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Abstract

Periodontal diseases are highly prevalent and are linked to several systemic diseases. The goal of
periodontal treatment is to halt the progression of the disease and regenerate the damaged tissue.
However, achieving complete and functional periodontal regeneration is challenging because the
periodontium is a complex apparatus composed of different tissues, including bone, cementum,
and periodontal ligament. Stem cell-based regenerative therapy may represent an effective
therapeutic tool for periodontal regeneration due to their plasticity and ability to differentiate into
different cell lineages. This review presents and critically analyzes the available information on
stem cell-based therapy for the regeneration of periodontal tissues and suggests new avenues for
the development of more effective therapeutic protocols.
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INTRODUCTION

Periodontal diseases are characterized by bacterial-induced chronic inflammation that cause
destruction of tooth supporting structures, including periodontal ligament (PDL), cementum,
and alveolar bone (Pihlstrom et al., 2005). Periodontal diseases are highly prevalent, and in
fact severe periodontitis is the sixth-most prevalent health condition worldwide (Kassebaum
et al., 2014). Current scientific evidence highlights the association and possible cause-effect
correlation between periodontitis and other high prevalence diseases, such as diabetes,
cardiovascular diseases, chronic kidney diseases, and pulmonary infections (Borgnakke et
al., 2013; Fisher et al., 2008; Friedewald et al., 2009; Scannapieco et al., 2003). Thus,
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periodontal disease is an important public health issue and the development of effective
therapies to treat periodontal disease should be a major goal of the scientific community.

The goal of periodontal treatment is to stop the progression of the disease and regenerate the
structure and function of the damaged tissues. Conventional non-surgical or surgical
treatments, such as scaling and root planing, open flap debridement, and osseous surgery can
control the progression of periodontal disease (Salvi et al., 2014). However, achieving
complete and functional periodontal regeneration is still challenging (Giannobile, 2014).
The challenge in periodontal regeneration lies in the ability to induce the regeneration of a
complex apparatus composed of different tissues, including bone, cementum, and
periodontal ligament.

Periodontal regeneration has been defined as the regeneration of alveolar bone, PDL, and
cementum over a previously diseased root surface (1996). Several treatment modalities have
been developed to achieve periodontal regeneration, including guided tissue regeneration,
use of bone grafts, application of growth factors and host modulating factors, and the
combination of the above methodologies (Reynolds et al., 2015). Although there is some
evidence showing that periodontal regeneration can be achieved by employing these
techniques, all regenerative treatment modalities have shown limited success, especially in
challenging clinical situations (Reynolds et al., 2015). Thus, alternative treatment
approaches to achieve predictable periodontal regeneration are still highly desirable.

Recent efforts have focused on cell-based regenerative approaches using stem cells. Stem
cells appear to have a promising therapeutic potential in regenerative medicine due to their
plasticity and ability to differentiate into different cell lineages, thus providing a cellular
source for the regeneration of the different missing periodontal tissues (PDL, cement, and
bone). In this review we explore the current and potential applications of stem cell-based
therapeutic approaches in periodontal regeneration.

STEM CELL BIOLOGY

A brief introduction to the biology of stem cells is required in order to fully understand the
potentials and the efficacy of stem cell-based therapeutic approaches to periodontal
regeneration.

Stem cells have two important characteristics: self-renewal and differentiation potential.
Self-renewal refers to their ability to renew themselves through mitosis, even after long
periods of inactivity (Bianco et al., 2010). The differentiation potential entails stem cells to
differentiate into a different phenotype. These two qualities, together, allow stem cells to
proliferate and regenerate missing or compromised tissues.

