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Abstract

Disclosing the origin of convolutions in the mammalian brain remains a scientific challenge. 

Primary folds form before we are born: they are static, well defined, and highly preserved across 

individuals. Secondary folds occur and disappear throughout our entire life time: they are 

dynamic, irregular, and highly variable among individuals. While extensive research has improved 

our understanding of primary folding in the mammalian brain, secondary folding remains 

understudied and poorly understood. Here, we show that secondary instabilities can explain the 

increasing complexity of our brain surface as we age. Using the nonlinear field theories of 

mechanics supplemented by the theory of finite growth, we explore the critical conditions for 

secondary instabilities. We show that with continuing growth, our brain surface continues to 

bifurcate into increasingly complex morphologies. Our results suggest that even small geometric 

variations can have a significant impact on surface morphogenesis. Secondary bifurcations, and 

with them morphological changes during childhood and adolescence, are closely associated with 

the formation and loss of neuronal connections. Understanding the correlation between neuronal 

connectivity, cortical thickness, surface morphology, and ultimately behavior, could have 

important implications on the diagnostics, classification, and treatment of neurological disorders.
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1. Motivation

Understanding the formation of brain convolutions remains a challenging task in modern 

neurosciences [1]. Recent advances in neuroimaging provide insight into the phenomenon of 

brain folding on different scales [2, 3]. However, the whole picture of brain growth and its 

convolutional development remain barely understood [4]. Figure 1 illustrates the 

characteristic surface morphology of the mammalian brain with its primary and secondary 

folds. Primary folding is remarkably well preserved across individuals [5] and is closely 
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correlated with a sequence of well-defined genetic events [6]. Secondary and tertiary 

folding, however, distinctively vary among individuals and develop mainly after birth after 

primary folding is basically completed [7]. A possible stimulus for secondary and tertiary 

folding could be differential growth [8], with a growing or shrinking cortex as new 

connections between neurons form and dissolve.

Folding phenomena induced by compressive stresses in layered media are relevant in 

various fields [9, 10]. Compressive stresses can be of different origin caused by either 

external phenomena such as pressure or by internal phenomena such as growth [11]. 

Applications range from undesired instabilities of layered engineering structures [12], and 

naturally folded rocks [13], via microfabrication of controlled surface patterns [14], to 

wrinkling phenomena in biological systems including the lung [16], the epithelial layer [17], 

the mucosa [19], and the brain [8].

Several studies address the critical conditions for primary and secondary instabilities of 

layered media, either analytically or numerically [18]. Yet, there are two major differences 

between these layered structures and the mammalian brain: the stiffness contrast, the 

stiffness ratio between layer and substrate, is typically of the order 100 – 1000, implying that 

the layer is significantly stiffer than the substrate [19, 20]; and the growth contrast, the ratio 

between layer and substrate growth, is typically infinite, meaning that the substrate is purely 

elastic [21]. While quite common for thin films, this seems unphysiological for the 

mammalian brain. Using indentation experiments of freshly excised brain, we have recently 

shown that the stiffness contrast between gray and white matter is much lower, effectively 

around the order of one [1]. In addition, brain tissue is a living material - not only its gray 

matter layer but also its white matter substrate grows as the brain develops and new 

connections form. The cortex experiences a period of maximum growth during weeks 23 

and 37 of gestation, where it turns from a flat surface into a wrinkled structure and 

approximately triples its area. The expanding cortex imposes tension on the axons in the 

white matter, which can double their length within only two hours when stretched beyond 

their physiological limit [22]. This suggests that the growth contrast, the growth ratio 

between gray and white matter growth, is of the order of 100.

