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Using random forests to diagnose aviation turbulence
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Abstract Atmospheric turbulence poses a significant hazard to aviation, with severe en-
counters costing airlines millions of dollars per year in compensation, aircraft damage, and
delays due to required post-event inspections and repairs. Moreover, attempts to avoid tur-
bulent airspace cause flight delays and en route deviations that increase air traffic controller
workload, disrupt schedules of air crews and passengers and use extra fuel. For these rea-
sons, the Federal Aviation Administration and the National Aeronautics and Space Adminis-
tration have funded the development of automated turbulence detection, diagnosis and fore-
casting products. This paper describes a methodology for fusing data from diverse sources
and producing a real-time diagnosis of turbulence associated with thunderstorms, a signif-
icant cause of weather delays and turbulence encounters that is not well-addressed by cur-
rent turbulence forecasts. The data fusion algorithm is trained using a retrospective dataset
that includes objective turbulence reports from commercial aircraft and collocated predictor
data. It is evaluated on an independent test set using several performance metrics including
receiver operating characteristic curves, which are used for FAA turbulence product evalua-
tions prior to their deployment. A prototype implementation fuses data from Doppler radar,
geostationary satellites, a lightning detection network and a numerical weather prediction
model to produce deterministic and probabilistic turbulence assessments suitable for use by
air traffic managers, dispatchers and pilots. The algorithm is scheduled to be operationally
implemented at the National Weather Service’s Aviation Weather Center in 2014.
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1 Problem of interest
1.1 Aviation impact of en-route turbulence

Nearly everyone who has flown in an aircraft has experienced atmospheric turbulence—that
unnerving jolting up and down and side to side that feels like an amusement park ride gone
bad. Although commercial airline crashes are now exceedingly rare, turbulence encounters
continue to remind passengers that flying is not completely safe. Indeed, according to a study
of National Transportation Safety Board (NTSB) data from 1983-1997, turbulence was the
predominant cause of accidents and injuries in large commercial aircraft, accounting for
about 70 % of all weather-related incidents (Eichenbaum 2000). Including general aviation
(GA) aircraft, turbulence contributed to 664 accidents leading to 609 fatalities (all but 3 GA),
239 serious injuries and 584 minor injuries over that time period. A joint government and
industry study (CAST 2001) estimated that there were 15,000 minor injuries on commercial
aircraft over the same period that were not reported to the NTSB. The CAST study also
found that 13 % of NTSB cases included minor cabin damage, and 4 % were associated
with severe aircraft damage. One study estimated the costs to U.S. airlines associated with
these incidents, including liability lawsuits, lost crew work time, inspections, and repairs
at nearly $200 million per year (Eichenbaum 2003). Moreover, even turbulence that doesn’t
cause injuries or accidents shapes the public’s impression of an airline’s safety, thus affecting
its business. Sharman et al. (2006a) note that pilot reports (PIREPs) of moderate-or-greater
turbulence encounters average about 65,000 per year, and severe-or-greater reports average
5,500 per year.

Airline dispatchers and pilots strive to avoid turbulence or quickly exit turbulent regions
when they chance upon them. A severe or extreme turbulence report frequently causes the
aviation weather forecaster responsible for that region to issue a turbulence Significant Me-
teorological Information advisory (SIGMET), and the airspace nearby can be shut down
to air traffic or have its capacity for flights reduced. Pilots’ requests for route changes to
find smoother air can significantly increase air traffic controller workload; a survey of FAA
Air Route Traffic Control Centers, Traffic Management Units and Terminal Radar Control
(Cook 2008) found that turbulence ranked behind only ceiling and visibility as the most
important weather factor affecting the National Air Space (NAS). Avoiding areas of sus-
pected turbulence results in increased fuel expenditure and flight delays that can cascade
into disruptions to other flights and quickly escalating costs (Cook et al. 2004).

Atmospheric turbulence is often generated by large-scale forcing mechanisms such as the
jet stream, upper level fronts, wind flow over rough terrain, or thunderstorm updrafts, down-
drafts, windshear and outflow. Avoiding turbulence associated with thunderstorms, known as
convectively-induced turbulence (CIT), is particularly difficult, and CIT has been estimated
to be responsible for 60 % of turbulence-related aircraft accidents (Cornman and Carmichael
1993). 86 % of the 44 aviation accident cases analyzed by Kaplan et al. (2005) were found
to be within 100 km of convection. CIT can exist at small scales and short time periods,
and the dynamic evolution of thunderstorms makes CIT notoriously difficult to accurately
diagnose or forecast (Lane et al. 2012).

1.2 Limitations of thunderstorm avoidance guidelines
Thunderstorms are responsible for aviation hazards including lightning, hail, windshear,

and airframe icing, but CIT is unique in that it can produce a threat well away from the
active storm. For this reason, FAA guidelines specify that aircraft should circumnavigate
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thunderstorms by wide margins, affecting large regions of airspace on days of widespread
convection. They include the following (Federal Aviation Administration 2012):

1. Don’t land or takeoff in the face of an approaching thunderstorm. A sudden gust front of
low level turbulence could cause loss of control.

2. Don’t attempt to fly under a thunderstorm even if you can see through to the other side.
Turbulence and wind shear under the storm could be disastrous.

3. Don’t fly without airborne radar into a cloud mass containing scattered embedded thun-
derstorms ...

4. Don’t trust the visual appearance to be a reliable indicator of the turbulence inside a
thunderstorm.

5. Do avoid by at least 20 miles any thunderstorm identified as severe or giving an intense
radar echo. This is especially true under the anvil of a large cumulonimbus.

6. Do clear the top of a known or suspected severe thunderstorm by at least 1,000 feet
altitude for each 10 knots of wind speed at the cloud top ...

7. Do circumnavigate the entire area if the area has 6/10 thunderstorm coverage.

8. Do remember that vivid and frequent lightning indicates the probability of a strong thun-
derstorm.

9. Do regard as extremely hazardous any thunderstorm with tops 35,000 feet or higher ...

Interpretation of these guidelines is subjective and limited by the information available to
airline dispatchers and pilots. Moreover, recent studies have shown that significant CIT may
occur outside these prescribed margins and may be dependent on environmental factors in-
visible to a pilot (Lane et al. 2012), while the NEXRAD Turbulence Detection Algorithm
(NTDA) has frequently identified in-cloud areas near storms with benign null or light tur-
bulence (Williams et al. 2006, 2008b). For these reasons, an automated, real-time gridded
product that explicitly identifies hazardous regions of CIT is desirable.