Based on their differentiation potential, stem cells can be categorized in totipotent cells (able
to differentiate into cells of all three germ lines as well as cells of the extraembryonic
tissue), pluripotent cells (able to differentiate into cells of all three germ lines but not in cells
of the extraembryonic tissue), multipotent (able to differentiate into cells of only one or two
germ lines), and unipotent (able to differentiate into only one cell type).
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Based on their derivation or methods of generation, stem cells are denominated as: 1)
embryonic stem cells, 2) post-natal stem cells, and 3) reprogrammed stem cells. Embryonic
stem cells are pluripotent cells derived from the inner cell mass of the blastocyst (Thomson
et al., 1998). These cells have the ability to form derivatives of all three embryonic germ
layers (Thomson et al., 1998). Therefore, embryonic stem cells have great potential for cell-
based regenerative therapy. However, the therapeutic use of embryonic stem cells has raised
major ethical concerns and other safety concerns such as those related to their
immunogenicity and tumorigenicity. (Jung, 2009; Lu et al., 2009). The same ethical
concerns are not present with the use of post-natal stem cells. Post-natal stem cells have
been isolated from a variety of tissue sources, including bone marrow, epithelium, adipose
tissue, liver, nervous system, teeth, and periodontal ligament (Barker, 2014; Caplan, 2007;
Codega et al., 2014; Gronthos et al., 2000; Seo et al., 2004). It is generally believed that
tissue-resident post-natal stem cells play a role in maintaining tissue homeostasis,
physiological tissue renewal, and regeneration after tissue damage (Li and Clevers, 2010). In
contrast to embryonic stem cells, post-natal stem cells are multipotent, and therefore are
more limited in their differential potential. However, post-natal stem cells may represent a
safer approach to stem cell-based tissue regeneration (Jing et al., 2008). Consequently,
numerous pre-clinical and clinical studies have investigated the application of these stem
cells for cell-based regenerative therapy in a variety of conditions.

Among the large variety of post-natal stem cells that can be found within the human body,
skeletal stem cells (SSCs) (Bianco and Robey, 2015) are of interest to periodontists because
of their potential to regenerate periodontal tissues (Hynes et al., 2012; Seo et al., 2004).
SSCs are multipotent adult stem cells able to form mesenchymal and connective tissues
(Pittenger et al., 1999). They can differentiate into at least three mesenchymal cell lineages,
including osteoblasts, chondrocytes, and adipocytes (Huang et al., 2009; Pittenger et al.,
1999). SSCs were initially isolated from bone marrow more than 50 years ago (Becker et al.,
1963). Since then, SSC-like cells have been isolated from several tissues using various
methods of isolation and expansion, and therefore, in order to standardize the isolation and
preparation methods, the International Society for Cellular Therapy proposed the following
criteria to identify human SSCs (defined by the Society as adult mesenchymal stem cells): 1)
Adherence to plastic when maintained in standard culture conditions; 2) Expression of
markers including CD105, CD73 and CD90, and lack expression of hematopoietic cell
markers such as CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR; 3)
Capacity to differentiate into osteoblasts, adipocytes and chondroblasts in vitro (Dominici et
al., 2006).

Reprogrammed stem cells are cells whose genetic program is modified to induce a switch
from one cell phenotype to another (Gurdon and Melton, 2008). Cell reprogramming can be
achieved using the following four different methodologies (discussed in more details
elsewhere (Gurdon and Melton, 2008; Intini, 2010)): a) nuclear transfer from somatic cells
to oocytes, b) overexpression of certain genes or modulation of certain signaling pathways,
c) lineage switching, and d) direct conversion. Takahashi and Yamanaka were the first to
induce plasticity in mouse fibroblasts by viral transduction of four genes named Oct 3/4,
Sox2, c-Myc, and KLF4 (Takahashi and Yamanaka, 2006). The transduced cells, named
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induced pluripotent stem (iPS) cells, exhibited plasticity similar to that observable in
embryonic stem cells, thus, by all means, iPS cells may be considered as pluripotent stem
cells. Since their inception, extensive efforts have been made to improve the iPS technology
and to develop iPS cell-based therapeutic approaches for regeneration of a wide variety of
tissues (Duan et al., 2011; Revilla et al., 2015). Further improvement of iPS-related
technologies could lead to development of effective, safe, and ethically acceptable stem
cell-based therapeutic approaches for regeneration of desired tissues.

