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Abstract

Until recently, the study of mycobacterial diseases was trapped
in culture-based technology that is more than a century old. The
use of nucleic acid amplification is changing this, and powerful
new technologies are on the horizon. Metabolomics, which is the
study of sets of metabolites of both the bacteria and host, is being
used to clarify mechanisms of disease, and can identify changes
leading to better diagnosis, treatment, and prognostication of
mycobacterial diseases. Metabolomic profiles are arrays of
biochemical products of genes in their environment. These
complex patterns are biomarkers that can allow a more complete
understanding of cell function, dysfunction, and perturbation
than genomics or proteomics. Metabolomics could herald

sweeping advances in personalizedmedicine and clinical trial design,
but the challenges in metabolomics are also great. Measured
metabolite concentrations vary with the timing within a condition,
the intrinsic biology, the instruments, and the sample preparation.
Metabolism profoundly changes with age, sex, variations in gut
microbial flora, and lifestyle. Validation of biomarkers is complicated
by measurement accuracy, selectivity, linearity, reproducibility,
robustness, and limits of detection. The statistical challenges include
analysis, interpretation, and description of the vast amount of data
generated. Despite these drawbacks, metabolomics provides great
opportunity and the potential to understand and manage
mycobacterial diseases.
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Tuberculosis has been a great public
enemy for millennia, and nontuberculous
mycobacteria are causing concern in
many countries today. The study, diagnosis,
and treatment of mycobacterial diseases
have been based on culture-related
procedures that are more than 100 years
old (1). Because these organisms grow
slowly, serious complications occur
before diagnoses are established. As
different species have different growth
characteristics, complex culturing
procedures require extensive time and
highly specialized laboratories (2). As

we enter the genomic era, however,
these methods are changing. Nucleic
acid amplification studies are improving
the diagnosis and treatment of
mycobacterial disease, with tuberculosis
leading the way.

An emerging science of the “omic”
era is metabolomics, the study of the set
of metabolites produced in response to
a disease or perturbation. The metabolites,
which may arise from resident or
infecting microorganisms or their hosts,
have yielded important information
about the pathophysiology of many

conditions. Metabolites identified by
proton nuclear magnetic resonance
(1H-NMR) spectroscopy, gas
chromatography-mass spectrometry
(GC-MS), and liquid chromatography-mass
spectroscopy (LC-MS) have been used
to establish diagnosis and prognosis of
many infectious and noninfectious
diseases (3–12). Metabolomics, as with
the other “omics,” is made possible only
because advanced analytics are now
available. In this review, we outline the
potential role of metabolomics in
mycobacterial disease.
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Metabolomics

Metabolites are the low-molecular-weight
compounds (,1 kD) resulting from life
processes (metabolism). The full set of
metabolites reflects the biochemical,
physiological, and pathophysiological
processes occurring in a life form at
a particular time and appears to be
unique for the various organisms or
tissues sampled (13). Metabolomics is the
identification and quantification of these
metabolites in an unbiased analytical
systems–based approach.

Metabolomics can use targeted and
nontargeted approaches to investigate
qualitative and quantitative endogenous
metabolites. A nontargeted approach is
effectively used to identify a number
of unknown metabolites known as
the metabolome, whereas targeted
metabolomics is restricted to known
metabolites, usually for specific
metabolites or within a single class of
compounds (14).

The metabolomics approach allows
for the analysis of a variety of biological
fluids, such as blood, urine, sputum, cerebral
spinal fluid, and exhaled breath condensate
in humans, or bacterial sources, such as
culture media (15).