1.3 Limitations of operational turbulence forecasts

The study by Eichenbaum (2000) found that only 65 % of the NTSB turbulence-related
accidents had either a valid Airman’s Meteorological Information advisory (AIRMET) or
SIGMET at the time and location of the accident, and thus 35 % would have been unex-
pected by the flight crews. Moreover, AIRMET and SIGMET polygons are often relatively
large compared to the actual hazard area. In order to improve the guidance available to
dispatchers and air traffic managers, the FAA Aviation Weather Research Program (AWRP)
has sponsored the development of the Graphical Turbulence Guidance (GTG) product (Shar-
man et al. 2006b). GTG uses operational rapid-update numerical weather prediction (NWP)
model output to compute a number of derived turbulence “diagnostics” and combines them
using fuzzy logic to create 3-D, 0-12 hour turbulence forecasts over the conterminous
U.S. (CONUS). GTG runs operationally at the National Weather Service (NWS) Aviation
Weather Center (AWC) and is available online via the Aviation Digital Data Service (ADDS)
at aviationweather.gov/adds/turbulence/.

GTG development (Sharman et al. 2006a, 2006b) has followed an incremental approach,
focusing first on upper-level clear-air turbulence (CAT) and then extending to mid-levels and
addressing mountain-wave turbulence (MWT). However, the currently operational version,
GTG 2.5, does not explicitly address CIT. Both GTG 2.5 and the new GTG 3 currently under
development use the Weather Research and Forecasting Rapid Refresh (WRF-RAP) NWP
model (Benjamin et al. 2006), which produces hourly 13-km horizontal resolution forecasts
that are too coarse to fully resolve thunderstorms. Moreover, WRF-RAP forecasts are not
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available until an hour or more after they are initialized, and hence often do not provide
meaningful information about new and rapidly evolving storms.

In recent years, analysis of en-route turbulence reports, case studies and fine-scale sim-
ulations have facilitated better understanding of some sources of CIT. These include the
production, upward propagation and breaking of gravity waves when a convective cell pen-
etrates the tropopause (Lane et al. 2003; Trier et al. 2012); however, conditions for wave
breaking appear highly dependent on the storm environment (Lane and Sharman 2008).
Fovell et al. (2007) showed that ducted gravity waves could propagate away from a storm
and cause isolated, transient regions of turbulence. Trier and Sharman (2009) found that the
outflow from large storm systems could interact with the ambient flow to cause wind shear
that produced turbulence hundreds of km away and hours later. These studies suggest that
combining information about the storm environment obtained from NWP models with much
higher resolution remote observations of storm attributes will be necessary to best identify
regions of likely CIT. However, doing so requires a more flexible data fusion methodology
than that currently used by GTG.

1.4 Need for tactical turbulence diagnosis products

The real-time information about the current turbulent state of the atmosphere required by
pilots and dispatchers for making tactical en-route decisions is not adequately provided via
the FAA’s thunderstorm avoidance guidelines or by currently operational turbulence fore-
casts. To address this deficiency, the FAA Aviation Weather Research Program (AWRP) has
sponsored the development of a GTG “Nowcast” (GTGN) component for GTG 3 that will
combine turbulence observations, inferences and forecasts to produce new turbulence as-
sessments every 15 minutes. One component of the GTGN system is a Diagnosis of CIT
(DCIT) module that focuses on identifying likely regions of existing near-storm turbulence
based on the latest observations and NWP model data (Williams et al. 2008b, 2012). The
DCIT and GTGN products will also address requirements for the Next Generation Air Trans-
portation System (NextGen), which includes gridded deterministic and probabilistic now-
casts and forecasts to support the increasing automation of air traffic management systems
(JPDO 2008; Lindholm et al. 2010; Sharman and Williams 2009).

2 Data sources and preparation

The goal of DCIT is to fuse remote observations and NWP model data in a real-time algo-
rithm to produce 3-D gridded diagnoses of CIT. The “truth” data used for DCIT training
and evaluation must be objective and have sufficiently high temporal and spatial resolution
to capture even small-scale, transient patches of CIT. The predictor data must be operational
(i.e., reliable), free or low-cost and readily available at the AWC via standard communica-
tions channels with minimal latency.

2.1 Automated aircraft turbulence reports

The FAA sponsored the development and implementation on select commercial aircraft of
a system that provides high-resolution, automated, objective turbulence reports suitable for
use as “truth” in training DCIT (Cornman et al. 1995, 2004). The system reports eddy dis-
sipation rate (EDR, el/3), an aircraft-independent atmospheric turbulence metric, including
both the median and peak EDR over approximately one-minute intervals. DCIT’s prediction
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target is the peak EDR because it supplies a good indication of the turbulence hazard and is
better distributed over the reporting bins than the median value.

NCAR maintains a database of these in situ EDR reports from approximately 95 United
Airlines (UAL) Boeing 757 (B757) aircraft and approximately 80 Delta Air Lines (DAL)
Boeing 737 (B737) aircraft. UAL data are primarily from routes between the northeast and
southwest U.S., while DAL also includes the southeast and thus provides somewhat more
comprehensive coverage. The UAL algorithm, developed in the mid-1990s, utilizes aircraft
accelerometer data along with an aircraft response model. EDR data are coarsely binned
with just 8 bins centered at 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65 and 0.75 m*3s~!, time
is reported to the nearest minute, time and position are given for every fourth report, and
the algorithm’s onboard quality control capabilities are limited. The DAL implementation,
developed several years later, utilizes aircraft-measured vertical winds, obviating the need
for an aircraft response function, and includes a sophisticated on-board quality control al-
gorithm. It bins the EDR data at 0.02 m*3s~! and reports time to the nearest 10 s. How-
ever, in order to save communications costs, it does not transmit every report. Rather, it
produces a routine report every 15 minutes and includes “triggered” reports when the mea-
sured turbulence reaches certain intensity or longevity thresholds. It does report all peak
EDR > 0.20 m?3s7!,