This review intends to introduce the readers to the present available information on the use
of stem cell-based therapy for periodontal regeneration. We present and critically analyze
the current scientific evidences on the use of non dental- derived post-natal stem cells,
dental-derived adult stem cells, and iPS-derived cells for the regeneration of periodontal
tissues.

NON DENTAL-DERIVED POST-NATAL STEM CELLS

In this section we review the periodontal tissue regenerative potential of non dental- derived
adult stem cells, including bone marrow-derived skeletal stem cells (BMSSCs) and adipose
tissue-derived stem cells (ATSCs).

Bone Marrow Skeletal Stem Cells for Periodontal Regeneration

Bone marrow-derived skeletal stem cells (BMSSCs) are adult multipotent cells that can
differentiate into cells identified as components of the periodontal tissues (Huang et al.,
2009; Pittenger et al., 1999). The potential of BMSSCs for periodontal regeneration has
been widely investigated, and multiple periodontal defects have been treated by autologous
or allogeneic skeletal stem cells derived from bone marrow (Table 1) (Chen et al., 2008; Du
et al., 2014; Hasegawa et al., 2006; Kawaguchi et al., 2004; Li et al., 2009; Tan et al., 2009;
Wei et al., 2010; Yang et al., 2010; Yu et al., 2013; Zhou et al., 2011; Zhou and Mei, 2012).

Autologous BMSSCs are usually isolated from iliac crest bone marrow (Pittenger et al.,
1999). The capacity of these cells to regenerate periodontal tissue has been demonstrated in
several studies (Hasegawa et al., 2006; Kawaguchi et al., 2004; Li et al., 2009; Wei et al.,
2010). For instance, Kawaguchi and colleagues evaluated the potential of autologous
BMSSCs isolated from iliac crest to regeneration furcation periodontal defects in a beagle
dog model of periodontal defect (Kawaguchi et al., 2004). They created class |11 furcation
defects surgically, and treated the so created defects with BMSSCs delivered by means of a
collagen gel carrier. Although a complete regeneration of defects was not achieved, tissue
regeneration was marked by formation of new bone, cementum, and Sharpey’s fibers
inserted into the cementum (Kawaguchi et al., 2004). It should be noted, however, that, with
the exception for the adherence to plastic when maintained in standard culture conditions,
cells used in the Kawaguchi’s study do not meet the definition criteria of skeletal stem cells,
as in fact they were not selected for the expression of the markers proposed by the
International Society for Cellular Therapy (Dominici et al., 2006). In addition, the ability of
these cells to effectively differentiate into periodontal tissues was not properly reported in
this study. Therefore, results of this study should be interpreted with caution.
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To understand the behavior and fate differentiation of autologous bone marrow skeletal stem
cells into periodontal tissue after transplantation into periodontal defects, labeling
experiments have been performed (Hasegawa et al., 2006; Wei et al., 2010). For instance,
using a canine model, Wei and colleagues labeled BMSSCs isolated from tibias with
bromodeoxyuridine (BrdU) (Wei et al., 2010). The labeled autologous BMSSCs were
transplanted into surgically created class 111 furcation defects using alginate gel as a delivery
vehicle. Although not contributing to the actual formation of the regenerated tissues, this
study indicates that the transplanted cells migrated into PDL, cementum, alveolar bone, and
blood vessels. It was only demonstrated that some of the labeled cells expressed markers of
mature osteoblasts and fibroblasts, suggesting differentiation of BMSSCs into fibroblasts
and osteoblasts after transplantation (Wei et al., 2010).