Metabolites are associated with all
biological processes as starting,
intermediate, or end products. The profile of
these metabolites can provide mechanistic
information about the influence of genetics,
epigenetics, proteomics, and environmental
factors. Metabolites change with time,
and metabolomics can track the processes
of disease progression and adaptation.
The variations in microorganisms also
can be plotted. Variation of the metabolome
in different tissues may reflect how disease
processes affect specific organs. Studying
metabolomics with different perturbations
(16, 17) can show the effects of the
changes on signaling pathways. New
biomarkers can be established on the
basis of structurally and biochemically
annotated metabolites. These biomarkers
may be used for the diagnosis and
prognosis of many diseases and could be
useful in both basic research and clinical
trials to monitor the effect of treatment
(18). By profiling diseases, biomarkers can
be used in drug development and to
monitor the response to therapy (19).
Metabolomics is a powerful tool with

great potential for many areas of research in
biology and medicine (19).

The great value of metabolomics is
derived from the patterns of many different
small molecules, which give a specific profile
for different human conditions including
infectious, neoplastic, cardiovascular,
neurological, metabolic, and inflammatory
diseases (19–21).

Metabolomics and
Other “Omics”

Metabolomics is complementary to the
other “omic” sciences, such as genomics,
transcriptomics, and proteomics, but has
less limitation because of technical and
biological advantages (22). Metabolomics
captures the biochemical products of the
genes in their environment, and thus can
provide fundamental knowledge of the
biochemical networks under investigation.
In this respect, metabolomics can allow
for a more complete understanding of cell
functions than genomics, transcriptomics,
or proteomics can. This sensitive
assessment of cell function at the chemical
level has led to a better understanding of
the cellular dysfunction caused by several
disorders (23). Metabolomics has also
clarified the disease development
downstream of genetic or environmental
changes (24) in contrast to genetics and
proteomics, which give insight mainly into
the predisposition for a disease.

Metabolomics can show the cellular
responses to internal and external stimuli
that can help identify early perturbations
in cellular metabolism. The perturbations
can be caused by the disorders themselves
(23), by nature itself (environmental stress),
or by humans (answering either research
or therapeutic questions).

Analytical Platforms and
Multivariate Data Analysis

Several analytical methods are used for
metabolomic studies in individual as well as
pooled human fluid samples. At present,
NMR, GC-MS, LC-MS, and direct infusion
tandem mass spectrometry (DI-MS/MS)
are the most widely used techniques for
the identification of large numbers
of metabolites.

Each of these methods carries its own
advantages, disadvantages, and predictive

power. NMR, GC-MS, and LC-MS are
the most common analytical tools used in
metabolomics studies, and DI-MS/MS is
a suitable technique for rapid diagnosis.
Although GC-MS and LC-MS are more
sensitive techniques with high separation
efficiency, spectral resolution, mass
accuracy, and resolution, NMR produces
more quantifiable and reproducible data.
The nondestructive NMR assay renders
it more applicable to intact biomaterials
(25). DI-MS/MS has high throughput
and sensitivity with relatively good
reproducibility (26). Each technique has
the ability to detect small disturbances
from stimuli, such as those caused by
infectious diseases. Because of these
differences, a combination of two or three
analytical platforms is often needed to
identify the various stages of a disease
and to differentiate diseases.

Metabolomics aims to
comprehensively identify and quantify
a large number of metabolites from various
classes. To identify the various classes of
compounds, such as lipids, carbohydrates,
amino acids, organic acids, sugars, sugar
phosphates, biogenic amines, nucleotides,
vitamins, purines, fatty acids, and steroids
(27), one analytical method is not sufficient
in a nontargeted approach (28, 29). Table 1
shows the most common analytical tools
used (30) and Table 2 shows the strengths
and weakness of these tools.

Assigning the vast array of compounds
to various disease states is also a statistical
challenge. The statistical methods rely on
multivariate and pattern recognition
approaches, which may be data driven and
model driven. The products of the analyses
are called “biomarker signatures” or
“fingerprints.” The large data sets are
analyzed by multivariate techniques, such
as principal component analysis and
orthogonal partial least squares
discriminant analysis. Both methods are
based on projection methods with the
underlying assumption that the system is
affected by a limited number of variables
(31). Principal component analysis is
essential for the visualization and
subsequent removal of outliers that may
prejudice further analysis. It is
unsupervised, meaning no information is
given when the data set is entered into
a statistical program (32).

