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Abstract

Integrated computational approaches for Mycobacterium tuberculosis (Mtb) are useful to
identify new molecules that could lead to future tuberculosis (TB) drugs. Our approach uses
information derived from the TBCyc pathway and genome database, the Collaborative Drug
Discovery TB database combined with 3D pharmacophores and dual event Bayesian mod-
els of whole-cell activity and lack of cytotoxicity. We have prioritized a large number of mole-
cules that may act as mimics of substrates and metabolites in the TB metabolome. We
computationally searched over 200,000 commercial molecules using 66 pharmacophores
based on substrates and metabolites from Mtb and further filtering with Bayesian models.
We ultimately tested 110 compounds in vitro that resulted in two compounds of interest,
BAS 04912643 and BAS 00623753 (MIC of 2.5 and 5 ug/mL, respectively). These mole-
cules were used as a starting point for hit-to-lead optimization. The most promising class
proved to be the quinoxaline di-N-oxides, evidenced by transcriptional profiling to induce
mRNA level perturbations most closely resembling known protonophores. One of these,
SRI58 exhibited an MIC = 1.25 ug/mL versus Mtb and a CCsq in Vero cells of >40 pg/mL,
while featuring fair Caco-2 A-B permeability (2.3 x 10~° cm/s), kinetic solubility (125 uM at
pH 7.4 in PBS) and mouse metabolic stability (63.6% remaining after 1 h incubation with
mouse liver microsomes). Despite demonstration of how a combined bioinformatics/che-
minformatics approach afforded a small molecule with promising in vitro profiles, we found
that SRI58 did not exhibit quantifiable blood levels in mice.
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Introduction

Learning from experience in neglected disease drug discovery is essential for increasing time-
and cost efficiencies. This requires we leverage and build upon computational methods widely
used in industrial drug discovery [1, 2]. For example, we have previously analyzed large data-
sets for Mycobacterium tuberculosis (Mtb) [3-14]-the causative agent of tuberculosis (TB). We
have used these to build machine learning models that use single point data, dose response
data [3, 4], combine bioactivity and cytotoxicity data (e.g, Vero, HepG2 or other cells) [8-10]
or combinations of the preceding [13, 15]. The deliverables have been promising novel (or
long-abandoned) antitubercular hits for further pursuit as well as strategies for hit-to-lead evo-
lution and prediction of antitubercular in vivo activity in the mouse model of infection [14].

Whole-cell phenotypic high-throughput screening (HTS) against Mtb does not typically
provide information on the potential target/s for the compounds and so other methods must
be used for target identification [16, 17]. For example, we have contributed computational
methods that rely on similarity of compounds to inhibitors of known targets [17] to create TB
Mobile 2 which applies a machine learning approach to predict target likelihood.

Since a small fraction of Mtb proteins are known to be modulated by approved TB drugs
[7], a need exists to modulate other targets to avoid existing drug resistance mechanisms. We
have focused initially on the targets that were essential to the growth and survival of Mitb [18],
under in vitro and in vivo conditions [19], and ultimately declared respective lists of essential
enzymes and their essential metabolites [6, 7]. In an effort to discover inhibitors of 9 essential
enzymes through their mimicry of the chemical structure of a given metabolite, 3D pharmaco-
phores were used to screen over 80,000 commercial compounds. Ultimately after testing 23
candidate inhibitors or metabolite mimics (including 3 predicted inactives), 2 moderately
active compounds were identified [7]. In the current study we have greatly expanded our
approach to also assess targets that are in vitro but not in vivo essential. We computationally
searched >206,000 molecules with 66 pharmacophores of Mtb essential metabolites or sub-
strates and assayed 110 compounds in vitro. We have identified 3 compounds possessing
whole-cell activity against Mtb. Two of the hits were further optimized in a drug discovery
workflow. We demonstrate that this approach of computational metabolite mimicry is scalable
to afford promising chemical entities and could be explored for other diseases and yet it is ulti-
mately confounded by molecular properties that impact in vivo pharmacokinetics.

Results

Small molecule information from CDD for new potential Mtb enzyme
targets

Except for one of the 46 potential targets (MurE) identified (S1 Table) in our initial bioinfor-
matics analysis (See Materials and Methods), none of the enzymes described have any small
molecule inhibitors noted in the CDD Public database at the time of this study. Depending on
various criteria like in vivo essentiality, whether or not X-ray crystallographic information was
available in the Protein Data Bank (www.rcsb.org), a subjective interest in the constituent path-
way/s, suitability of the structure for the enzyme substrate or product to facilitate mimic design
(e.g. lack of charge), 20 targets were selected from the list of 46 enzymes as being of particular
interest. These are TrpB, MetE, IlvD, FolK, HisC1, HsaE, End, BioF1, CobL, Ace, AccD1,
SerB2, AmiD, HsaF, Rv1879, Tal, FabG, NuoD, ProA, and ArcA (bold are those encoded by
a gene predicted to be in vivo essential, (S2 Table)). Reaction details including substrates and
products (and their relevant SMILES strings) are provided for these 20 selected targets. As
described previously [7] the TBcyc pathway database (http://tbcyc.tbdb.org/index.shtml), an
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BAS 04912643
MIC =2.5 pg/mL

e

BAS 07571651
MIC =40 pg/mL

BAS 00623753
MIC =5.0 pg/mL

Fig 1. Initial pharmacophore/Bayesian model-derived hits: A) chemical structures, in vitro antitubercular activity, and B) best fit to menadione
pharmacophore of BAS04912643, C) best fit to menadione pharmacophore of B. BAS00623753 (grey). D. best fit to indole-3-acetamide
pharmacophore of BAS7571651, E best fit to lipoamide shape of BAS7571651. The pharmacophores consist of hydrogen bond acceptors (green) hydrogen
bond donors (purple) and hydrophobic features (blue). The van der Waals surface was used to limit the number of compounds retrieved when screening the

vendor library.

doi:10.1371/journal.pone.0141076.g001

Mtb specific metabolic pathway database, was used to extract this information (S2 Table). The
TBcyc database was initially developed using SRI's Pathway Tools software that automatically
generates a Pathway/Genome Database (PGDB) describing the genome and biochemical net-

works of the organism from the annotated genome sequence of Mtb [20, 21].