A limitation of using autologous BMSSCs is due to the fact that the number of autologous
stem cells declines by aging (Stenderup et al., 2003). Furthermore, proliferative potential of
stem cells is reduced over an extended culture period (Bonab et al., 2006). To overcome
these limitations, scientists propose cryopreservation of bone marrow skeletal stem cells as a
viable option. The capacity of cryopreserved autologous BMSSCs for periodontal
regeneration has been reported by Li and colleagues in a canine model (Li et al., 2009). Li et
al compared the regenerative potential of cryopreserved autologous BMSSCs with that of
freshly isolated BMSSCs when transplanted into periodontal fenestration defects using
collagen sponge scaffolds as a carrier (Li et al., 2009). Regeneration of periodontal defects
was observed in both groups. Histomorphometric analysis revealed that amounts of
formation of new bone, cementum, and PDL fibers were significantly higher in both groups
compared to the control group, which was treated with scaffold alone, and no significant
differences were found in the regeneration of periodontal tissue between the two test groups,
indicating that cryopreservation of BMSSCs may represent a valid alternative to other stem
cell-based treatment modalities (Li et al., 2009).

Allogeneic bone marrow-derived skeletal stem cells can be another alternative to autologous
BMSSCs. Several studies have tested the potential of allogeneic BMSSCs for regeneration
of periodontal defects (Du et al., 2014; Yang et al., 2010; Yu et al., 2013; Zhou et al., 2011).
Using a rat model, Yang and colleagues studied the fate and the regeneration potential of
allogeneic BMSSCs labeled with green fluorescent protein (GFP) expanded on gelatin beads
(YYang et al., 2010). This study demonstrated that transplantation of the GFP-labeled cells
resulted in regeneration of the defect with significantly more new bone formation and
greater number of functionally orientated periodontal ligament fibers compared to defects
treated with gelatin beads alone; however, no significant difference was found regarding
formation of new cementum between the groups (Yang et al., 2010). They also found that
GFP-labeled cells were integrated into newly formed periodontal tissue (Yang et al., 2010),
indicating the direct contribution of transplanted allogeneic BMSSCs to the regeneration of
the periodontal defects. Interestingly, tracking of GFP labeled BMSSCs after intravenous
administration of the cells in a mouse model also demonstrated that these cells contributed
to periodontal regeneration and differentiated into tissue specific cells including PDL
fibroblasts and osteoblasts (Zhou et al., 2011). In this respect, it is, however, important to
mention that isolation and enrichment of bone marrow-derived skeletal stem cells result in a
heterogeneous cell population (Ho et al., 2008; Kassem and Abdallah, 2008). Therefore, it is
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not clear whether new bone, cementum, and periodontal ligament were formed by
multipotent cells or by lineage-specific progenitor cells within the heterogeneous cell
population.

Signaling molecules such as growth factors, cytokines, and chemokines, are important
factors implicated in tissue regeneration and can therefore be employed to modulate cellular
functions including cell proliferation and differentiation (Yoshida and Fujii, 1999). One of
the approaches in cell-based therapy is based on the use of genetically-manipulated cells as
carriers for the delivery of signaling molecules (Lin et al., 2015). Hence, the delivery of
regenerative signaling molecules using BMSSCs as vehicle for periodontal cell-based
regenerative therapy has also been investigated (Chen et al., 2008; Tan et al., 2009; Zhou
and Mei, 2012). Chen and colleagues, using a rabbit model, demonstrated that
transplantation of BMSSCs engineered to over-express bone morphogenetic protein-2
(BMP-2) enhanced periodontal regeneration by forming more new bone than the un-
manipulated BMSSCs (Chen et al., 2008). Another study by Tan and colleagues evaluated
the potential of BMSSCs engineered to over-express basic fibroblast growth factor (bFGF)
for treatment of class 111 furcation defects in a canine model of periodontal defect (Tan et al.,
2009). These authors reported that periodontal regeneration was evident in sites treated with
bFGF-overexpressing BMSSCs or BMSSCs alone, while more new bone formation was
observed in sites treated with the bFGF-overexpressing BMSSCs (Tan et al., 2009). Despite
the promising results, the current available data on the efficacy of delivery of signaling
molecules using post-natal stem cells in the treatment of periodontal defects are still very
limited, and more studies are needed to confirm the efficacy and the safety of this treatment
approach.