Orthogonal partial least squares,
another popular technique in metabolic
profiling, is frequently applied in
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discriminant analysis in which biological
samples are classified in response to
variables (32, 33). This is a supervised
analysis when two cohorts take part in the
analysis. It is generally used for model
separation or classification.

Metabolomics and Biomarker
Discovery in
Mycobacterial Diseases

Metabolomics has been applied to find
specific metabolic patterns for the diagnosis
and prognosis of various infectious diseases
(34). Studies have shown that
mycobacterial exosomes could be used as
biomarkers. Exosomes are small vesicles,
between 40 and 200 nm, that are released
from infected cells and contain
mycobacterial proteins,
lipoarabinomannan, and metabolites.
Exosomes are being evaluated for the
diagnosis of tuberculosis, and both
immunogenic and nonimmunogenic
exosomes are useful in vaccine studies (35).

Lipidomics and
Mycobacterial Diseases

Lipidomics is the science that seeks to
comprehensively identify and quantify lipid
metabolites, making it a subfield of
metabolomics. Mycobacterium tuberculosis
has a great capacity to synthesize lipids, and

its lipids are involved in many of its
biological processes. They contribute to
virulence and drug resistance. Despite
mycobacterial lipids being extensively
studied, lipidomics has uncovered many
unknown lipids and changes in lipids in
response to stimuli (36).

Fatty acids are the backbone of the
mycobacterial cell wall lipids and contribute
to many pathologic processes, such as
change in immunity, virulence, antibiotic
resistance, and invasiveness (37). Mass
spectroscopy and NMR have been able to
quantify various lipids including mycolic
acids (a-alkyl, b-hydroxy long-chain fatty
acids) in M. tuberculosis (38, 39). Each
strain of bacteria has its own lipidome.
Portevin and colleagues showed that
mycolic acids have different profiles in
different M. tuberculosis lineages. Mycolic
acids have long been a target for
antituberculous drugs, but the more
recent findings may give additional clues
for new medication (40).

Metabolomics and
Diagnostic Biomarkers

Metabolomics can be a powerful tool for
the diagnosis of mycobacterial infections.
du Preez and Loots used metabolomics to
identify new biomarkers for tuberculosis (41).
They analyzed the sputum of 34 patients with
tuberculosis and 61 control subjects by two-
dimensional gas chromatography time-of-

flight mass spectrometry. Twenty-two
metabolites (14 M. tuberculosis components
and 8 host-related markers) were identified
with high discriminative power. Figure 1
illustrates the potential M. tuberculosis
metabolites for targeted metabolomics study
adapted from the study by Schoeman and
colleagues (42).

GC-MS–based lipidomics of
tuberculous infected sputum samples
showed that 2-acetylamino-2-deoxy-b-D-
glucopyranose, a-L-mannopyranose, and
D-galactose-6-deoxy could distinguish
persons with tuberculosis from those
without (43, 44). For these studies, ethanol
homogenization was the best extraction
method to differentiate the sputum of
tuberculous patients from that of control
subjects (42). This technique was also
used to differentiate isoniazid-resistant
strains of M. tuberculosis from the wild
type. Isoniazid-resistant strains carried
katG mutations, which produce a specific
metabolomic pattern with 29 different
compounds in the resistant strains. The
metabolites included alkanes, alcohols,
fatty acids, surfactant protein, and other
compounds involved in the stress
alternative energy pathway (45).

Similarly, rpoB mutations change
metabolites. LC-MS–based metabolomics
showed differences in the metabolic profile
of rifampin-resistant M. tuberculosis: 99
molecular features are different in the
rifampin-resistant strains. In addition, the
studies showed the major role of rpoB
mutations in the M. tuberculosis
metabolism (46).