In situ EDR report values may be roughly associated with atmospheric turbulence sever-
ity, although actual aircraft experience of turbulence depends on factors such as its weight,
structure (particularly wing area), airspeed, and altitude. For instance, light aircraft generally
experience more severe turbulence because they are more easily moved by variable winds.
The International Civil Aviation Organization (2001) recommended interpreting 0.0-0.1 as
null turbulence, 0.1-0.2 as light, 0.2-0.3 as light to moderate, 0.3-0.4 as moderate, 0.4-0.5
as moderate to severe, 0.5-0.6 as severe, 0.6 to 0.7 as severe to extreme, and greater than
0.7 m?3s~! as extreme, and these thresholds were used in the official GTG 2.5 evaluation
(Wandishin et al. 2011). Since commercial aircraft typically fly at airspeeds near 250 ms™',
a 1-minute flight segment may be 15 km in length, and the peak EDR locations may be in
error by as much as 8 km or so. Nevertheless, these uncertainties are significantly less than
those of pilot reports (PIREPs), which have traditionally been used for turbulence forecast
training and evaluation. PIREPs are subjective, non-representative and frequently involve
significant errors in the reported event’s location and time (Schwartz 1996). The high tem-
poral and spatial resolution and objective nature of the in situ EDR reports make them ideal
for the present study.

2.2 Predictor data
2.2.1 Numerical weather prediction model and diagnostics

Despite their limitations, NWP model data and derived diagnostics provide valuable infor-
mation about the storm environment as well as turbulence produced by large-scale, long-
lasting forcing mechanisms. The DCIT training set includes 2-D and 3-D fields derived
from the 13-km WRF-RAP NWP model including winds, turbulent kinetic energy (TKE),
convective available potential energy (CAPE), convective inhibition (CIN), potential tem-
perature, humidity mixing ratio, and many others. It also makes use of derived quantities
and diagnostics that have been developed for turbulence forecasting including Richardson
number (Ri), structure function eddy dissipation rate, horizontal and vertical shear, inverse
stability, tropopause height, tropopause strength and a large number of others (Sharman et al.
2006b). In addition, based on studies like those described in Lane et al. (2012) and intuition
about possibly relevant environmental factors, a number of new quantities were computed,
e.g., distance above or below the tropopause.
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2.2.2 Ground-based Doppler radar

The nation’s network of Weather Surveillance Radar-1988 Doppler (WSR-88D) radars, also
known as NEXRADs, provides information about the location and intensity of clouds and
storms. The DCIT training set includes information about the radar echoes, known as radar
reflectivity, provided by the National Severe Storms Laboratory (NSSL) National Mosaic
system (Zhang et al. 2011). These include composite reflectivity (the maximum reflectivity
in a column), echo tops (the highest altitude with reflectivity >18 dBZ), and vertically-
integrated liquid (an estimate of the total liquid water in a column).

Additionally, the Doppler capabilities of the radars can be used to measure wind variabil-
ity and thereby determine turbulence in clouds where the radar signal is sufficiently strong
and free of contaminants. The NTDA (Williams et al. 2006, 2008b) computes EDR from
individual radar sweeps and merges the results from 133 NEXRADs over the CONUS to
produce 3-D maps of in-cloud turbulence. Note that the NTDA is not able to detect turbu-
lence outside the cloud boundary, which must be inferred by other means. In addition to
the 3-D EDR field, 2-D turbulence “tops” fields were created from the highest altitudes of
NTDA-detected light, moderate, and severe turbulence.

2.2.3 Geostationary satellite imagery

The National Oceanic and Atmospheric Administration maintains geostationary operational
environmental satellites (GOES) that make periodic radiometric measurements of the earth
at several channels of the electromagnetic spectrum with a temporal frequency ranging from
15 minutes over the CONUS to 3 hours for other parts of the hemisphere. These include
visible light, channel 2 (3.9 um wavelength), channel 3 (6.7 um), channel 4 (10.7 um), and
channel 6 (13.3 um) windows that provide information about clouds and storms. In addition
to the raw imager data, several derived products were computed. For example, overshooting
tops, identified using the longwave infrared 10.7 um channel (Bedka et al. 2010), are satellite
signatures of convective cells that penetrate into the lower stratosphere and indicate the
likely generation of gravity waves. The presence of a tropopause fold, where the tropopause
changes rapidly in height, is often associated with turbulence and may be derived using the
water vapor (6.7 um) channel (Wimmers and Moody 2004; Wimmers and Feltz 2012).

2.2.4 Lightning detection network

Lightning strike data from the National Lightning Detection Network (NLDN) owned by
Vaisala Oyj (Cummins and Murphy 2009) is also used. The number and frequency of light-
ning strikes are often related to the intensity of the storm and the updraft inside it. In fact,
Deierling et al. (2011) show evidence that lightning density may be related to the volume of
in-cloud convective turbulence as measured by the NTDA.

2.2.5 Derived fields and features

In order to investigate the predictive value of the observed and model quantities described
above, a number of derived fields were computed via local neighborhood filters, arithmetic
combinations of fields, and distances to certain thresholds. For example, to capture infor-
mation about spatial scales and proximities, statistics such as max, min, mean, standard
deviation and number of good measurement points were computed over 10, 20, 40, 80 and
160-km radius discs for the radar composite reflectivity, composite reflectivity height and
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echo tops fields, the NTDA turbulence tops fields, the satellite imager fields and the 3-D
NTDA EDR and reflectivity fields. Vertical distances were computed from the aircraft alti-
tude to various reflectivity and EDR thresholds, to the tropopause, and to the surface. Dif-
ferences were computed between the temperature at the aircraft altitude or the surface and
various statistics of the GOES 10.7 um brightness temperature, which represents the tem-
perature of the cloud top or, when no cloud is present, the Earth’s surface. Differences were
also computed between the various GOES channels, and between values of their disc statis-
tics. Such differences can often be powerful predictors; for instance, the difference between
the longwave infrared (10.7 um) and water vapor (6.7 um) channels was found so effective
at determining thunderstorm intensity that it has been named the Global Convective Diag-
nostic (GCD, Martin et al. 2008). Finally, distances were computed from the aircraft in situ
EDR report location to various features including reflectivity, NTDA, lightning density and
echo top contours, overshooting tops, and tropopause folds. In order to determine whether
direction was important, these distances were also computed within six 60° “wedges” ori-
ented relative to the wind vector at the aircraft location. In all, 1030 candidate predictors
were computed for this investigation. However, the results presented here do not utilize the
individual wedge distances, leaving a total of 778 candidate predictors.