It is worth to mention that the surgically created periodontal defects in preclinical animal
models do not accurately resemble the defects induced by periodontal disease. Human
periodontal lesions are associated with inflammation, and the defects are populated with
pathogenic biofilm, granulation tissue, calculus, and plaque (Pihlstrom et al., 2005;
Socransky and Haffajee, 1992). To recreate this extremely contaminated environment while
developing a periodontal defect with reproducible defect morphology is extremely difficult.
Thus, the above-mentioned pre-clinical studies may still have limited efficacy when
translated in human clinical trials. Clearly, the promising results of the mentioned preclinical
studies must be further confirmed by clinical studies.

One of the few clinical studies reporting on the use of BMSSCs for the treatment of
periodontal defects is a case report published by Yamada and colleagues (Yamada et al.,
2006). These authors reported successful treatment of intrabony periodontal defects in one
patient using the local application of a combination of expanded autologous BMSSCs
harvested from iliac crest and platelet-rich plasma (PRP) (Yamada et al., 2006). The same
cell transplantation approach was utilized by Yamada et al in a larger scale clinical study
with 104 subjects treated for alveolar bone regeneration, sinus floor elevation, ridge
preservation, and regeneration of periodontal defects (Yamada et al., 2013). 17 patients in
this study received the stem-cell transplantation for the treatment of periodontal defects. The
clinical outcomes revealed a significant improvement in clinical periodontal parameters
compared to the baseline: an average 5.12 + 2.45 mm reduction of probing depth, an average
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4.29 + 1.32 mm gain of clinical attachment, and an average 3.12 + 1.23 mm gain of bone as
measured by radiographic evaluations were achieved by using the combination of BMMSCs
and PRP (Yamada et al., 2013). It is important to note that no side effects were evident in all
104 participants of this study. Although impressive clinical outcomes were observed, there
was no control group in this study, which limits the interpretation of the outcomes.
Therefore, further well-designed clinical studies are still needed to establish feasible and
safe BMSSCs-based therapeutic approaches for the treatment of periodontal defects.

Adipose Tissue Stem Cells for Periodontal Regeneration

Adipose tissue-derived stem cells (ATSCs) have recently been widely studied as a viable
cell source for cell-based regenerative medicine (Locke and Feisst, 2015). These cells have
shown to have properties similar to BMSSCs. Several studies have demonstrated the ability
of ATSCs to differentiate into adipogenic, chondrogenic, and osteogenic cells as well as
myogenic and neurogenic cells (Gimble and Guilak, 2003; Lee et al., 2004; Planat-Benard et
al., 2004). ATSCs express mesenchymal cell surface markers such as CD29, CD44, CD71,
CD90, CD105, and STRO-1 and lack expression of the hematopoietic markers such as
CD31, CD34, and CD45 (Zuk et al., 2002). The use of these cells offers several advantages
over the use of BMSSCs, including the easy harvesting process and the minimal donor site
morbidity (Huang et al., 2009; Zuk et al., 2002). Therefore, ATSCs represent a highly
attractive cell source alternative for stem cell-based therapeutic approaches in
periodontology.