The objective of this work is to analyze secondary folding phenomena for biologically 

realistic stiffness contrasts, significantly smaller than 100, and biologically realistic growth 

contrasts, far from the elastic limit. Recent studies have shown how primary instabilities of a 

growing gray matter layer on a growing white matter substrate evoke uniform wrinkling 

modes [23, 24]. Here we focus on secondary instabilities that occur upon continuing growth, 

beyond the first instability point. Secondary instabilities are highly sensitive to small 

variations in geometry, loading, and boundary conditions [25], which may explain the 

increasingly complex and diverse cortical appearance with age [26]. Figure 2 illustrates this 

complex cortical morphology with its characteristic primary and secondary folds. Here we 

aim to explain these morphologies through growth-induced secondary bifurcations. We 

explicitly link progressive cellular maturation after birth to structural changes in the 

dynamically changing brain throughout childhood and early adolescence [27].
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2. Methods

To explore secondary folding phenomena, we adopt the continuum model of differential 

growth [28]. To describe the kinematics of finite deformation, we introduce the deformation 

map φ, which maps points X from the initial ungrown configuration to their new positions x 
= φ(X, t) in the current configuration. To model growth, we multiplicatively decompose its 

spatial gradient F = ∇φ into an elastic part Fe and a grown part Fg [29],

(1)

A similar multiplicative decomposition holds for the Jacobian J = Je Jg, which is a measure 

of changes in volume. For simplicity, we assume that growth in both gray and white matter 

is purely isotropic, parameterized in terms of a single scalar-valued growth multiplier ϑ,

(2)

This implies that the grown volume Jg is identical to the growth multiplier cubed ϑ3. In the 

initial ungrown state, the growth multiplier is one, ϑ = 1, such that ϑ > 1 and ϑ < 1 

characterize volume growth and shrinkage. Human brain tissue is a porous, fluid-saturated, 

nonlinear solid with very small volumetric drained compressibility, capable of permanent 

deformations [1]. On the time scales of traumatic brain injury, brain tissue is a highly 

viscous and porous material [30]. On the time scales of brain development, we can neglect 

viscous and porous effects, and assume that brain tissue is isotropic and elastic [23]. We 

characterize its constitutive behavior through the following Neo-Hookean free energy,

(3)

where λ and μ are the Lamé constants. Since only the elastic part of the deformation induces 

stress, the free energy depends exclusively on the elastic tensor Fe and its Jacobian Je. 

Following standard arguments of thermodynamics, we can introduce the Piola stress P as 

energetically conjugate to the deformation gradient F,

(4)

The Piola stress enters the standard balance of linear momentum, the equation of mechanical 

equilibrium,

(5)

It remains to define the kinetics of growth [31], the evolution equations for the growth 

multipliers for the cortex and for the subcortex, ϑc and ϑs. Since the cortex consists 

primarily of cell nuclei while the subcortex consists primarily of axons, we assume different 

Budday et al. Page 3

Philos Mag (Abingdon). Author manuscript; available in PMC 2015 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



growth kinetics. Cortical growth is a result of neural progenitor division, cell migration, and 

the formation of new connections, which we assume to be purely morphogenetic [32], 

independent of mechanical stress or strain [33]. We let the cortex grow homogeneously in 

space and linearly in time at a constant rate Gc,

(6)

Subcortical growth is a result of chronic axon elongation upon mechanical stretch [22] at the 

axon elongation rate Gs,

(7)

With 〈Je − J0〉 = Je − J0 for Je > J0 and 〈 Je − J0〉 = 0 otherwise, the term in the Macaulay 

brackets activates growth only if the elastic volume stretch Je exceeds the physiological 

baseline value of J0 [24]. Figure 3 summarizes the kinetics of cortical and subcortical 

growth.

We solve the nonlinear set of equations using the finite element method and implement the 

resulting equations in a Matlab-based environment [28]. The growth multipliers for cortex 

and subcortex, which we introduce as internal variables on the integration point level, 

locally capture the amount of growth at the current time point. Motivated by Figure 2, we 

model cortical folding in a rectangular domain of height H and width W under plane strain 

conditions. We choose the sample height to H = 0.5, discretized with 80 elements, and the 

initial substrate thickness to T = 0.02, discretized with 4 elements. The sample width varies 

between W = 0.3625 and W = 0.5250, discretized with 58 to 84 elements, for the simulation 

of period doubling and W = 0.5875 and W = 0.7625, discretized with 94 to 122 elements, for 

the simulation of period tripling, depending on the corresponding stiffness and growth 

ratios.