2.3 Dataset preparation
2.3.1 Preparing “truth” data

A ground-based quality control algorithm monitors the distribution of the in situ EDR re-
ports from each aircraft and flags them as bad if it deviates from expected norms. This
happens periodically, and may result from a software, communications or instrument mal-
function. The archived turbulence data are sorted into flights, and omitted data positions
and times are estimated via interpolation. For DAL data, if routine reports are present every
15 minutes, intermediate reports are assumed to be missing because the reporting threshold
of 0.2 m*?s~! is not met; 14 reports of zero turbulence are inserted into these segments.
(Note that the 0.0-0.2 m?3s~! interval therefore has the correct total count, but not the
correct distribution within that interval.) The time, distance and change in altitude of each
flight segment between reports is computed, and only reports associated with time intervals
between 45 and 75 seconds and altitude changes less than 3,000 ft are kept in the dataset.
The position used for collocation with predictor variables is computed as the midpoint of
each one-minute flight segment.

2.3.2 Handling missing predictor data

Predictor data can be missing for many reasons. For instance, an NWP model run or mea-
surement may be missing from the archive maintained at NCAR or may be corrupted. Radar
data are missing if the aircraft report is out of radar range or if there was no weather to
return a signal. Data values that are missing for a known reason (e.g., no weather present)
are replaced with an appropriate substitute value or flag. Instances for which one or more
of the predictor variables is missing for an unknown reason are omitted from the dataset.
While imputation or random assignment can be used to deal with missing data, eliminating
compromised instances ensures the integrity of the dataset and facilitates the comparison
of several statistical learning methods. For the present study, which utilizes data collected
between March 10 and November 4, 2010, this procedure reduced the DAL dataset from
7,964,159 to 5,623,738 and the UAL dataset from 10,583,369 to 6,595,922 instances.
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3 Machine learning technique: random forest

The machine learning method used in this study is the random forest classifier (Breiman
2001). Random forests (RFs) are collections of weak, weakly-correlated decision trees that
function as “ensembles of experts.” Each tree is trained using a bootstrap sample of the
training data, and at each node the best split is selected from among a random subset of
the predictor variables. This process ensures that each tree utilizes the training data and
predictor variables in a different way, reducing its statistical dependence on the other trees.
RFs have seen numerous successful applications over the past decade, particularly in the
biomedical field (e.g., Diaz-Uriarte and de Andrés 2006). They have also been successfully
used in a number of environmental science applications. For example, Pal (2005) showed
that an RF could improve satellite radiometer-based land cover classification and argued that
it was simpler to use than alternatives such as support vector machines. RFs have also been
used by the author for thunderstorm prediction (e.g., Williams et al. 2008a) and for earlier
work on CIT diagnosis (e.g., Williams et al. 2008b).

RF appears to be a good candidate methodology for diagnosing CIT using the diverse
set of predictors described above. Many, such as the GTG diagnostics, are monotonically
related to turbulence likelihood or intensity, but others may have a more complicated pre-
dictive relationship or are useful primarily in concert with other variables. The RF has the
potential to utilize the joint distribution of the predictor variables. Used for classification,
the votes of the RF can be related to a probability of turbulence. And RFs are known to be
less susceptible to overfitting a training dataset, making them more likely to generalize well
without the need for “optimal stopping” or similar techniques.

Moreover, because not all training instances are used to train each decision tree, those not
used—the so-called out-of-bag instances—may be used to evaluate the performance of that
tree, and this provides a way of quantifying the “importance” of each predictor variable. The
RF estimates the “permutation accuracy importance” for each predictor by computing the
degradation in classification performance over out-of-bag instances for each tree when the
predictor’s values are permuted over instances, then aggregating the results. These impor-
tance assessments can be quite useful in selecting predictors from a large set of candidates,
as described below.

4 Empirical results
4.1 Training and testing datasets

Because the main purpose of this study is to predict turbulence associated with convection,
only in situ EDR reports within 80 km of rain regions (composite reflectivity >18 dBZ)
were used. To help ensure independence between the training and testing datasets, train-
ing data were sampled only from odd Julian days and testing data only from even Julian
days, or vice-versa. UAL and DAL datasets were analyzed separately because it wasn’t
clear that their EDR values were identically calibrated. The data were also split into upper
levels (above 25,000 ft) and mid-levels (10,000-25,000 ft); turbulence mechanisms are of-
ten different in these two levels, and the dataset includes many more in situ EDR reports at
upper levels where aircraft cruise that would dominate a combined dataset. No UAL data
below 20,000 ft were used because they are deemed unreliable (Larry Cornman, personal
communication). The resulting distribution of EDR values is shown in Table 1. The RF was
trained to use the collocated predictors described in Sect. 2, including the nearest observa-
tions in time and space and NWP model data interpolated to the aircraft position, to predict
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Table 1 Counts and percentages of in situ EDR reports within 80 km of rain for mid and upper levels

In situ EDR  Turb. DAL, mid-level DAL, upper-level UAL, upper-level
m*3s71) category Count Percent Count Percent Count Percent
range descriptor

0.0t0 0.1 null 347,794 94956 % 1,707,998  98.583 % 2,167,839  97.759 %
0.1t00.2 light 13,605 3.7145 % 20,252 1.1689 % 44,193 1.9929 %
02t00.3 light-mod. 4,057 1.1077 % 3,670 0.2118 % 4,497 0.2028 %
03t00.4 moderate 678 0.1851 % 513 0.0296 % 766 0.0345 %
0.4t00.5 mod.-sev. 118 0.0322 % 100 0.0058 % 161 0.0073 %
0.5t0 0.6 severe 15 0.0041 % 11 0.0006 % 57 0.0026 %
>0.6 sev.-extr. 1 0.0003 % 7 0.0004 % 31 0.0014 %
Total 366,268 100.000 % 1,732,551 100.000 % 2,217,544  100.000 %

whether aircraft in situ peak EDR measurements would exceed 0.2 m*3s~!, the approx-

imate threshold for light-to-moderate turbulence. This operationally significant turbulence
is a rare event, constituting 1.33 % of DAL mid-level reports and just 0.25 % of DAL and
UAL upper-level values. To address this imbalance, the RF training sets under-sampled the
below-threshold instances to achieve good RF yes-no discrimination. The trained RFs were
calibrated to provide both turbulence probability and deterministic EDR assessments.