In silico selection of putative metabolite and substrate mimics

14,733 commercial molecules were retrieved from over a set of 206,000 (from the Asinex Gold
library) using the 66 pharmacophores (S1 Fig and S1 Model Files) based on enzymatic reaction
substrate and product chemical structures and were suggested as potential mimics. These mol-
ecules were scored with three dual event Bayesian Mtb models (MLSMR, CB2, Kinase) [10, 22—
25] in Discovery Studio [4, 26, 27]. All compounds were imported into CDD. 110 molecules
were selected for purchase given pharmacophore scores greater than 2.5 (higher scores are bet-
ter), ‘active’ scores in all 3 dual event models, and successful visual filtering (e.g., absence of
reactive functional groups) [28].

Measurement of Antibacterial Activity Against Mtb

From the set of 110 compounds tested initially, three compounds (1-(3-methyl-1,4-dioxy-qui-
noxalin-2-yl)-ethanone [BAS 04912643], 2-nitro-N-pyridin-2-ylmethyl-benzamide [BAS
00623753] and furan-2-ylmethyl-(1H-indol-3-ylmethyl)-amine [BAS 7571651]) showed
minimal inhibitory concentration (MIC) values against the in vitro cultured Mtb H37Rv
strain of 2.5, 5.0 and 40 pg/mL, respectively (Fig 1A). The remaining compounds had MIC
values > 40 ug/mL (data not shown). BAS04912643 and BAS00623753 mapped to the
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Table 1. Mtb growth inhibitory activities of BAS 00623753 and a small set of analogs. Molecule structures are in S1 Data.

Compound #

JSF-2210 = synthetic BAS00623753
JSF-2133
JSF-2170
JSF-2171
JSF-2172
JSF-2173
JSF-2174
JSF-2175
JSF-2177
JSF-2178
JSF-2176
JSF-2208
JSF-2209
JSF-2211

doi:10.1371/journal.pone.0141076.t001

Ar R Mtb MIC (H37Rv) ug/mL
2-NO,Ph CHy(2-pyridyl) >50
Ph CHy(2-pyridyl) >50
2-NO,Ph (CH2)2(2-pyridyl) >50
2-NO,Ph CHo(2-pyrazinyl) >50
2-NO,Ph CHx(2-(3 Mepyridyl)) >50
2-NOoPh CHa(2-(4-Mepyridyl)) >50
2-NO,Ph CHa(2-(5-Clpyridyl)) >50
2-NO,Ph CHy(2-(5-Mepyridyl)) >50
2-NO.Ph CHa(4-pyrimidinyl) >50
2-NO,Ph CHy(2-pyrimidinyl) >50
2-NO,Ph CMey(2-pyrimidinyl) >50
2-FPh CHy(2-pyridyl) >50
2-MePh CHy(2-pyridyl) >50
2-CF5Ph CHy(2-pyridyl) >50

menadione pharmacophore (Fig 1B and 1C) while BAS7571651 mapped to both the lipoamide
shape and indole-3-acetamide pharmacophores (Fig 1D and 1E).

Hit exploration

We have further explored the structure-activity relationships (SAR) for the two most potent
hits. Initial efforts with BAS 00623753 consisted of the synthesis of the initial hit along with 13
analogs (Table 1, details as to the synthesis and characterization of all compounds may be
found in the S1 Data). The alterations included: removal of the nitro group from the aroyl ring
or its replacement with an electron-donating group (CH;) or other electron-withdrawing
groups (F, CF;); o,0-dimethylation of the one-carbon tether between the amide nitrogen and
the heteroaryl group or its homologation; and replacement of the 2-pyridyl moiety with differ-
entially substituted pyridines or other heterocycles of the pyrazine and pyrimidine families.
Their syntheses (Fig 2) were realized through the facile coupling of the aroyl chloride and

A)
1 o 1
R ~g  _RENHp, NaOHuq or DIEA B A\ R
| CH,Cl, l
JSF-2110 = synthetic BAS00623753
+ 13 JSF analogs
B) o o
3 3 +
R? R2 R4 =N 120 °C, 5 min R N¥ O R2
o
SRI4 - 62

Fig 2. Synthetic routes to the A) arylamide and B) quinoxaline di-N-oxide families.

doi:10.1371/journal.pone.0141076.9002
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amine partners in moderate to good yields. The small molecules were then assayed for their
growth inhibition of Mtb. Disappointingly, the synthesized version of BAS 00623753 exhibited
an MIC > 50 pg/mL as did the other analogs. The original commercial sample that demon-
strated promising whole-cell efficacy was no longer available and thus an analytical compari-
son of the two materials was not feasible.

BAS004912643 (1) was identified as a potential substrate mimetic of menadione (Fig 1) and
demonstrated an MIC against Mtb of 2.5 pg/mL. To validate the hit, we developed an SAR for
both antitubercular efficacy and the cytotoxicity to model mammalian (Vero) cells through
determination of the CCs, (amount of compound to inhibit cell growth by 50%). Structural
queries of the Available Chemicals Directory (ACD) (http://accelrys.com/products/databases/
sourcing/available-chemicals-directory.html), SciFinder (http://www.cas.org/products/
scifinder) and eMolecules (www.emolecules.com) were performed to identify structural ana-
logs of 1 available for purchase. Of the commercially available analogs, only two compounds
(quinoxaline di-N-oxides 2 and 3, Table 2) were subjectively viewed as sufficiently similar
while also being predicted to be whole-cell active through our Bayesian models. These analogs
were purchased and tested for their antitubercular activity (Table 2). Their whole-cell efficacy
was confirmed experimentally. To further establish an SAR for the quinoxaline di-N-oxides,
we used a concise synthetic route that consisted of heating a benzofuroxan with a 2,4-pentane-
dione in the presence of silica gel (Fig 2). This one-step reaction gave acceptable yields (20-
80%) of desired product, though often generated regioisomers depending on the nature of the
benzoxadiazole N-oxide. The regioisomers were generally separable via flash chromatography
and both isomers were tested for activities; in some instances chromatographic separation of
the isomers was not achieved. This method was utilized to prepare 62 analogs that have been
fully characterized via LC-MS and 'H NMR spectroscopy and tested for their MIC value
against Mtb (Table 2).