We apply homogeneous Dirichlet boundary conditions perpendicular to the left, bottom, and 

right boundaries, but allow the nodes to slide freely along the three edges. To trigger an 

initial instability, we adapt an established protocol [23]: we add a small imperfection of 1% 

volumetric contraction, ϑs = 0.99, within a two-element wide vertical band in the center of 

the substrate, and verify numerically that this imperfection is small enough to not influence 

the wavelength of the overall wrinkling mode.

We model gray matter as Neo-Hookean elastic with Lamé constants λc = 34.2kPa and μc = 

3.3kPa [34], and white matter with a stiffness contrast Ec/Es and Lamé constants λs = Es/Ec 

λc and μs = Es/Ec μc. In the linear regime, these parameters would correspond to a Young's 

modulus of E = 10kPa and a Possion's ratio of ν = 0.46, reflecting the soft and nearly 

incompressible behavior of brain tissue [1]. In contrast to studies of thin films with a large 

stiffness contrast [35], here we restrict our analysis to a range of stiffness ratios of 3 ≤ Ec/Es 

≤ 12, such that the stiffnesses of layer and substrate are of the same order of magnitude.
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We perform simulations for growth ratios within the range of 1/40 ≤ Gc/Gs ≤ ∞. The elastic 

limit of Gc/Gs = ∞ mimics non-growing white matter tissue, which seems physiologically 

unrealistic, but serves as a valuable control case. Once the growth-induced compressive 

stresses in the cortex reach a critical value, the cortex wrinkles into a periodic sinusoidal 

pattern. With further growth, advanced wrinkling modes emerge from secondary 

bifurcations at a second critical value.

To systematically study the characteristics of secondary instabilities we first determine the 

wavelength of primary folding λ on a wide domain of several wavelengths. Then, we select 

two different domain widths, W = 2λ and W = 3λ. The first setup triggers the emergence of a 

period-doubling mode. The second setup suppresses period-doubling and triggers a period-

tripling mode instead.

3. Results

Figure 4 shows the temporal evolution of the folding pattern for a stiffness ratio of μc/μs = 5 

and a growth ratio of Gc/Gs = 1/10. Initially, at ϑc = 1.22, the cortex is a flat thin layer. Once 

the growth in the cortex has passed a first instability point, at ϑc = 1.45 the cortex buckles 

into a sinusoidal pattern to partially release growth-induced residual stresses. With 

continuing growth, the solution of smooth wrinkling becomes unstable a second time and 

bifurcates into a split solution. In the case of period-doubling, beyond the second instability 

point at ϑc = 1.55, every second sulcus deepens, while those in between flatten out and 

become more shallow. In the case of period-tripling, beyond the second instability point at 

ϑc = 1.70, every third sulcus deepens, while those in between flatten out.

Figure 5 illustrates more detailed characteristics of the folding amplitudes and the instability 

points for a stiffness ratio of μc/μs = 5 and growth ratios of Gc/Gs = ∞ and Gc/Gs = 1/10. 

Initially, the cortex is flat and the folding amplitudes equal zero. At the first instability point, 

ϑw, amplitudes begin to grow uniformly at a similar critical growth value for both growth 

ratios. The second instability point is different for period-doubling and period-tripling with 

ϑpd ≤ ϑpt. We observe a pitchfork bifurcation of the solution: Every second amplitude, red 

curve, or third amplitude, blue curve, continues to grow, while those in between decay. In 

the case of period-tripling, amplitudes grow uniformly even beyond the instability point for 

period-doubling ϑpd, but bifurcate into a period-tripling mode at a larger cortical growth 

value ϑpt. When comparing a purely elastic substrate, top graph, with a growing substrate, 

bottom graph, we conclude that subcortical growth stabilizes the system and shifts the 

second bifurcation points to the right. The stabilizing effect of subcortical growth is more 

apparent for period-tripling than for period-doubling.