4.2 Performance evaluation

In order to be approved for operational deployment, GTG 2.5 underwent an independent
evaluation (Wandishin et al. 2011) in which turbulence “events” derived from PIREPs and
in situ EDR measurements were compared to the maximum GTG value within the neighbor-
hood of a report. Statistics were computed for probability of detection (PODy), probability
of false detection (PODn) for light, moderate, and severe turbulence thresholds, and receiver
operating characteristic (ROC) curves were produced. ROC curves plot PODy vs. 1 — PODn
as the prediction threshold varies; the closer the curve comes to the upper left corner (PODy
and PODn both 1), the closer the prediction is to perfect. GTG performance was also com-
pared to AIRMETS, showing a comparable PODy but smaller area covered, a positive result.

In the present study, only in situ EDR reports are used as “truth” since they are objective
measurements and have much more accurate positions and timestamps than PIREPs—an
essential feature for capturing small-scale, dynamic CIT. Individual reports are used rather
than multi-report “events” in order to allow calibration of RF vote counts into probability
of a turbulence encounter in a 1-min flight segment. The area under the ROC curve (AUC)
provides a valuable performance measure. As an integral, it is a stable statistic. Moreover, it
is insensitive to the relative numbers of events and non-events, meaning that it is minimally
affected by pilots’ having information that allows them to avoid many turbulent regions.
And it is closely related to the ROC curve, which allows users to select thresholds to con-
trol the tradeoff between PODy and false alert ratio (FAR, 1 — PODn). In addition to AUC,
performance was evaluated by taking the maximum true skill statistic (TSS) and critical
success index (CSI) over all the prediction thresholds, thus providing additional threshold-
independent evaluation metrics. Here TSS, which is also known as the Hanssen-Kuipers
Discriminant, is equal to PODy + PODn — 1 and is thus a useful summary of overall predic-
tion accuracy. CSI is the ratio of correct prediction “hits” to the sum hits + misses + false
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alerts; since it ignores correct nulls, CSI is often used to evaluate forecasts of rare events
such as severe thunderstorms (e.g., Schaefer 1990), and so is ideal for evaluating turbulence
predictions.

The actual utility of improved turbulence predictions will vary based on the end-user
(e.g., airline dispatcher, GA pilot, or air traffic controller), the scenario (e.g., air traffic con-
gestion, time of day), the spatial and temporal structures of the turbulent regions, and other
factors. Thus, while an aggregate metric that takes into account all the economic costs and
benefits over the U.S. air transportation system might be desirable, creating a comprehensive
metric would be difficult and it would be complicated to use in practice. However, perfor-
mance evaluations like ROC curves could be used by users to set their own thresholds based
on the relative costs of false positives and false negatives in the context of their operational
decisions. For example, Williams (2009) showed how to compute optimal routes given prob-
abilistic aviation weather forecasts and a financial model for fuel use and the average cost
of a hazardous weather encounter.

4.3 Variable selection

The permutation accuracy importance estimates produced by an RF during training are
based on classification accuracy, not contributions to the final probabilistic or determinis-
tic predictions, and it has been shown that they can be biased when the predictor fields have
varying scales of measurement (Strobl et al. 2007), as is true for this dataset. Nevertheless,
predictors that have very low or zero RF importance seem unlikely to contribute much to a
final model; thus, RF importance may be used to whittle down the list of candidate predic-
tors. Predictor importances were evaluated using separate RFs for UAL and DAL, upper and
mid-levels, and even and odd Julian days. The lowest performing predictors were removed,
particularly if they appeared to duplicate the kind of information contained in higher per-
formers or if they were particularly expensive to compute. Through this process, the list of
candidate predictors was reduced to 107.

A second stage of the variable selection process was performed via a set of forward and
backward selection experiments using AUC as the objective function. For each experiment,
random subsets were drawn from the training and testing datasets. Two steps of forward
selection (a pass through the unselected candidates to find which would yield the best per-
formance when added to the predictor list) were followed by one step of backward selection
(a pass through the predictors to see which could be removed with the least impact on per-
formance). This procedure was performed for DAL and UAL, upper and mid-levels, and
with even and odd Julian days used for the training dataset. A split of 70/30 non-turbulence
to turbulence cases was selected through sensitivity tests with only 50 RF trees. The exper-
iments were also performed using logistic regression. With this small number of trees, RFs
did not perform statistically better than logistic regression on AUC or max TSS, but did ob-
tain a slightly better max CSI. The cross-validation performance reaches a maximum after
50 to 60 iterations, at which point 17-20 predictors have been selected.

Table 2 shows the top 20 predictors for predicting DAL EDR > 0.2 m?3s~! at upper
levels using RF (left) and logistic regression (right) based on their average occurrences over
8 forward/backward selection experiments of 150 iterations each. Both results show a mix
of model, satellite, and radar-derived fields, suggesting that these sources provide comple-
mentary information. The predictors selected by logistic regression are all monotonically
related to the likelihood of turbulence. On the other hand, the RF results include a surprise,
160-km mean of Satellite Channel 6 (rank 8), which hadn’t previously been known to be
related to CIT, plus plausible predictors not monotonically related to turbulence, including
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Table 2 Forward/backward selection procedure results for RF and logistic regression