Using LC-MS–based metabolomics
on plasma samples, Frediani and colleagues
found 61 metabolites that were significantly
different between persons with tuberculosis
and their asymptomatic household
contacts. These metabolites could be
classified in various groups probably related
to specific diet, environmental chemicals,
and household microbes. This study
showed eight metabolites that were
specifically up-regulated by the
mycobacterial infection, such as glutamate,
choline derivatives, M. tuberculosis cell
wall glycolipids, and lipid mediators of
inflammation (47).

Nontargeted ultrahigh-pressure liquid
chromatography time-of-flight mass
spectroscopy (UPLC-TOF-MS) was able
to identify a cohort of patients with leprosy
by their bacterial indices (a gauge of
bacterial burden in leprosy). Metabolomics

Table 1. Analytical tools most commonly used in metabolomics studies

Technique Metabolites Seen Number of Metabolites

NMR d Amino acids 50–200
d Polar/nonpolar metabolites
d Sugars
d Volatile liquids
d Large metabolites

GC-MS d Volatile/thermally stable metabolites 100–500
d Nonpolar metabolites
d Amino acids
d Medium to high lipophilicity
d Nucleosides and nucleotides
d Carbohydrates
d Esters

LC-MS d Amino acids 100–800
d Fatty acids
d Polar metabolites
d Organic acids
d Steroids

Definition of abbreviations: GC-MS = gas chromatography-mass spectrometry; LC-MS = liquid
chromatography-mass spectroscopy; NMR = nuclear magnetic resonance.
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was able to distinguish those with a bacterial
index of less than 1 from those with
a bacterial index greater than 4. Serum
metabolomics also showed increases in
metabolites, such as polyunsaturated fatty
acids, eicosapentaenoic acid, and
docosahexaenoic acid, in patients with high
bacterial indices (48).

Feng and colleagues showed that
nontargeted serum-based metabolomics
using UPLC-MS was able to distinguish
tuberculous patients from healthy controls
and patients with other lung diseases, such as
pneumonia, lung cancer, chronic obstructive
disease, and bronchiectasis. They described 12
metabolites that separated tuberculous
patients from control subjects. Fatty acids
were the main compounds followed by amino
acids, again indicating the importance of lipid

metabolism in Mycobacterium infection.
Palmitic acid, phosphatidylcholine,
lysophosphatidylcholine, phytanic acid, and
behenic acid were decreased in tuberculous
patients compared with control subjects (49).

Volatile organic compounds in patient
serum and urine may be biomarkers for
mycobacterial infections, although the
compounds differ from those found in
bacterial culture (50). Taking substances from
organisms or culture media or using known
bacterial proteins associated with disease may
not be the best strategy for discovering
lipidomic candidate biomarkers because it is
the profile of many metabolites that are the
fingerprints of the disease or process (51, 52).

Metabolomics may be useful for
distinguishing mycobacterial pathogens from
nonpathogens. They could potentially

distinguish persons with latent tuberculosis
from those with active tuberculosis and
uninfected individuals. These biomarkers could
potentially also identify vaccine-induced
protection against tuberculosis, whichwould be
extremely useful for vaccine development (52).

1H-NMR–based metabolomics has
been applied to diagnose M. avium
subspecies paratuberculosis infection
in ruminants. The metabolomic study
was quicker and more sensitive at
distinguishing infected from noninfected
animals. The discrimination was significant
regardless of infectious burden and time
after infection (at 3, 6, 9, and 12 mo) (53).
Although the potential is present, more
work needs to be done to accurately predict
the progression from latent to active
mycobacterial disease, relapse after

Table 2. Strengths and weaknesses of analytical tools used in metabolomics studies

Technique Strengths Weaknesses

NMR d Nondestructive technique d Low sensitivity (only metabolites with relatively high
concentration [micrograms] can be detected)d Versatility for analyzing metabolites in biofluids,

tissues, or in vivo
d Reproducibility and repeatability d Overlap in peaks and high chemical degeneracy