Figure 6 summarizes the critical growth values for periodic wrinkling ϑw, period-doubling 

ϑpd, and period-tripling ϑpt, for varying stiffness ratios, 2 ≤ μc/μs ≤ 12, and varying growth 

ratios, Gc/Gs = 1/20,1/10, ∞. We define the instability points through an accompanying 

eigenvalue analysis: Once the system becomes unstable, the lowest eigenvalue decreases 

until it reaches its minimum at the instability point. We observe that the critical growth 

value for periodic wrinkling decreases asymptotically with stiffness ratio μc/μs independent 

of the growth ratio Gc/Gs. For a purely elastic substrate with Gc/Gs = ∞, both second 
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instability points ϑpd and ϑpt are almost independent of the stiffness ratio. For a growing 

substrate, however, ϑpd and ϑpt increase with increasing stiffness ratio. Critical growth for 

period-doubling is consistently lower than for period-tripling ϑpd < ϑpt, which indicates that 

period-doubling is energetically favorable over period-tripling.

Figure 7 provides further evidence of the influence of the growth ratio Gc/Gs on the critical 

growth for primary and secondary bifurcations. The results show that the growth ratio does 

not affect critical growth for periodic wrinkling ϑw. For a stiffness ratio of μc/μs = 10, right, 

the critical growth values for period-doubling ϑpd and period-tripling ϑpt increase with 

decreasing growth ratio - each to the same extent. This effect almost vanishes for smaller 

stiffness ratios of μc/μs = 5, left. Within the investigated range of 1/40 ≤ Gc/Gs ≤ ∞, all 

critical growth values, ϑw, ϑpd, and ϑpt, are almost entirely independent of Gc/Gs. We 

attribute this to small folding amplitudes that fail to induce subcortical growth to stabilize 

the system.

Figure 8 illustrates how stiffness and growth ratios affect the folding pattern. An increased 

stiffness ratio generates longer wavelengths and larger amplitudes. Similar to the results in 

Figure 7, the growth ratio Gc/Gs barely influences the folding pattern for a small stiffness 

ratio of μc/μs = 5 as the overall folding amplitudes are small and subcortical growth is hardly 

activated. For a higher stiffness ratio of μc/μs = 10, however, the higher folding amplitudes 

induce remarkably larger subcortical growth, which leads to an increasing amplitude with 

decreasing growth ratio. The growing substrate not only influences the critical condition for 

secondary bifurcation, but also the wavelength of folding: the distance between two 

neighboring gyri slightly increases with increasing subcortical growth [23].

Figure 9 shows the evolution of the amplitude ratio A1/A2, the ratio between the growing 

amplitude A1 and the decaying amplitude A2, beyond the onset of period-doubling Δϑ = ϑc − 

ϑpd. In the uniformly wrinkled state between the first and second instability point ϑw and 

ϑpd, all amplitudes are equal and this ratio is equal to one. Once the secondary bifurcation 

sets in, the ratio begins to increase [21]. In this region, subcortical growth stabilizes the 

system: it not only shifts the second bifurcation point to larger growth values, as shown 

before, but also slows down the amplitude growth. Much more distinctive, however, is the 

effect of the stiffness ratio μc/μs on the development of the amplitude ratio. The stiffer the 

cortex compared to the subcortex, the higher the overall amplitude.

4. Discussion

Our continuum model for differential growth - with a morphogenetically growing gray 

matter layer and a stretch-induced growing white matter core - explains a wide variety of 

folding phenomena observed in mammalian brains. It not only characterizes the formation of 

regular, sinusoidal wrinkles, but also the emergence of irregular, complex folds. Once the 

growth-induced stress in the cortex reaches a critical value, the cortex releases its stress by 

folding into a periodic sinusoidal pattern (Figure 2, left). The importance of the skull during 

cortical folding remains an issue of ongoing debate. While our intuition suggests that the 

stiff skull places a significant spatial constraint on cortical folding, recent studies indicate 

that there is a large degree of independence between the development of the brain and the 
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skull, despite their close physical connection [36]. Our model neglects the spatial constraint 

of the skull and assumes that the expansion of the brain is primarily limited by the 

subcortical tissue itself. This creates a regular primary folding pattern of sinusoidal shape 

(Figure 4, second row).

The phenomenon of primary folding has been studied before, both analytically [8] and 

numerically [23, 24]. Here we show that beyond the onset of primary folding, with 

continuing growth, the sinusoidal solution bifurcates into irregular secondary modes (Figure 

2, middle and right). These secondary modes explain the increasing complexity of the cortex 

during the later stages of development, childhood, and adolescence [26] (Figure 1).