A range of aliphatic groups appeared to be tolerated at R" in deference to an ester (52) or
acid (53) where the MIC was >40 pug/mL. A small set of substituents (H, Cl, CH;, OCH3, NO,)
was examined at the 5- and 6- positions of the benzofuroxan input to afford final compounds
with potencies that varied significantly depending on the other substituting groups in the qui-
noxaline. The two most potent antitubercular compounds were 50 (MIC = 0.32 ug/mL) and 12
(MIC = 0.64 pg/mL).

Eight analogs with an MIC < 5.0 ug/mL, in addition to the original hit 1, were also tested
for cytotoxicity to Vero cells to assess the selectivity for antimicrobial activity relative to cyto-
toxicity (SI = CCso/MIC) (Fig 3). Three compounds exhibited an undesirable SI < 10 (SRI12,
SRI54, and SRI56). Amongst the five satisfying this SI criterion, SRI57 and SRI58 both dem-
onstrated ST > 32.

Given their promising in vitro activity and cytotoxicity, SRI50 and SRI58 were profiled for
kinetic solubility in pH 7.4 PBS, mouse liver microsomal stability, and Caco-2 cell permeability
(Table 3). Due to its structural similarity to these two analogs, SRI54 was also tested in this
panel. SRI50 and SRI58 were approximately eight-fold more soluble than SRI54. SRI58 exhib-
ited significantly greater mouse liver microsomal stability than the two other analogs. With all
three quinoxalines, metabolism appeared to be NADPH-dependent. All three compounds
exhibited comparatively low Caco-2 cell permeability (P,,, < 10 x 10~° cm/s) in both direc-
tions with efflux not being a significant issue (Pg_a/P_g < 3). Poor recovery of the compounds,
due to either low aqueous solubility and/or non-specific binding to the cell monolayer, may
have affected the overall measurements of compound concentration on each side of the mono-
layer (especially those of SRI50, for which permeabilities could not be quantified). SRI58 (for-
mulation: 10% DMA/90% (20% Solutol in citrate buffer pH 3.5)) did not exhibit quantifiable
blood levels in mouse pharmacokinetic studies (iv and po; data not shown).
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Table 2. Structures and activities of the quinoxaline di-N-oxide family (nd = not determined). Molecule structures are in S1 Data.

Compound R’ R? R® R* Mtb MIC Vero Cell % R3/R* position % R'/R? position
SRI# (Hs7Rv) pg/ CCso ug/mL  regioisomers regioisomers
mL
1 CH3 (BAS004912643) CHs H H 25 >40
2 CHj CH3 CH; H 5.0 nd
3 CHs CH3 OCH; H 10 nd
4 CHg CHj H Cl 5 >40 <10
5 CHs; CHj H NO, 25 nd
6 CeHs CHs; H CHs;  >40 nd 70
7 CeHs CHj H Cl 5 nd <5
8 CeHs CHs; Cl H 10 nd
9 CeHs CHs; H OCH; 5 nd <5
10 CsHs CHs H NO, 5 nd <10
11 3-pyridyl CHs H Cl 10 nd
12 3-pyridyl CH3 H OCH; 0.64 1.7 25
13 3-pyridyl CH3 H NO, 20 nd 50
14 CF3 CH3 H CHj 10 nd 38
15 CF3 CHs H OCH; 10 nd <5
16 CH>CH,CH,CH3 CHj H Cl 5 nd
17 CH>CH,CH,CH3 CHj Cl H 25 nd
18 CH,CH(CH3)» CHj Cl H 10 nd
19 CH,CH(CHj3)» CHj H Cl 5} nd
20 CH,CH,CH,>CH,>CH3 CHj H Cl 5] nd
21 CH,CH,CH,>CH,>CH3 CH; Cl H 10 nd
22 CH2CH,CHCH, CHs H Cl 5 nd
23 CH.CH3 CH.CH; H Cl 5 nd
24 CHoCH3 CH.CH; ClI H 10 nd
25 CHCH,CH, CHs3 H Cl 5 nd
26 CHCH,CH, CH3 Cl H 5 nd
27 CH(CH3)» CH3 H Cl >40 nd
28 CH(CHj3)» CH3 Cl H 10 nd
29 CH,CH,CHC(CH3)2 CH3 H Cl 5 nd
30 CH2CH,CH,CH3 CHs H CHs 5 nd
31 CH,CH,CH,>CH,>CH3 CHs; H CH; 20 nd 36
32 CH.CH3 CH.CH; H CHs 5 nd 40
33 CHCH,CH, CHs; H CH; 5 nd 40
34 CHoCH(CHz3)2 CHs H CH; 20 nd 42
35 CH.CH,CHCH, CHs; H CH; 43 nd 54
36 CHoCH,CHC(CH3)2 CHs H CHj 10 nd 50
37 CH.CH3 CHs3 H CHj 10 nd 25
38 CH(CHs)2 CHs H CHs 10 nd 50
39 CH,CH,CH,CH3 CH3 H OCH; 10 nd 35
40 CH,CH,;CH,>CH,CH3 CH3 H OCH; >40 nd 25
41 CH.CH3 CH,CH; H OCH; 40 nd
42 CH(CH3)» CHj H OCH; 40 nd <5
43 CH,CH(CHj3)» CHj H OCHz; 20 nd 15
44 CH,>CH,CHCH, CHj H OCH; 20 nd <5
45 CHoCH,CHC(CH3)2 CHs; H OCH; 20 nd <5
(Continued)
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Table 2. (Continued)

Compound
SRI#

46
47

48

49

50
51

52
53
54
55
56

57
58
59
60
61
62

R1

CH.CHs

CH,CH,CHC(CHa)
CH,CH,CHC(CHa)»

(

(
CH,CH,CHC(CH3)
CH,CH,CHC(CH3),
(

CH,CH,CHC(CH3)
CH2CH,CHC(CHa).