Random forest (8) Logistic regression (8)
Rank Mean Predictor name Rank Mean Predictor name
occ. occ.
1 115 Dist. to NSSL echo top > 10 kft 1 135 Model FRNTGTHRI
2 114 Model FRNTGTHRI 2 134 Diff. Alt. to 80-km max NTDA sev. top
3 104 Model RITW 3 127 Dist. to NSSL echo top > 10 kft
4 89  Model ELLROD2 4 126 10-km max of NSSL echo top
5 88  Diff. Alt. to 80-km max NTDA sev.top 5 121 Model ELLROD2
6 85 Model MWT2 6 111 Model RITW
7 79 Model ELLROD1 7 107 Model BROWN2
8 78  160-km mean of Satellite Ch. 6 8 94  Diff. Alt. to 20-km max NTDA mod. top
9 69 Model F2DTW 9 92  Model BROWNI1
10 68 Model MWT3 10 89  Model ELLROD1
11 68  40-km min of Satellite Ch. 6 11 88 Model MWT3
12 67 Model Atm. Pressure 12 87 Model EDRRI
13 66 Model BROWN2 13 85 Model DTF3
14 65  Satellite Ch. 4 minus Model temp. 14 83  20-km no. of good NTDA dBZ points
15 64 Model DUTTON 15 77 10-km no. of good NTDA dBZ points
16 63  Satellite Ch. 4 minus Satellite Ch. 3 16 76  10-km mean of NTDA composite EDR
17 58 Model NGM2 17 74 10-km max of NTDA composite EDR
18 56  160-km mean of Satellite Ch. 4 18 74 10-km min of Satellite Ch. 3
19 53 Model RICH 19 73 10-km mean of NSSL echo top
20 52 Diff. Model pres. to Mod. surf. pres. 20 69 Model IAWINDRI

NWP model atmospheric pressure (rank 12), which is related to altitude. These fields may
have non-linear relationships to turbulence, or may modulate the predictive relationships
of the other variables. In any case, it appears that RF may have the potential to discover
and exploit more complex relationships. This hypothesis is supported by the RF’s superior
performance, as described in the following section.

4.4 Evaluation and calibration

The variable selection process ultimately resulted in identification of 39 predictors that con-
tributed significantly to one or more of the upper or lower-level DAL or UAL datasets.
These were used to perform 32 cross-validation experiments, training RFs on samples from
even Julian days and testing them on samples from odd Julian days and vice-versa, using a
90/10 split that sensitivity studies found ideal for 200 trees. For comparison, identical cross-
validation experiments were performed using k-nearest neighbors (KNN) with k = 100 and
logistic regression (LR); the skill of the GTG 3 1-hr forecast and “storm distance” were
also evaluated. Storm distance was defined as the distance to NSSL echo tops exceeding
10,000 ft, i.e., the top predictor in the RF variable selection (Table 2) and the best of several
observation-derived fields that were evaluated. Table 3 shows the skill statistics including
AUC, max CSI, and max TSS for each of these. Figure 1 (left) shows the ROC curves for all
32 cross-validation experiments. The RF ROC curves are quite stable, but those for GTG 3
and storm distance vary based on whether the testing dataset is from odd or even Julian
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Table 3 Skill score comparisons for DAL upper levels (fop) and lower levels (bottom), including standard
deviation, over 32 cross-validation experiments

DAL upper level skill scores (32)

Method AUC Std MaxCSI Std MaxTSS Std
RF 0.924 0.002 0.075 0.006 0.699 0.006
KNN 0.915 0.001 0.064 0.003 0.688 0.003
LR 0.915 0.004 0.060 0.005 0.677 0.011
GTG3 0.816 0.008 0.034 0.002 0.483 0.011
Storm distance 0.743 0.016 0.021 0.0005 0.389 0.026
DAL lower level skill scores (32)
Method AUC Std MaxCSI Std MaxTSS Std
RF 0911 0.002 0.137 0.005 0.678 0.004
KNN 0.895 0.002 0.114 0.005 0.645 0.004
LR 0.893 0.002 0.112 0.003 0.638 0.004
GTG3 0.736 0.005 0.069 0.002 0.377 0.011
Storm distance 0.650 0.009 0.042 0.003 0.243 0.009
1 1 1 1
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Fig. 1 (Left) ROC curves from the 32 DAL upper-level cross-validation experiments for the RF (blue),
GTG 3 prototype (green), and distance to storms as indicated by NSSL echo top > 10,000 ft (;magenta).
(Right) Votes to probability calibration curve for the DAL upper-level RF (Color figure online)

days, yielding two distinct sets of curves. The ROC curves and statistics show that the RF
provides better performance in diagnosing CIT than the other methods. Note that the pro-
totype GTG 3 was tuned using PIREPs and EDR data collected over 2010 and 2011, so
this is not an unfair comparison. Also, although the variable selection process utilized both
training and testing sets, the danger of overtraining is minimal because numerous selection
experiments were aggregated, the number of selected predictors is relatively large, and the
cross-validation experiments were performed independently.

A final RF was created using the same sample size but drawing training data from all
days. Its vote counts were calibrated into probabilities by combining the test set results from
the 32 cross-validation experiments and tallying the frequency of turbulence observed for
each vote count. Figure 1 (right) shows the raw frequencies and a smoothed calibration
curve. The maximum observed frequency is under 100 %; this is not surprising since turbu-
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lence is an essentially random process, and predicting turbulence encounters with certainty
at 1-min resolution is very difficult. Additionally, the training dataset includes turbulence re-
ports only where aircraft fly, which rarely include places where turbulence is very likely. The
RF votes were also calibrated to EDR by mapping the votes to the lognormal distribution of
aircraft peak EDR measurements. Since the mappings are monotonic, the estimated AUC,
max TSS and max CSI for both calibrated products are the same as those for the vote-based
cross-validation experiments.

The selection of training and testing sets from odd and even Julian days is intended
to produce representative yet independent sets (e.g., if instances were drawn completely
randomly, adjacent turbulence reports might often end up in different sets), and the cross-
validation estimates how well an RF will generalize. To test the accuracy of this approach,
data from March 13—September 15 of both 2010 and 2011 were assembled, though NTDA
fields weren’t available in 2011 and so were omitted. Using DAL upper-level data, 32x
cross-validation with training and testing datasets drawn from odd and even Julian days
produced the following skill scores and (standard deviations): mean AUC = 0.919(0.002),
MaxCSI = 0.056(0.005), and MaxTSS = 0.695(0.006). An identical cross-validation ex-
periment with training and testing dataset pairs drawn from 2010 and 2011 produced a mean
AUC = 0.915(0.009), MaxCSI = 0.051(0.005), and MaxTSS = 0.688(0.019). Thus, the
RF’s generalization between years was slightly poorer than suggested by cross-validation
using odd and even Julian days; however, this difference was small relative to the disparity
with the GTG 3 1-hr forecast scores: mean AUC = (0.795(0.004), MaxCSI = 0.027(0.001),
and MaxTSS = 0.449(0.005). DCIT’s skill will also be affected in practice by the lag time
between its creation and subsequent use over the next 15 minutes of evolving weather before
the next diagnosis. However, there are also time differences between the predictor field valid
times and the in situ EDR reports used for the cross-validation study, and case study time
loops of the RF-based DCIT turbulence diagnoses generally show smooth transitions from
one frame to the next. Thus, while it will be fully considered in the official GTG 3/GTGN
evaluation, the lag isn’t expected to significantly erode the superiority of DCIT over the
valid GTG forecast.