Our simulations reveal that secondary instabilities are highly sensitive to the underlying 

geometry and domain size: Changing the width of the simulation domain from two 

wavelengths to three suppresses the early mode of period-doubling and triggers the later 

mode of period-tripling, associated with a larger critical growth multiplier (Figures 4, 5, and 

8). While the numerical solution relies on finite-sized domains and is sensitive to the domain 

width, in an infinite domain, the energetically favorable mode of period-doubling would be 

the only secondary bifurcation mode (Figure 5).

Our results suggest that, for a purely elastic substrate, the second instability point is almost 

independent of the stiffness ratio (Figure 6, dots). For a growing substrate, however, the 

required growth to induce the second instability increases with increasing stiffness ratio 

(Figure 6, squares and triangles). At the same time, the first instability point is only 

marginally affected by growth in the substrate; yet, it decreases markedly with increasing 

stiffness ratio. We conclude that stretch-induced subcortical growth - triggered by the 

adaption of axons to mechanical stretch [37] - acts as stabilizer of the folding process: The 

faster the axons respond to mechanical loading, the more stable the primary sinusoidal 

pattern and the less likely the occurrence of secondary instabilities. These features are 

conceptually similar to folding phenomena on a time-dependent viscoelastic foundation in 

tectonics and orogenesis [38, 39].

The secondary instability phenomena discussed here are different from the formation of 

primary folds during early gestation [24]. Rather, they apply to secondary and tertiary sulci, 

which continue to emerge after birth. As such, they are more affected by non-genetic, 

environmental factors. Upon birth, the brain of full-term infants already displays the entire 

primary folding pattern of the adult human brain [7]. Yet, cortical complexity still increases 

after birth [26], and many secondary and tertiary gyri occur and disappear long after 

neuronal migration has ceased [40]. This agrees with the common belief that secondary and 

tertiary gyri are closely related to the formation of interneuronal connections, which require 

more space than the neurons themselves: the cortex keeps expanding after birth [41]. Our 

folding patterns suggest that continuing growth of the cortical layer triggers secondary 

instabilities, which explain the increasing cortical complexity with age (Figures 4, 5, and 8).

Interestingly, the gyrification index, a clinical metric to quantify the degree of cortical 

folding, increases significantly during the last trimester of gestation, but remains almost 

constant after birth [43]. The gyrification index is the ratio between the total cortical surface 
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and the its convex hull [42]. Our results confirm that secondary folding phenomena such as 

period-doubling and period-tripling result in a more complex outer appearance (Figures 4 

and 8). Yet, the ratio between total cortical surface and convex hull virtually remains the 

same: while some sulci deepen, others flatten out.

Our brain surface morphology never reaches a stationary state - it continues to change 

plastically as new interneuronal connections form and dissolve [44]. Learning new tasks 

triggers the formation of new connections, increases the gray matter volume, and changes 

the brain surface morphology [45]. Our model suggests that these changes are closely 

correlated to secondary and tertiary bifurcations. Morphological changes during childhood 

and adolescence are closely associated with enhanced neuronal connectivity. As such, they 

could serve as early markers for physiological disorders [44]. A classical example is 

Huntington's disease associated with a chronic loss in gray matter volume [46]. 

Understanding the correlation between neuronal connectivity, gray matter volume, surface 

morphology, and ultimately behavior, could have important implications on how we 

diagnose, classify, quantify, and treat neurological disorders.
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Figure 1. 
Characteristic surface morphology of the mammalian brain. Top view of the whole brain, 

left, and superior horizontal section, right. The gray matter layer, the cortex, displays a 

complex outer appearance with regular primary folds and irregular secondary and tertiary 

folds.
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Figure 2. 
Primary and secondary folding in the mammalian brain. Periodic wrinkling, left, exhibits a 

constant folding amplitude. For period-doubling, middle, every second amplitude is larger 

than those in between. For period-tripling, right, every third amplitude is larger than those in 

between.
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Figure 3. 
Growth kinetics in the developing mammalian brain. The gray matter layer grows 

morphogenetically at a constant rate Gc, which is correlated to neural progenitor division. 