CH,CH,CH,CH3

CH,CH,CHC(CH3)
CH,CH,CHC(CHs)»

OCH>CH3

OH
CH>CH,CH,CHj3
3-pyridyl
CH,CH,CHC(CH3)
CH,CH,CHC(CHj3)»

CH,CH,CHC(CHa),
CHCH,CH,
CH,CH,CH,CH,CHs
CH,CH(CHy)»
CH,CH,CHCH,
CeHs

doi:10.1371/journal.pone.0141076.t002

R? R® R* Mtb MIC Vero Cell % R3R* position
(Hz7Rv) pg/ CCso ug/mL  regioisomers
mL

% R'/R? position
regioisomers

CHs, H OCH; 20 nd <5

CHs H OCHz 20 nd 40
CHs H CHy 5 nd 30
CHs H cl 5 nd 40
CHs, H NO, 0.32 3.4 25

CHg H H 5 nd 50
CHs H H >40 nd

CHs H H >40 nd

CHs, cl cl 2.5 15 25
CHs cl cl 2.5 >40

CHs, cl cl 2.5 45

CHs cl cl 1.25 >40

CHs cl cl 1.25 >40 25
CHs cl cl 2.5 nd 30
CHs, cl cl 2.5 nd 15
CHs, cl cl 2.5 nd 40
CHs, cl cl 2.5 nd 15

In vitro activity against MDR-TB

To avoid pursuing hits modulating biological targets pertinent to known antitubercular drugs,
we tested the most potent quinoxaline di-N-oxide SRI50 for activity against clinical MDR-TB
strains with known drug resistance profiles [29]. SRI50 showed potent activity against clinical
susceptible as well as clinical MDR-TB strains comparable to the laboratory H;,Rv strain sug-
gesting a novel mechanism of action for this series (Table 4).

o 0
Ch o M I OCH3\/\|/N\/\/“\ O:N. C'\/\/ w
® CE

e SN W cﬁ\/“u

o o
SRM SRI12 SRIW SRIS«i
MIC =5 pg/mL MIC = 0.64 g/mL. MIC = 0.32 pgimL MIC = 25 pgimL.
CCsp > 40 pgiml. gy = 1.7 pgiml. CCso= 3.4 ugimL CCy = 15 pgiml.
51=>8 Sl =2.65 SI =10.62 Sl =2.65

o0 [ o 0 | o 0
c'\/\ \f\ C'\ﬁ";\/\/\/)\f\%\ c']ﬁ";/l\/\f\ o AN

\ W
’“ N SN gy o

“ , -y N:"\, CI"W\ N.”‘\
i o &
smss SRIS6 SRIST SRISS
MIC = 2.5 pg/mL MIC = 2.5 pg/mL MIC = 1.2 pg/mL MIC =1.2 pg/mL
CCg> 40 pgimL CCyy =45 pgimL €G> 40 pgiml CCeo > 40 pgiml
Sl=>16 SI=1.8 S1=>33.33 S1=>33.33

Fig 3. Structures of quinoxaline di-N-oxides with the most promising antitubercular activities and
selectivities.

doi:10.1371/journal.pone.0141076.g003
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Table 3. Physiochemical and ADME data. For microsomal stability, verapamil was used as a high-metabolism control (0.24% remaining with NADPH) and
warfarin was a low-metabolism control (85% remaining with NADPH). The kinetic solubility limit was the highest concentration with no detectable precipitate.
For Caco-2 cell permeability, compounds at a concentration of 10 uM were incubated for 2 h. P, = apparent permeability coefficient. All compounds showed
poor recovery due to either low solubility or non-specific binding. Ranitidine, warfarin and talindol were used as low permeability, high permeability and P-gp

efflux, controls respectively.

Mouse liver microsomal stability Kinetic Caco-2 Cell Permeability
Solubility

Molecule % Compound remaining % Compound remaining Solubility Limit  Mean A->B Mean B->A Efflux ratioPapp

after 1h in the presence of after 1h in the absence of at 2 h (uM) Papp (1 0%cm Papp (107 (B->A)/Papp (A-

NADPH (%) NADPH (%) s™) cms™) >B)

SRI50 0.06 77.5 125 0.0 0.0 N/A
SRI54 0 791 15.6 0.66 0.10 0.15
SRI58 63.6 110 125 2.3 0.57 0.25

doi:10.1371/journal.pone.0141076.t003

Mechanism of action studies through transcriptional profiling

To gain insight into the effect of these quinoxaline di-N-oxides on Mtb, we turned to transcrip-
tional profiling [30, 31]. Summarily, Mtb grown on Middlebrook 7H9 supplemented with
OADC, Tween 80, and glycerol was treated with SRI54 at 3.2 ug/mL (1.3X MIC) for 6 h in qua-
druplicate and subsequently mRNA was isolated. Microarray studies (fold changes in Mtb
genes may be found in S3 Table) allowed determination of the effects of SRI54 on Mtb tran-
script levels as compared to a DMSO-only control. Overall, 131 genes were up-regulated at
least twofold versus control and 184 genes were down-regulated at minimum twofold versus
control. It is noteworthy that 3/13 genes (prpC, prpD, and icl1) in the methylcitrate cycle [32,
33] were induced more than fourfold versus control. The other genes (10/13) in the cycle were
not significantly affected by SRI54 as compared to control. In addition, 12/59 genes involved
in DNA repair [34] were up-regulated and solely 2/59 were down-regulated at least twofold as
compared to the control. Two genes in leucine biosynthesis (leuC and leuD) were down-regu-
lated greater than equal to twofold versus control samples. These two genes encode for the two
subunits of isopropylmalate dehydratase [35]. A number of genes involved in the FASII path-
way [36] were similarly down-regulated, including kasA, kasB, and InhA. Finally, consideration
of the top 100 most up-regulated and top 100 most down-regulated genes of Mtb when exposed
to SRI54 as compared to no-drug control through clustering with deposited Mtb transcrip-
tional data (environmental stresses and small molecule antituberculars) [30] was performed
via hierarchical clustering (Fig 4). It is noteworthy that SRI54 clustered most closely to the
fatty acid biosynthesis inhibitor CD117, which modulates both short-chain fatty acid and

Table 4. Activity of SRI50 against wild type and clinical MDR-TB strains.