(different metabolites have resonances in the same
spectral region)

d More relative quantification d Identifies mainly polar compounds
d Applicable to intact biomaterial d Usually large sample size

GC-MS d High-resolution capacity d High molecular weight analytes
d High spectral resolution d Derivatization required
d Very sensitive d Fragmentation in MS

d Requires technical skill
d Extensive sample preparation steps

d High mass accuracy to detect compounds

d Poor quantification
d Reproducible retention time

d Possible variation due to sample preparation
d Highly developed compound libraries

d Compound degradation (high temperature)
d Small sample size (50 ml)

d Problem with ionization
d High separation efficiency

d Vaporization errors

d Ideal for thermostable and volatile and nonpolar
metabolites

d More instrumental variables than in NMR and LC-MS
LC-MS d Short separation time

d High resolution
d Ideal for nonvolatile compounds d High solvent consumption and lower separation power
d Very sensitive (picogram quantities) d Lower reproducibility (within and across laboratories)
d Reasonable robustness d Ionization of metabolites
d Selectivity d Selectivity
d High mass accuracy to detect compounds
d Simple sample preparation

d Poor quantification

d Detects a wider range of metabolites than GC-MS

d Lower reproducibility for retention time with different
system

d Analysis of more polar compounds without
derivatization

d Destructive to sample

DI-MS/MS d High throughput

d High instrumental cost

d Minimal sample preparation
d Matrix effects

d Rapid analysis (1–3 min)
d Lack of differentiation between isomers

d Good reproducibility
d Lack of accuracy of selection of ions

d Highly sensitive
d Competitive ionization

d Simpler data analysis than LC-MS and GC-MS
d Considerable structural information

Definition of abbreviations: DI-MS/MS = direct infusion tandem mass spectroscopy; GC-MS = gas chromatography-mass spectrometry; LC-MS = liquid
chromatography-mass spectroscopy; NMR = nuclear magnetic resonance.
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treatment (54, 55), and completion of
treatment (56).

Metabolomics may help increase our
understanding of the pathophysiology of
nontuberculous mycobacterial diseases.
These diseases are rising globally, but are
less understood and have fewer treatment
options that tuberculosis (57). Biomarkers,
once established, may function as
important tools in clinical trials (58).
Although morbidity and mortality will
usually remain the primary end points,
biomarkers, once validated with these
outcomes, may aid the analysis (compared
with the current 130-yr-old gold standard
of culture) and study design by allowing
fewer participants to be enrolled.

Metabolomics as
Predictive Biomarkers

Metabolites can be used as biomarkers of
effective treatment. LC-MS–based
metabolomics on urine showed specific
biosignatures with treatment of tuberculosis
in African patients; 45 metabolites changed
in the month after treatment completion
compared with baseline (59). Biomarkers

could also delineate the host immune
response against mycobacterial infection.
The immune response differs with
mycobacterial species and strains, and
different inocula.

Metabolomics could clarify the
interaction of genetic and environmental
factors. For example, metabolomics could
show if and how the composition of the diet,
the occurrence of life events, and the
composition of the microbiome could
change the metabolomic patterns under
normal conditions and in response to
disease processes (60, 61).

Measurement of the number and
amounts of metabolites with time
provides unprecedented information
for basic research of biological and
pathophysiological pathways. Using
isotopically labeled substrate in a targeted
approach is an important area of
metabolomics called “fluxomics” (62).
Mass spectroscopy–based (LC and GC-MS)
fluxomics can track stable isotope–labeled
elements, such as 2H, 13C, and 15N, to
reproducibly identify their compounds in
various biological processes. This is leading
to new insights in the metabolic pathways
in vitro and in experimental models of

infection. These methods may show the
precise metabolic changes occurring as
M. tuberculosis enters a dormant state,
which is critical for its survival under
conditions of stress, and is important for
new drug development. 1H-13C-NMR–
based metabolomics has been applied to
determine the lethal dose of D-cycloserine
and to show its effect on the metabolic
pathways of peptidoglycan biosynthesis.
Cycloserine inhibits several enzymes
within the peptidoglycan biosynthesis
pathways, particularly D-alanine–D-alanine
ligase, a main enzyme of this pathway
(63). These methods can be used to
study the growth and replication of the
organisms.