Cortical growth induces subcortical deformation, which triggers subcortical growth. The 

white matter substrate grows at a stretch-dependent rate as Gs 〈Je − J0 〉, where Gs mimics 

the axon elongation rate and 〈Je − J0〉 activates growth only, if the elastic volume stretch Je 

exceeds its baseline value J0.
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Figure 4. 
Spatio-temporal evolution of period-doubling and period-tripling. At ϑc = 1.22, growth-

induced compressive stresses are still below the critical value and the surface remains flat, 

first row. At ϑc = 1.45, growth beyond the first instability point creates symmetric, 

sinusoidal folding patterns, which are similar for period-doubling and -tripling, second row. 

At ϑc = 1.55, growth has passed the second instability point for period-doubling, which 

initiates alternating increasing and decreasing sulcal depths, while the second bifurcation 

point for period-tripling has not been reached yet, third row. At ϑc = 1.70, growth has passed 

both second bifurcation points and contact forms along the edges of two neighboring sulci, 

fourth row.
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Figure 5. 
Evolution of folding amplitudes with successive cortical growth. Stiffness and growth ratios 

are μc/μs = 5, Gc/Gs = ∞, top, and Gc/Gs = 1/10, bottom. Initially the cortex is flat and the 

amplitudes equal zero. At the critical growth for periodic wrinkling ϑw, amplitudes begin to 

grow uniformly. With further growth the path reaches a second bifurcation point ϑpd , which 

initiates a period-doubling mode, red curve: Every second amplitude grows and those in 

between decay. A 50% wider domain suppresses the period-doubling mode and enforce a 

period-tripling bifurcation at an even higher critical growth value ϑpt: Every third amplitude 

grows and those in between decay.

Budday et al. Page 14

Philos Mag (Abingdon). Author manuscript; available in PMC 2015 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Effect of stiffness ratio μc/μs and growth ratio Gc/Gs olution of folding amplitudes with 

successive cortical growt, and for wrinkling and period-tripling, right. Critical growth for 

periodic wrinkling ϑw decreases asymptotically with increasing stiffness ratio independent 

of the growth ratio. Critical growth for period-doubling ϑpd and period-tripling ϑpt are only 

marginally influenced by the stiffness ratio for a growth ratio of Gc/Gs = ∞. For smaller 

growth ratios of Gc/Gs = 1/10 and Gc/Gs = 1/20, critical growth ϑpd and ϑpt increase with 

increasing stiffness ratio. Critical growth for period-doubling is consistently smaller than for 

period-tripling ϑpd < ϑpt.
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Figure 7. 
Effect of growth ratio Gc/Gs on the critical conditions for primary and secondary 

bifurcations. The growth ratio does not affect critical growth for periodic wrinkling ϑw. For 

a stiffness ratio of μc/μs = 5, left, the critical growth values for period-doubling ϑpd and 

period-tripling ϑpt are also independent of the growth ratio. For a stiffness ratio of μc/μs = 

10, right, ϑpd and ϑpt increase with decreasing growth ratio.
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Figure 8. 
Effect of stiffness ratio μc/μs and growth ratio Gc/Gs on the folding pattern. Both wavelength 

and amplitude increase with increasing stiffness ratio and decreasing growth ratio. For a 

stiffness ratio of μc/μs = 5, left, the folding pattern is almost independent of the growth ratio 

with constant folding amplitudes and only marginal subcortical growth. For a stiffness ratio 

of μc/μs = 10, right, the folding pattern changes with decreasing growth ratio; both folding 

amplitude and subcortical growth noticeably increase. The influence of the growth ratio on 

the folding pattern is more prominent for period-tripling than for period-doubling.
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Figure 9. 
Evolution of the amplitude ratio A1/A2, the ratio between the growing and decaying 

amplitudes A1 and A2, for varying stiffness ratios μc/μs = 5,10 and varying growth ratios 

Gc/Gs = 1/30,1/20,1/10, ∞. With decreasing growth ratio Gc/Gs the slope of the curves 

decreases. This effect is more distinct for higher stiffness ratios. In general, the slope of the 

curve decreases with increasing stiffness ratio.
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