Strain Drug Resistance® Strain Type SRI50 (ug/mL)
H37Rv None Laboratory 0.16

210 None Clinical 0.31

692 pan-susceptible Clinical 0.16

91 RIF, EMB Clinical 0.16

36 INH, RIF, EMB Clinical 0.16

116 INH, EMB, PAS Clinical 0.16

31 INH, RIF, EMB, KAN, SM, CAP Clinical 0.31

2 RIF = rifampicin; EMB = ethambutol; INH = isoniazid; PAS = p-aminosalicyclic acid; KAN = kanamycin;
SM = streptomycin; CAP = capreomycin

doi:10.1371/journal.pone.0141076.t004
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Fig 4. Mtb transcriptional response to SRI54 as compared to other small molecule antituberculars and environmental stresses. 100 SRI54 most
induced and repressed genes (top-bottom) are clustered with responses to other treatments (left-right). The top dendrogram indicates relatedness of the Mtb
perturbations based on gene clusters. Red indicates increase, blue indicates decrease and white no change in expression versus DMSO treatment. Amp,
ampicillin; EMB, ethambutol; TLM, thiolactomycin; INH, isoniazid; ETH, ethionamide; 5-CI-PZA, 5-chloropyrazinamide, CPZ, chlorpromazine; CCCP,
carbonyl cyanide 3-chlorophenylhydrazone; GSNO, S-nitrosoglutathione; DNP, 2,4-dinitrophenol.

doi:10.1371/journal.pone.0141076.9004

mycolic acid biosynthesis, [37, 38], and secondarily to two known protonophores, 2,4-dinitro-
phenol and carbonyl cyanide 3-chlorophenylhydrazone [30].

Computational Target Prediction

It should be noted that the postulated targets for which the initial three hits were retrieved (Fig
1) are not represented in the TB Mobile Apps (version 1.0 or 2.0) used [16, 17], although they
are in similar property space as the respective training sets when visualized by PCA (S2 Fig).
Therefore, the predictions may suggest additional targets, which could be followed up with bio-
chemical and/or microbiological studies. Using TB Mobile version 1.0 for BAS 04912643 the
closest hit is pyrazinoic acid (S3A Fig), which is predicted to be similar to compounds that tar-
get DeaD, Mfd, RecG, DinG, and NrdR. PCA clustering also places this compound in a pre-
dominantly FabH cluster (54 Table). For BAS00623753 the closest hit targets the UDP-
galactopyranose mutase GIf (S3B Fig) while PCA clustering places it in a MurB cluster. Finally
for BAS07571651 the closest hit targets GIf (S3C Fig) and PCA clustering places it in a QcrB
cluster [39]. TB mobile 2.0 with its larger database, use of ECFP_6 fingerprints for similarity
analysis and addition of Bayesian models for targets produced some differences in predictions
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(S4A Fig). For example, BAS 04912643 was predicted by the Bayesian models to target FtsZ,
CysH, DprE1 and Rv1885c¢ (54B Fig). BAS00623753 was predicted to modulate DprEl,
Rv1885, DprE2, CysH and Alr (S4C Fig). BAS07571651 was predicted to inhibit CysH and Ald
(54D Fig). When utilizing similarity criteria for each of the three hits to infer target, the follow-
ing hit-target pairings were predicted: BAS04912643—CysS, BAS00623753 -Glf, and
BAS07571651—InhA.

Discussion

Combining bioinformatics data from databases (like TBCyc, SRI’s BioCyc collection [40, 41],
and Pathway Logic models [42-45]) with cheminformatics databases (like CDD) as well as
computational modeling approaches is rarely attempted. When it is, synergies arise which can
accelerate the process of drug discovery. For example, our essential metabolite approach using
3D pharmacophore model scoring of commercial chemical space, alone [6] or in combination
with our Bayesian models for antitubercular whole-cell efficacy [7], may be viewed as interme-
diate between high-throughput screening and rational structure-based drug design. Our previ-
ous experiments with a multi-tiered, integrative informatics workflow (using pharmacophores,
Bayesian model for whole cell activity and other filters for molecular properties) identified two
acylthioureas suggested as mimics of D-fructose 1,6-bisphosphate which modestly inhibited
the growth of Mtb, and have served as a starting point for further optimization [7].

Our approach in this study differed in that we used 3D pharmacophore models and consen-
sus amongst three dual event Bayesian models [4, 26, 27] to select compounds for testing. It
produced three hits with MIC less than or equal to 40 pg/mL. If we tighten the threshold of a
hit and lower it to anything less than 10 ug/mL, the two most active retrieved out of 110 repre-
sents a hit rate much lower than those we have previously described using Bayesian methods
alone [46, 47]. This may be due to the far more stringent approach we have taken using multi-
ple Bayesian models and pharmacophore models as well as other calculated properties.

Additional recent computational approaches have been proposed to select antitubercular
compounds such as the druggome approach, which uses structural information on Mtb targets
[48], although others have suggested this still requires some refinement [49]. Pharmacophores
for specific Mtb targets have been used recently for virtual screening for acetohydroxyacid
synthase inhibitors as a prefilter to docking [50]. A second study developed a pharmacophore
from crystal structures for InhA and used this alongside docking to identify inhibitors [51].
Each of these cases represents the standard approach of focusing on a single target and a single
pharmacophore, while in the current study we have used 66 pharmacophores representing
many targets in Mtb to potentially identify compounds of interest from a vendor library.

With our hybrid pharmacophore-Bayesian approach, the two most active hits were
retrieved by the pharmacophore based on menadione. The pharmacophore consists of two
hydrogen bond acceptors and a hydrophobic feature. The enzyme NuoD (Rv3148) NADH
dehydrogenase I chain D, is a subunit of NADH dehydrogenase I. The reaction catalyzed by
this enzyme uses the substrate menadione and involves a complex of 13 other subunits. After
testing BAS04912643 we identified that this compound-a quinoxaline 1,4-di-N-oxide-had
been previously identified with an MIC of 3.13 pg/mL, possessed similar activity against resis-
tant strains of Mtb, and had no appreciable mammalian cell cytotoxicity [52]. This earlier
study had also shown that an analog of BAS04912643 was active in vivo. Further work by oth-
ers has shown that quinoxaline-2-carboxylate 1,4-di-N-oxides have in vitro antitubercular
activity and at least one compound was found to be active in vivo [53]. Similarly the closely
related benzotriazine di-N-oxides have also been shown to have activity in vitro [54].
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These compounds are likely bioreductively activated and we were keen to further explore
the quinoxaline 1,4-di-N-oxide core (Table 1). SRI50 was most potent (MIC = 0.32 pg/mL)
and had a greater than 10 fold higher cytotoxicity versus Vero cells. This and other analogs
(SRI54 and SRI58) featuring promising in vitro activity and relative lack of Vero cell cytotoxic-
ity or interesting substitutions, were then profiled for in vitro ADME properties. Attempts to
move SRI58 into in vivo infection studies in mice were halted with the failure to observe quan-
tifiable levels of the compound in mice upon dosing iv or po. The iv result, in particular, sug-
gests that rapid metabolism of SRI58 may be occurring that was not observed in the in vitro
mouse liver microsomal stability studies.