Metabolomics has shown that when
mycobacteria are stressed by nitrogen
limitation they produce free
glucosylglycerate, by a mechanism specific
for nitrogen stress but not oxidative or
osmotic stress (64). These metabolic
pathways help keep the mycobacteria alive
by reducing the growth rate and decreasing
the uptake of ammonium (64). A summary
of the metabolomic profiles of various
mycobacteria, using analytical tools, is
shown in Table 3.

Alpha-L-mannopyranose

Glyoxylate Cycle

D-citramalic acid

Cytoplasmic membrane

Cytoplasm

a) D-glucosamine 

a) 2-deoxy-D-erythro-
pentitol
b) Methyl-17-methyl-
octadecanoic acid

b) Alpha-D-glucopyranose-
2-acetylamino-2-deoxyoleic acid

Nonadecanoic acid

Alpha-D-galactopyranose

Peptidoglycan layer

Peptidoglycolipids

Glycoproteins

Mycolic acid layer

Glycolipids

Figure 1. Schematic illustration of the cell envelope of Mycobacterium tuberculosis and potential metabolite targets. Metabolites from the peptidoglycan
layer (D-glucosamine and 2-acetylamino-2-deoxy-b-D-glucopyranose) can be used for mycobacterial infection diagnosis, and metabolites from the
mycolic acid layer (2-deoxy-D-erythro-pentitol and methyl-17-methyloctadecanoic acid) can be used to differentiate mycobacterial species.
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Precision Medicine

Precision medicine seeks to classify diseases
into subgroups that in the past have been
grouped together because of the lack of good
discriminators. The use of metabolomics,
in conjunction with genomics,
pharmacogenomics, and proteomics, may
allow more precise definition and treatment
of the mycobacterial infections. Moreover,
pharmacometabolomics is emerging as
a new science aiming to understand the
role of metabolites in antimycobacterial
drug development and monitoring (65).
Metabolites measured before and after drug
administration can be used to evaluate
the response to the medicine and could lead
to a better understanding of the biological
processes involved in effective treatment
(19). Metabolomics may be able to identify
susceptibility to drug toxicities and drug
interactions in patients and healthy
individuals (66). Snapshot measurement
of hundreds of metabolites, serial analysis,
and easy sampling of various body fluids
are advantages that metabolomics provides
for evaluating drugs in humans.

Metabolomics-based studies on animals,
cell lines, and humans can be applied to
characterize drug absorption, distribution,
metabolism, and disposition. The specific
metabolites produced during catabolism of
drugs, as well as the metabolic profile changes,
can be measured with sensitive analytical
tools. Ametabolomics approach could be used
to study the success or failure of treatments
in individuals. This could then determine
which treatments will be effective in various
individuals, based on their metabolism (67).

Challenges

Althoughmetabolomics has great potential, it
also has great challenges and limitations.
Many of the studies are exploratory. By
the nature of the science, there is variability in
metabolite concentration caused by several
sources including timing within a condition,
biological variation, instrument variation,
and sample preparation variation.
Instrument and sample preparation variation
are important sources of error and can cause
both false positives and false negatives, as
shown in the separation of nonsurvivors from
survivors by Leichtle and colleagues (68).

Reproducibility and specificity are
two major obstacles to be overcome before
metabolomics can be useful in clinicalT
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studies. Impressive results found in studies of
a few patients must be repeatable and specific
in larger studies (68). Metabolism profoundly
changes with age, sex, variations in gut
microbial composition, and lifestyle (28, 69).

