
these 2 possibilities.

Beyond mean ensemble features, summary statistics can
also include features like the marginal distribution of lumi-
nance, luminance autocorrelation, correlations across location,
orientation, and scale, and phase correlation. These latter
summary features have been used successfully in texture syn-
thesis algorithms (see Portilla and Simoncelli 2000) and in ex-
plaining how the visual system may represent the external
environment, particularly outside of the fovea where visual
resolution is degraded (Balas, Nakano, and Rosenholtz 2009;
Rosentholtz 2011). Interestingly, PPA has been shown to be in-
volved in texture processing (Steeves et al. 2004; Cant and
Goodale 2007, 2011; Cant et al. 2009; Cant and Xu 2012) and
to exhibit a peripheral-field bias (Levy et al. 2001). This sug-
gests that anterior-medial ventral visual cortex may be involved
in the processing of a variety of ensemble features beyond
those investigated here and in our previous study (Cant and Xu
2012). We are agnostic regarding whether anterior-medial
ventral visual cortex is the general “summary statistics” area of
the human brain, or whether only a subset of summary statis-
tics are processed and represented there. We believe that there
are many exciting research opportunities for future studies to
fully explore the various factors that may contribute to
object-ensemble representation in the entire human brain.

The Link Between Object-Ensemble and Scene Processing
The processing of scenes in PPA has been shown to depend on
3D spatial layout (e.g., Epstein and Kanwisher 1998). Since our
object-ensemble images do not depict 3D spatial layout, and in
general do not invoke scene imagery, why does the processing
of object ensembles and scenes involve PPA? Besides encoding
3D spatial layout, an important aspect of scene processing in-
volves the extraction of gist (the overall meaning and perceptual
structure of a scene), which can be obtained from zones of re-
peating information, without processing the individual objects
within the scene in great detail (e.g., Oliva and Schyns 2000;
Oliva and Torralba 2001). This type of processing bears a strik-
ing similarity to the processing of object ensembles and tex-
tures. Thus, anterior-medial ventral visual cortex may play a
greater role in extracting higher-order statistical information
from a variety of visual displays. This may explain why the pro-
cessing of object ensembles, surface textures, and scenes all acti-
vate this common region. We should note, however, that the
processing of summary statistics is restricted to PPA, as 2 add-
itional regions in the human scene-processing network, RSC
and TOS, are not sensitive to processing object ensembles and
textures (see Fig. 5, and Cant and Xu 2012). This suggests that
there may be a functional dissociation in the human scene-
processing network, with PPA involved in processing both
spatial (e.g., spatial expanse; Kravitz et al. 2011) and nonspatial
aspects of visual processing (e.g., object-ensemble and texture
processing; Cant and Xu 2012), whereas RSC and TOS are only
involved in spatial aspects of visual processing. This suggestion
is certainly consistent with the separate (but complementary)
functional roles posited for these 3 regions in the representation
of scenes (see Epstein 2008, for review).

Oliva and Torralba (2001) have put forward a model propos-
ing that spatial-envelope representation is important in scene
processing and that scenes can be represented as a collection
of a number of diagnostic global features that describe both
spatial boundary and scene content, such as openness, expan-
sion, mean depth, roughness, and naturalness of content
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(Oliva and Torralba 2001, 2002, 2006, 2007; Torralba and
Oliva 2002, 2003; Greene and Oliva 2009, 2010; Park et al.
2011; for review, see Oliva et al. 2011). Since spatial frequency
is important in the processing of a number of these global
scene properties, how dowe reconcile this with the lack of sen-
sitivity to changes in absolute density/spatial frequency in PPA
in Experiment 1? This latter finding, however, does not imply
that spatial frequency is not an important aspect of scene re-
presentation. It merely shows that spatial frequency may not
be encoded within the scene-sensitive PPA. Spatial frequency
related to scene representation may instead be encoded in
lower-level visual areas, such as V1/V2. Alternatively, PPA may
indeed be sensitive to processing spatial frequency, but only in
situations where this information can be used to form a re-
presentation of the spatial structure of the environment.