Given the lack of mechanistic information as to the Mtb target/s of the quinoxaline di-N-
oxides other than our demonstration of a lack of cross-resistance of SRI50 with front-line (iso-
niazid, rifampicin, ethambutol) and second-line (p-aminosalicyclic acid, capreomycin, strepto-
mycin, kanamycin) drugs, we have begun to probe their mechanism of action via
transcriptional profiling. Interestingly, Mtb treated with an early compound of interest, SRI54
afforded a transcriptional response distinct from menadione, the Mtb metabolite our calcula-
tions suggested it may mimic in terms of 3D pharmacophore. The transcriptional data do,
however, suggest a stress response of Mtb to SRI54 exposure. SRI54 treatment resulted in up-
regulation of genes (prpC, prpD, and icll) within the methylcitrate cycle, reminiscent of the
response of Mtb to isoniazid, rifampicin, and streptomycin exposure reported by the Rhee lab-
oratory [55]. Also, potentially indicative of the Mtb response to SRI54 is the up-regulation of
genes involved in DNA repair. While quinaxoline di-N-oxides have been reported to cleave
DNA through their enzymatic reduction [56], it remains to be demonstrated whether this is
the result of specific damage to Mtb DNA by SRI54 or a downstream consequence of the
engagement of other target/s. Finally, hierarchical clustering of the transcriptional responses of
Mtb to known antitubercular agents demonstrated a similarity of response to SRI54, CD117,
2,4-dinitrophenol, and carbonyl cyanide 3-chlorophenylhydrazone. It remains to be seen
whether SRI54 and other quinoxaline di-N-oxides inhibit Mtb fatty acid biosynthesis as does
CD117 [37] or disrupt the proton gradient of the transmembrane electrochemical potential
like 2,4-dinitrophenol and carbonyl cyanide 3-chlorophenylhydrazone [30].

We have also applied our computational approach of using Bayesian models for targets to
predict the possible targets for the hits retrieved using TB Mobile [11, 16, 17]. Since the TB
Mobile database does not currently include NuoD, it may be unable to predict the assumed tar-
gets of the two most active hits correctly. It does, however, suggest additional potential targets.
BAS 04912643 was predicted by the Bayesian models to inhibit FtsZ, CysH, DprEl and
Rv1885c. BAS00623753 was predicted to modulate DprE1, Rv1885, DprE2, CysH and Alr.
When looking at each hit and its target according to the app, the suggested target for
BAS04912643 was CysS, while that from BAS00623753 was GIf. This computational approach
may help prioritize targets for further testing in future. Others have recently shown how multi-
ple computational approaches can be successfully used to predict targets that were ultimately
experimentally validated [57].

In summary, we have presented the utilization of a combined bioinformatics/cheminfor-
matics platform to arrive at candidate inhibitors of essential Mtb enzymes, through mimicry of
the substrate/s or product/s as judged by 3D pharmacophore fit, that are predicted by a consen-
sus amongst Bayesian models to have whole-cell efficacy. Compounds that passed the selection
criteria were then tested in vitro versus Mtb and hits were validated and then optimized. We
have shown clearly this strategy can lead to in vitro active hits that are readily synthesized (qui-
noxaline di-N-oxides), one of which had been previously shown to be an analog of a compound
with both in vitro and in vivo activity [52] and potentially worthy of further evaluation because
of its cost of goods. This same approach could be applied to other neglected diseases such as
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malaria to identify compounds with activity and the potential target/s involved. In the process
of this work we have developed a computational workflow that was initially dependent on
manual operation. Using the API for CDD Vault we can now also enable the automation of the
computational process such that the user can go from computational target selection for phar-
macophore generation to identification of molecules from vendor libraries with
pharmacophores.

Ethics Statement
Rutgers animal care and use committee approved this work, IACUC #12106A09.

Materials and Methods
Reagents and molecules

All experimental compounds for initial screening were purchased from Asinex (Winston-
Salem, NC, USA) or synthesized in house. Purities were required to be greater than 90% with a
majority of commercial compounds having a purity of greater than 95%. Compounds were all
dissolved in dimethyl sulfoxide (Sigma Aldrich) at a stock concentration of 8.0 mg/mL imme-
diately and then diluted for biological testing.

All reagents for chemical synthesis were purchased from commercial suppliers and used
without further purification unless noted otherwise. All chemical reactions occurring solely in
an organic solvent were carried out under an inert atmosphere of argon or nitrogen. Analytical
TLC was performed with Merck silica gel 60 F,s, plates. Silica gel column chromatography was
conducted with Teledyne Isco CombiFlash Companion or Rf+ systems. "H NMR spectra were
acquired on Varian Inova 400, 500 and 600 MHz instruments and are listed in parts per million
downfield from TMS. LC-MS was performed on an Agilent 1260 HPLC coupled to an Agilent
6120 MS. All synthesized compounds were at least 95% pure as judged by their HPLC trace at
250 nm and were characterized by the expected parent ion(s) in the MS trace. The Supplemen-
tary Materials include synthetic details pertinent to the arylamide and quinoxaline di-N-oxide
series.

Identification, annotation and publication of new potential Mtb enzyme
targets

We previously described [7] in detail 1) the identification of essential in vivo enzymes of Mtb,
2) the collection of metabolic pathway and reaction information for the essential enzymes, 3)
the comparison of non-human-homologous enzymes with Mtb in vivo essential gene set, and
4) the selection of Mtb targets that are essential in vivo but not homologous to human proteins
and not known as TB drug targets.

25 in vivo essential enzymes (step 1) were noted in recent reports from the literature [58-
61] and these include FbpC, DacB1, Cyp125, BioA, ArgJ, Nrp, SseA, End, BioF1, CobL, GevT,
AceE, HemN, AccD1, SerB2, AmiD, HsaF, Tal, FabG, NuoD, ProA, MalQ and ArcA. Among
them, 2 enzymes have no human homologs (FbpC and DacB1). From a recent publication
[62], we noted 32 Mtb enzymes with no human homologs and these are different from 66 non-
human homologs found previously [7]. Except FbpC, 31 of these enzymes are not in vivo essen-
tial. Among these 31 non-homologous proteins, 17 are metabolic choke points [63] and 18
have the highest number of interactions with pathogenesis causing proteins. These in total give
us 46 candidate essential enzyme targets among which 16 have PDB structures with a ligand
bound. We have listed all these targets and annotated them (S1 Table) with respect to gene
details, pathway information, structural evidence, predicted essentiality, orthologs and
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inhibitors information. These are supported with links to relevant databases and PubMed ref-
erences. This list is published within the CDD public database (https://app.collaborativedrug.
com/register) to be explored by the scientific community.