A great challenge for metabolomics is
to describe and accurately classify the many
human metabolites and their importance,
using different types of instrumental and
statistical analysis. Finding and validating
biomarkers is a major need (51). The
selection of biomarkers of interest by
genomics, proteomics, or metabolomics
based on performance criteria is difficult
and time consuming. The validation of
biomarkers is also complicated and must
address important parameters such as the
range of the measurements, accuracy,
selectivity, linearity, reproducibility,
robustness, and the limits of detection (70).

The statistical challenges include how
to analyze, interpret, and describe the vast
amount of data generated. Biomarkers
discovered by metabolomics should be
validated both internally and externally.
Multivariate analyses provide prediction
models creating R2 and Q2 parameters to
assess variability and predictability,
respectively. Cross-validation and
permutation are methods for internal
validation to find false-correlated and
overfitted models. Q2 (goodness of

prediction) is obtained by cross-validated
and permutation methods in optimized
potentials for liquid simulations, a
statistical method of partial least squares
regression.

Candidate biomarkers need to be
externally validated by testing new
independent samples, preferably from a new
center operating with a different analytical
machine and user (71). Tuberculosis
biomarker signatures should be validated in
different geographically and ethnically
diverse populations and take into account
coinfection with malaria and HIV, which
affect metabolomic biosignatures (52).

Future Perspectives

Although the future of metabolomics for
mycobacterial disease is great, the field is in
its infancy. It should be integrated with
genomics and proteomics to gain a complete
picture of biologic and cellular processes.
Metabolomics can be applied to the
diagnosis, treatment, and prognosis of
patients with mycobacterial infections
(Table 4). This may be particularly
important for infection with the
environmental mycobacteria, about which
there are more questions and less certainty
than concerning infection withM. tuberculosis.

Validation studies to confirm
biomarkers could be part of large
multicenter studies, which may be designed
for other goals. The large studies might
be able to account for the heterogeneity in
genetic backgrounds and environmental
factors, which include age, sex, race,
comorbidities, types of pathogens, and
sources of infection (72). Before
metabolomics can be incorporated into
routine clinical practice, studies in larger
and diverse groups of patients will be
needed.

Conclusions

Among “omic” sciences, metabolomics is
a promising approach for many different
disorders, including mycobacterial disease.
Its sensitivity may develop biomarkers
better than other “omics,” but the field is in
its infancy and the great sensitivity and
enormous data produced are currently
limitations as well as a source of promise.
Its ability to render a complete picture of
ongoing biological processes is most
appealing especially when combined with
the other genomic-based methods. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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of inflammation, immunosuppression and stress with active disease
are revealed by metabolomic profiling of tuberculosis patients. PLoS
One 2012;7:e40221.

9 Mickiewicz B, Vogel HJ, Wong HR, Winston BW. Metabolomics as
a novel approach for early diagnosis of pediatric septic shock and its
mortality. Am J Respir Crit Care Med 2013;187:967–976.

10 Mickiewicz B, Duggan GE, Winston BW, Doig C, Kubes P, Vogel HJ;
Alberta Sepsis Network. Metabolic profiling of serum samples by 1H
nuclear magnetic resonance spectroscopy as a potential diagnostic
approach for septic shock. Crit Care Med 2014;42:1140–1149.

11 Ghannoum MA, Mukherjee PK, Jurevic RJ, Retuerto M, Brown RE,
Sikaroodi M, Webster-Cyriaque J, Gillevet PM. Metabolomics reveals
differential levels of oral metabolites in HIV-infected patients: toward
novel diagnostic targets. OMICS 2013;17:5–15.

12 Philippeos C, Steffens FE, Meyer D. Comparative 1H NMR-based
metabonomic analysis of HIV-1 sera. J Biomol NMR 2009;44:
127–137.

13 Nicholson JK, Lindon JC, Holmes E. “Metabonomics”: understanding
the metabolic responses of living systems to pathophysiological
stimuli via multivariate statistical analysis of biological NMR
spectroscopic data. Xenobiotica 1999;29:1181–1189.
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