4.5 Case study

In the evening of May 25, 2011, a line of deep convective storms developed from eastern
Texas to western New York and significantly disrupted air traffic by blocking most east-west
routes. The FAA’s Air Traffic Control System Command Center database, available online
at www.fly.faa.gov, indicates that at 00:24 UTC on May 26, 2011, an advisory was issued
noting constraints due to weather in the Air Route Traffic Control Center (ARTCC) areas
for KZOB (Cleveland), KZID (Indianapolis), and KZME (Memphis) until 04:30 UTC that
required re-routes and “metering” of flights. Constraints were already in effect for the KZKC
(Kansas City) and KZAU (Chicago) ARTCCs, and air traffic involving nearly all major U.S.
airports was affected. Ground delay programs were in effect at several airports including
Detroit beginning at 00:04 and Memphis at 01:07, and ground stops were ordered at Chicago
O’Hare at 01:48, Indianapolis at 2:01, and Louisville, KY at 02:45 UTC. Delays mounted
rapidly. Despite the unusually disruptive weather, the NWP model-based GTG forecast did
not predict any significant turbulence near the line of storms, and pilots, dispatchers, and
air traffic managers were left to use heuristics, SIGMET polygons, and the FAA’s storm
avoidance guidelines to assess the hazard and make decisions about flight cancellations,
delays, and re-routes.
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Figure 2 illustrates this case. Figure 2(a) shows composite reflectivity (dBZ) with
SIGMETsS issued at 23:00 UTC on May 25 and valid until 01:55 UTC on May 26 over-
laid. Figure 2(b) displays NSSL echo tops (km), with Aircraft Situation Display to Industry
(ASDI) aircraft position reports between flight level 300 (FL300) and FL.400 (about 30,000
to 40,000 ft) and 01:30 to 02:00 UTC overlaid. The SIGMETs and ASDI data confirm the
severe impact of the storm system. On a normal day, the majority of flights are on east-west
routes, but the ASDI tracks show pilots mostly flying north or south to skirt the storm, and
only a few attempting penetrations. Figures 2(c) and 2(d) show DCIT RF turbulence prob-
abilities from 01:45 UTC at FL330, about 33,000 ft, and at FL.390, about 39,000 ft, with
PIREPs and DAL in situ EDR reports overlaid. PIREPs are displayed as yellow, orange
or red inverted V’s or blue null symbols. The upper-level PIREPs in the storm area of in-
terest include moderate chop in northern Ohio, 01:51 UTC at 29,000 ft in a region where
DCIT = 4 %; moderate to severe turbulence in Western Ohio, 01:27 UTC at 38,000 ft where
DCIT > 20 %; and null turbulence in southern Kentucky, 01:52 UTC at 40,000 ft where
DCIT = 0. DAL in situ EDR reports from between FL300 and FL400 and 01:30 to 02:00
UTC are displayed as small triangles color-scaled from blue (null) to red (severe) turbu-
lence. They include routine reports of null turbulence (EDR at most 0.06 m?*3s~!) from
six flights just to the east of the line of storms where DCIT = 0, and one over Indiana
with EDR = 0.1 m*?s~! at 37,000 ft where DCIT = 4 %. Three east-west penetrations
of the line of storms generated triggered DAL report sequences; they included, from north
to south: (1) EDR = 0.22 and 0.24 m?3s~! at 36,000 ft where DCIT > 20 %; (2) two
reports of EDR = 0.28 m?3s~! at 36,000 ft where DCIT > 20 %; and (3) one report of
EDR = 0.2 m?3s~! at 37,000 ft where DCIT = 5 %. A fourth east-west transit to the south
that grazed Louisiana had two routine reports of EDR = 0.02 m?*3 s~! where DCIT = 0 and
one EDR = 0.04 m?3s~! at 36,000 ft where DCIT = 2 %. The turbulence reports were well
correlated with the DCIT diagnosis for this case.

The plots in Fig. 2 show that areas of enhanced DCIT turbulence probabilities are clearly
related to elevated composite reflectivity or echo tops, but not coincident or correlated with
them, and they also offer a guide to likely turbulence in clear air around the storms. On
the other hand, an RF trained using only WRF-RAP predictor fields (not shown) had at
most 1 % probability of turbulence over the entire storm area, suggesting that radar and
satellite observations were essential ingredients for diagnosing the CIT associated with these
powerful storms.

If the DCIT diagnosis had been available on this day via the GTGN product, it could
have significantly aided commercial and general aviation pilots, airline dispatchers and flight
planners who make use of the NWS AWC’s ADDS service, and might have supported AWC
forecasters in keeping SIGMETSs up to date. Rather than looking at several different model
and observation sources of information, these users would have been able to directly utilize
the fused assessments. For instance, pilots make it a priority to find the smoothest altitude
for their flights, consistent with time and fuel usage requirements. The DCIT probabili-
ties suggest that for aircraft forced to traverse the storm, the patchier turbulence at FL330
might have offered some safer penetration routes. This is particularly true around Chicago,
where the DCIT prototype shows that the likelihood of turbulence is significantly reduced
at FL330. Moreover, DCIT suggests a safe north-south route over central Indiana, which
the ASDI data show that a few flights are taking. However, this region is blocked by a valid
convective SIGMET that designates this area as unsafe, potentially limiting air traffic in an
area that is actually benign.
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(a)