In silico approaches for selecting molecules

For each molecule a 3D pharmacophore was developed using Discovery Studio 3.5 (Biovia, San
Diego, CA) from 3D conformations of the substrate or metabolite. This identified key features,
onto which was mapped a van der Waals surface for the molecule [3, 6, 64]. The pharmaco-
phore plus shape was then used to search the Asinex Gold compound database (N = 205,997,
for which up to 100 molecule conformations with the FAST conformer generation method
with the maximum energy threshold of 20 kcal/mol, were created). The in silico hits were col-
lated and uploaded in CDD, and three previously described and validated dual event Bayesian
models (MLSMR, CB2 and Kinase)[8, 10, 22-25] for Mtb whole-cell activity were used to score
the compounds and the data re-imported in CDD. All of the molecules used to build the Bayes-
ian models are available as freely accessible datasets at www.collaborativedrug.com and Fig-
share [9, 23, 24]. Finally the compounds were filtered based on pharmacophore fit values > 2.5
and Bayesian scores that predicted whole-cell activity as “true”. Therefore, a compound has to
comply with these criteria to be selected. Through this process 141 molecules were retrieved
which was further narrowed to 110 molecules based on the opinion of an experienced medici-
nal chemist, removing compounds with reactive/unstable chemical functionality [28]. These
compounds were then purchased for testing.

CDD TB DB

The development of the CDD database has been described previously with applications for col-
laborative malaria [65] and TB research [3, 4]. The literature data on Mtb drug discovery has
been curated and over ~20 Mtb specific datasets are hosted, representing well over 300,000
compounds derived from patents, literature and high throughput screening (HTS) data, and
we have termed this the CDD TB DB. Some of these datasets were used to develop the Bayesian
models used in this study [8]. The data generated in this study was saved in a secure CDD
Vault for collaborators to share.

CDD application programming interface development

We have described a complex workflow between different computational databases such as
TBCyc and CDD Vault, as well as computational model development with Discovery Studio.
To facilitate connectivity between these software packages, an application programming inter-
face (API) was developed which allows this connectivity between software tools. The goal of
this was to provide a user interface for curating TB drug targets and molecules to fully exploit
published literature and data created in this project. This also integrates database searching
with computational modeling tools by defining data exchange formats that enable both interac-
tive and fully automated modeling, database searching, hit scoring and compound selection for
purchasing. Ultimately this extends data types and computational modeling software capabili-
ties upstream to target identification and validation capabilities.

The current version of TBCyc (MTH37RVV) was extended by adding drug candidates (in
mol2 format) to the database via a small script of custom LISP using the Pathway Tools’ APL
Associated gene/proteins were added as regulated entities of the added compounds and linked
externally to a CDD Vault via the ‘dbdef’ and ‘linkdef’ command line options for linking
PGDB entries with external URLs.
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Measurement of Antibacterial Activity Against Mtb

We used the resazurin (Alamar Blue) assay as the primary screen for activity against replicating
Mtb [66]. Each compound was tested over a range of concentrations to determine the MIC.
The antimicrobial susceptibility test was performed in a clear-bottomed, round well, 96-well
microplate. Initial compounds were tested at 8 concentrations ranging between 40 and 0.31 pg/
mL with a final DMSO concentration of 1.25% in each well. After a growth medium containing
~10* bacteria was added to each well, the different dilutions of compounds were added. Con-
trols included wells containing (1) concentration of rifampin and isoniazid ranging from
0.00039 to 8.0 pg/mL to control for assay performance, (2) wells with bacteria, growth medium,
and vehicle (1.25% DMSO), and (3) sterility control wells with medium. Plates were incubated
at 37°C for 6 d in an ambient incubator at which time 5 pL of 1% resazurin dye was added to
each well. After 2 d of incubation, visual inspection of color (pink, periwinkle or blue) was
recorded for each well along with measurements of fluorescence in a microplate fluorimeter
with excitation at 530 nm and emission at 590 nm. The lowest drug concentration that inhib-
ited growth of >90% of Mtb bacilli in the broth was considered the MIC value [67]. Rifampicin
(MIC range 0.0031-0.012 pg/mL) and isoniazid (MIC range 0.0031-0.012 ug/mL) were used as
positive controls and were consistently in the acceptable range. The MIC against MDR strains
was also tested using the AlamarBlue®) Cell Viability Reagent (DAL1100, ThermoFisher Sci-
entific) as described above, except the MICs were read using absorbance as per manufacturer’s
recommendation.

Cytotoxicity determination

Vero cells (CCL-81, ATCC) were plated in 96-well plates (~5x10* cells/well) and incubated
overnight in cell culture media (MEM + 5% FBS + 1% Pen/strep + 1% L-Glutamine). Stock
solutions of test compounds were added to cells at concentrations from 0.5-50 uM concentra-
tions with a final DMSO concentration of 0.645% for 72 h at 37°C with 5% CO,. At the end of
this incubation period, cell viability was measured using a Cell Titer-Glo Luminescent cell via-
bility assay (Promega) according to manufacturer instructions. Treatment with 5% DMSO was
used as a control for maximal cytotoxicity and 0.645% DMSO as a negative control. CCs val-
ues were derived from plotting the calculated percent viability as a function of compound con-
centration and fitting the results to a four-parameter logistical function in GraphPad Prism.

ADME/Tox Screening

With a considerable percentage of drug failures attributed to ADME/Tox (Absorption, Distri-
bution, Metabolism, Excretion and Toxicity) issues [68, 69], it is important to assess these qual-
ities early in the drug development process. Kinetic solubility, metabolic stability, and Caco-2
permeability were evaluated by Cyprotex (Watertown, MA).

Kinetic solubility. Serial dilutions of the test agent were prepared in DMSO at 100x the
final concentration. Test article solutions were diluted 100-fold into pH 7.4 phosphate-buffer
saline (PBS) in a 96-well plate and mixed. After 2 h at 37°C, the presence of precipitate was
detected by turbidity (absorbance at 540 nm). An absorbance value of greater than ‘mean + 3x
standard deviation of the blank’ (after subtracting the background) was indicative of turbidity.
For brightly colored compounds, a visual inspection of the plate was performed to verify the
solubility limit determined by UV absorbance. The solubility limit was reported as the highest
experimental concentration with no evidence of turbidity.