Park et al. (2015) have demonstrated that PPA encodes the
level of clutter in a visual scene (i.e., different levels of clutter
ranging from an empty room to a full room). At first blush, this
seems inconsistent with the results of Experiment 1, which
showed that PPA was not sensitive to changes in the absolute
density of ensemble elements. In Park et al. clutter was manipu-
lated by changing the total number of different types of objects
in a room. Such a manipulation necessarily involves changing
the composition (or ratio) of the different types of objects in a
room, akin to the ratio manipulation we used in Experiment 2
where we found that PPA encodes the relative density of 2 types
of objects comprising an ensemble. Thus, our results are in
agreement with those of Park et al. and show that PPA is sensi-
tive to the exact makeup of an object ensemble.

MacEvoy and Epstein (2011) have suggested that LO and PPA
play complementary roles in scene recognition, with LO mediat-
ing object-based scene identification and PPA mediating scene
identification via processing of more global scene properties
(such as visual summary statistical information and spatial
geometry). Specifically, MacEvoy and Epstein demonstrated
that, in LO, single object representations are combined linearly
to form the representation of scenes that contain multiple
objects, whereas in PPA, single object representations would
interact nonlinearly to give rise to a uniquely scene-specific re-
presentation, which could contain global scene properties such
as summary statistics of visual features and spatial layout of the
objects in a scene. The results of MacEvoy and Epstein are thus
consistent with existing notions of object-specific representation
in LO and scene-specific representation in PPA. Our present
findings from LO and PPA with object ensembles are certainly
consistent with this view as we found LO to be sensitive to indi-
vidual object feature changes even when ensemble features
remain the same, whereas PPA was sensitive to ensemble
feature changes and not to individual object feature changes.

Two Independent and Complementary Visual Processing
Mechanisms in the Brain
We previously posited that visual objects may be processed by
2 independent, but complementary, neural processing me-
chanisms (Cant and Xu 2012). One mechanism, involving
higher visual object processing areas (such as LO) and regions
in the parietal lobe (see Xu and Chun 2009), participates in
the individuation and the encoding of the detailed features of
both single objects and objects within an ensemble. The other
mechanism, involving anterior-medial regions of the ventral
processing stream (including the collateral sulcus and

parahippocampal gyrus and overlapping with the scene-
sensitive PPA), extracts summary statistics from object ensem-
bles without encoding the details of the individual objects
comprising the ensemble. In this way, object-ensemble re-
presentation complements and guides object-specific process-
ing as it allows the visual system to overcome the capacity
limitation inherent in object-based attention (e.g., Luck and
Vogel 1997; Pylyshyn and Storm, 1998; Xu 2002; Alvarez and
Cavanagh 2004).

The present findings from PPA and LO are consistent with this
model, and further demonstrate that the processing of statistical
information in anterior-medial ventral visual regions is not based
solely on low-level visual information, such as absolute density,
number, spatial frequency, or color, but is instead based on high-
level visual information, such as the relative density or ratio of
different objects comprising an ensemble. Future experiments
will need to investigate whether such higher-level ratio represen-
tation reflects a summary ratio representation of multiple low-
level features or whether it instead reflects a high-level object
identity ratio representation independent of low-level features.

Uncovering the neural underpinnings of object-ensemble re-
presentation is essential to understanding human vision since
ensembles are ubiquitous in our everyday visual world, and
their processing complements object-specific representations
in the brain. Specifically, since visual processing has a limited
capacity, collapsing multiple items into a single summary re-
presentation can enhance visual cognition (e.g., averaging
multiple noisy elements can give a more precise representation
than any individual element; Alvarez 2011), and can serve to
guide object-based attention to salient regions of the environ-
ment. Moreover, given the connection between the processing
of object ensembles, textures, and scenes via the processing of
summary statistics, studying object-ensemble representation in
the human brain provides us with the unique opportunity to
deepen our understanding of the cognitive and neural mechan-
isms underlying multiple aspects of human visual perception.
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