Fig. 2 Case study from May 26, 2011 0200 UTC (evening of May 25 local time). (a) NSSL composite
reflectivity (—15 to 60 dBZ), with SIGMETs overlaid; (b) NSSL echo tops (0 to 14 km), with ASDI aircraft
positions overlaid; (¢) DCIT turbulence probability (0 to 100 %) at FL330, about 33,000 ft, with PIREPs and
DAL EDR reports overlaid; (d) DCIT probability (0 to 100 %) at FL390, about 39,000 ft, with PIREPs and
DAL EDR reports overlaid (Color figure online)
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Fig. 2 (Continued)
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5 Operational infusion and anticipated benefits

An RF-based DCIT prototype is running in real-time at NCAR, producing gridded output
at 6-km horizontal and 1,000 ft vertical resolution every 15 minutes for internal use in case
studies, statistical performance evaluation, and integration into GTGN. The multi-threaded
C++ implementation uses a decision tree to determine which RF and calibration to run
based on altitude and on available predictor data; thus, it accommodates minor data outages
gracefully. Input data are processed asynchronously as they arrive, including by advecting
satellite, radar and lightning data forward to the next scheduled DCIT generation time to
account for storm motion. This helps ensure that the data are temporally aligned and that
latency will be minimal. Output is displayed graphically (as in Fig. 2) and analyzed to ensure
its plausibility and spatial and temporal coherence. The DCIT EDR assessment is combined
with the latest GTG 3 NWP-based turbulence forecast and “nudged” using recent PIREPs
and in situ EDR reports to create the GTGN product. GTG 3, which includes GTGN as its
nowcast component, is scheduled to be evaluated by the FAA AWRP’s Quality Assessment
Product Development Team beginning in late 2013, likely using an approach similar to
Wandishin et al. (2011). An FAA Technical Review Panel will review the evaluation, and
if results are favorable, GTG 3 could be deployed for operational use at the NWS AWC as
early as 2014. Users including pilots, airline dispatchers, aviation weather forecasters and
private weather service providers will then be able to retrieve the gridded nowcasts for use in
their own displays and automated systems or view them via the ADDS website introduced
in Sect. 1.3.

DCIT’s deterministic EDR diagnoses will improve the operational aviation weather prod-
uct, GTG, in the important domain of CIT assessment where it currently performs poorly, as
has been shown via some of the same metrics used in official GTG evaluations. DCIT’s prob-
abilistic assessments, which will be extended in the future to include short-term forecasts,
will make an important contribution to the U.S. NextGen air traffic modernization effort
(JPDO 2008) by providing authoritative information required for automated decision mak-
ing (e.g., Krozel et al. 2007; Lindholm et al. 2010). For instance, Williams (2009) showed
that dynamic programming could be used to choose optimal routes based on probabilistic
forecasts. Quantifying DCIT’s impact on accidents, injuries, fuel costs, delays and cancel-
lations will be difficult due to the complexity of the NAS and the diverse, decentralized,
asynchronous decision-making processes involved at multiple timescales. However, it seems
clear that, when fully integrated into NextGen, this improved information on CIT location
and intensity will assist dispatchers and pilots in choosing efficient, safe routes near storms
and will decrease the number of unexpected turbulence encounters and re-routing requests,
reducing controller workload.

6 Lessons learned

Using machine learning to diagnose turbulence requires dealing effectively with the rareness
of encounters captured in the available “truth” data. Initial approaches to DCIT develop-
ment using multi-category predictions or regressions were difficult to calibrate. Reducing
the problem to binary classification facilitated rebalancing of the dataset and producing reli-
able probabilistic diagnoses, simplifying DCIT interpretation and optimization. It was found
that the output of an RF trained to identify light-to-moderate or greater turbulence could be
scaled to EDR, and it also performed well on discriminating moderate and severe turbulence
(Williams et al. 2012). The use of a calibrated random forest classifier also facilitated the
use of DAL data, whose use of “triggering” skews the distribution of small EDR values.
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Domain knowledge was useful in selecting appropriate data sources, deriving features
and transformations that better exposed the relevant information, and selecting “truth” data
that adequately capture the temporal and spatial scales of the CIT phenomenon. RF im-
portances provided a helpful guide to initial predictor selection but can be biased and do
not expose correlations between variables. Using forward and backward selection appeared
more reliable in identifying a minimal set of skillful predictors.

The RF did show better skill than logistic regression for this problem, perhaps because
it makes better use of predictors not monotonically related to the predictand, and also better
than k-nearest neighbors. It may be that some of the predictor variables could be transformed
or combined to make them more effective in a simpler model, which would be preferable
from the standpoint of computational intensity in a real-time system. This possibility will be
further investigated. Other RF formulations (e.g., Menze et al. 2011) may also provide more
useful variable importance information or improved performance. For instance, by utilizing
object-based relationships rather than relying on the numerous neighborhood statistics em-
ployed in the present study, the Spatiotemporal Relational Random Forest (SRRF) approach
described in McGovern et al. (2013) may provide a simpler, more easily interpreted and
more flexible model.

In using a machine learning model in an operational system, it is important to mini-
mize run-time while dealing gracefully with data latency and availability issues. The DCIT
system was designed to handle the asynchronous arrival of real-time input data by imme-
diately deriving features and performing forward motion-adjustment to align with the next
product generation time. Predictor field alignment is critical; without it, RF output becomes
“blurred” and less useful. Potential data outages are dealt with by utilizing similar or redun-
dant sources of information and training different RFs for different data feed failure modes.
An appropriate RF model is selected at run-time if sufficient input data are present to meet
performance requirements.

A significant problem in applying empirically-based techniques for weather prediction is
that the observation platforms and NWP models that supply predictor variables evolve over
time, and weather phenomena themselves may vary based on climate change and large-
scale patterns like the El Nifio/La Nifla—Southern Oscillation. During DCIT development,
the training database was re-created after NOAA switched from the RUC to the WRF-RAP
NWP model, and there were also changes in the radar and satellite systems. To perform
optimally, DCIT will likely require periodically re-calibration after it becomes operational.
Eventually, on-line training and calibration could be incorporated so that the system will
automatically adjust to such changes.

In conclusion, as the amount of data from models and observations continues to grow
at an exponential rate, techniques like the one described in this paper hold the promise of
effectively exploiting the available data to provide societally relevant information.
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