Metabolic stability assays. The test agent was incubated in duplicate with mouse liver
microsomes at 37°C. The reaction contained microsomal protein in 100 mM K;PO,4, 2 mM
NADPH, and 3 mM MgCl, at pH 7.4. A control was run for each test agent omitting NADPH
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to detect NADPH-free degradation. At t = 0 and 60 min, an aliquot was removed from each
experimental and control reaction and mixed with an equal volume of ice-cold Stop Solution
(methanol containing propranolol as an internal standard). Stopped reactions were incubated
at least ten min at -20°C, and an additional volume of water was added. The samples were cen-
trifuged to remove precipitated protein, and the supernatants were analyzed by LC/MS/MS to
quantitate the remaining parent. Data were reported as % remaining by dividing by the time
zero concentration value.

Intestinal permeability assays. Caco-2 cells grown in tissue culture flasks were trypsi-
nized, suspended in medium, and the suspensions were applied to wells of a Millipore 96 well
Caco-2 plate. The cells were allowed to grow and differentiate for three weeks, feeding at 2 d
intervals. For Apical to Basolateral (A->B) permeability, the test agent was added to the apical
(A) side and amount of permeation was determined on the basolateral (B) side; for Basolateral
to Apical (B->A) permeability, the test agent was added to the B side and the amount of per-
meation was quantified on the A side. The A-side buffer contained 100 uM Lucifer yellow dye
in Transport Buffer (1.98 g/L glucose in 10 mM HEPES, 1x Hank’s Balanced Salt Solution) pH
6.5, and the B-side buffer was Transport Buffer, pH 7.4. Caco-2 cells were incubated with these
buffers for 2 h, and the receiver side buffer was removed for analysis by LC/MS/MS (with pro-
pranolol used as an internal standard). To verify the Caco-2 cell monolayers were properly
formed, aliquots of the cell buffers were analyzed by fluorescence to determine the transport of
the impermeable dye Lucifer Yellow. Any deviations from control values were reported.

Data were expressed as permeability: (P,,)

_ dQ/dt
app CUA

dQ/dt was the rate of permeation, CO was initial concentration of test agent, and A was the
area of monolayer.
In bidirectional permeability studies, the Efflux Ratio (R.) is also calculated:
p

_ P, (B—4)
R

wp(A—B)

An R, > 3 indicates a potential substrate for P-glycoprotein or other active transporters.

Transcriptional Profiling

Mtb (H37Rv) was grown in Middlebrook 7H9 supplemented with oleic acid, albumin, dex-
trose, catalase, glycerol and Tween 80. At Asqs of 0.6, cultures were treated with SRI54 at
3.2 ug/mL (1.3X MIC) and CD117 [37] at 2 pg/mL (5X MIC) for 6 h in quadruplicates. A par-
allel control culture was treated with an equivalent amount of DMSO for the same amount of
time. For each replicate, a total of 40 mL of Mtb cells (2 x 10" CFU/mL) were harvested by cen-
trifugation, homogenized with 1 mL Trizol, and transferred into a screw-cap microcentrifuge
tube containing zirconia beads (0.1 mm diameter, BioSpec Products, Inc., OH). We disrupted
samples by five 1 min pulses in a bead beater, keeping samples on ice for 2 min between pulses.
After centrifugation, the supernatant was transferred into a clean tube and total RNA was iso-
lated following Qiagen RNeasy mini kit. Purified RNA was kept at -80°C for further use. Mtb
DNA microarrays were printed at the Center for Applied Genomics (CAG; http://www.cag.
icph.org/) at Rutgers University [70]. The detailed labeling and hybridization protocol can be
obtained at http://www.cag.icph.org/downloads_page.htm.

The 100 most induced and most repressed genes of Mtb in response to SRI54 treatment
were determined by mRNA expression ratio of drug-treated samples versus DMSO control
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samples. Mtb gene expression patterns under other treatments were obtained from Gene
Expression Omnibus at NCBI (GEO; available on www.ncbi.nlm.nih.gov/geo) with GEO acces-
sion number GSE1642 (PMID: 15247240). These treatments included streptomycin
(GSM28060), tetracycline (GSM28085), capreomycin (GSM28096), amikacin (GSM28073),
PBS starvation (GSM28325), ampicillin (GSM28063), ethambutol (GSM28033), thiolactomy-
cin (GSM28067), isoniazid (GSM28077), ethionamide (GSM28065), pH 4.8 (GSM28000), pH
5.2 (GSM28005), pH 5.6 (GSM28016), benzamide (GSM27983), pyrazinamide (GSM27898),
5-Cl-pyrazinamide (GSM27989), KCN (GSM28260), chlorpromazine (GSM28305), carbonyl
cyanide 3-chlorophenylhydrazone (GSM28263), S-nitrosoglutathione (GSM28286), thiorida-
zine (GSM28224), NaN; (GSM28338), nigericin (GSM28301), clofazimine (GSM28220),
2,4-dinitrophenol (GSM28255) and menadione (GSM28307). The gene hierarchical clustering
algorithm was based on the average linkage method with Euclidean distance calculation via
CIMminer (discover.nci.nih.gov/cimminer) [71].

Target predictions

Over 700 compounds with known Mtb targets were initially collated from the literature [7] and
made available in the mobile application TB Mobile (Collaborative Drug Discovery Inc. Burlin-
game, CA) which is freely available for iOS and Android platforms [17, 72]. This dataset was
recently updated in TB Mobile 2.0 to 805 compounds and covers 96 targets [16]. Molecules
representing hits from this study were input as queries in TB Mobile versions 1 and 2.0 and the
similarity of all molecules calculated in the application. A Principal Component Analysis (Dis-
covery Studio) was also performed with all the molecules in version 1. In both versions 1 and 2
of the app, the top most structurally similar compounds (Compounds are ranked by most simi-
lar first as Tanimoto similarity is not specified in the app) were used to infer Mtb targets.
Bayesian models integrated in the version 2.0 app were also used to predict targets. Clustering
molecules with TB Mobile compounds was also undertaken in Discovery Studio (S4 Table).
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