Indeed, the potential of ATSCs for regeneration of periodontal defects has been
demonstrated in some preclinical studies (Table 2) (Akita et al., 2014; Tobita et al., 2008;
Tobita et al., 2013). For instance, Tobita and colleagues isolated ATSCs from inguinal fat
pads of Wistar rats, mixed them with PRP, and transplanted them into surgically created
fenestration periodontal defects. (Tobita et al., 2008). The results showed that new bone,
cementum, and perpendicular periodontal ligament-like fibers were formed 8 weeks after
transplantation. No cementum or PDL formation was evident in the defects that did not
received the treatment or that were treated with PRP alone (Tobita et al., 2008).
Furthermore, labeling of ATSCs with GFP demonstrated that GFP-positive cells were
present on the surface of the regenerated alveolar bone and within the PDL structures,
suggesting that transplanted ATSCs underwent differentiation, becoming osteocytes or
periodontal ligament cells (Tobita et al., 2008). Another study in a murine model published
by Akita and colleagues reported similar findings (Akita et al., 2014). Akita and his
collaborators isolated the ATSCs using the protocol detailed in Tobita et al (Tobita et al.,
2008), and transplanted the isolated ATSCs using poly-lactic-glycolic acid (PLGA) scaffold
into surgically created periodontal defects. Histomorphometric analysis revealed that the
amount of newly formed cementum and width of regenerated PDL were significantly greater
when ATSCs and PLGA were transplanted into the defect then when PLGA alone was used.
Histomorphometric analysis and quantitative micro-CT analysis confirmed the existence of
significantly higher bone formation in the defects treated with the combination of ATSCs
and PLGA (Akita et al., 2014).
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In addition to murine models, the efficacy of ATSCs-mediated regeneration of periodontal
defects was also reported in a larger animal model (Tobita et al., 2013). Tobita and
colleagues, using a canine model, investigated the potential of the combination of
autologous ATCSs and PRP for the regeneration of class 111 periodontal furcation defects.
By means of histologic analysis they demonstrated that newly formed PDL ligament were
evident only when defects were treated with the combination of ATSCs and PRP, while no
newly formed PLD structures were found in PRP-only treated group and in the non-
implantation group. However, no significant differences in the amount newly formed bone
and cementum were found between groups (Tobita et al., 2013). Thus, despite promising
results, data obtained from many pre-clinical studies appear to be still inconsistent. We
conclude that the available data in support of their clinical use is still scarce and further
preclinical and clinical investigations are needed to fully exploit the potential of ATSCs for
periodontal regeneration. Dental-derived multipotent stem cells may provide a suitable and
worth to be explored alternative to ATSCs.

DENTAL-DERIVED POST-NATAL STEM CELLS

Dental-derived post-natal stem cells have recently gained a great deal of attention since they
can be isolated from tissues that are often discarded in dental clinics and since their isolation
presents with lower morbidity compared to non dental-derived post-natal stem cells.

There are many research groups that have investigated the potential of dental-derived post-
natal stem cells for periodontal regeneration. In this section we summarize the available
information on the potential of these cells for regeneration of periodontal tissue. We analyze
results obtained using stem cells isolated from periodontal ligament, dental pulp, exfoliated
deciduous teeth, dental follicle, dental apical papilla, and extraction sockets.

Periodontal Ligament Stem Cells for Periodontal Regeneration

It has been proposed that periodontal regeneration is mediated by a heterogeneous cell
population present in the PDL that can differentiate into fibroblasts, osteoblasts, and
cementoblasts (Melcher, 1976). However, the presence of multipotent stem cells in PDL
remained elusive until they were isolated from PDL of extracted human third molars by Seo
and colleagues in 2004 (Seo et al., 2004). Seo and colleagues found that human PDL
contains a group of cells that express mesenchymal stem cell surface markers such as
STRO-1 and CD146. These cells, which were defined as periodontal ligament stem cells
(PDLSCs), present with self-renewal ability and have multipotent capacity, being able to
differentiate into cementoblasts/osteoblasts, adipocytes, and collagen-forming cells.
Furthermore, these cells formed cementum-like and PDL-like structures after ectopic
transplantation into the dorsal surface of immunocompromised mice (Seo et al., 2004). This
research represents the milestone of all studies investigating the potential of periodontal-
derived stem cells for cell-based regenerative periodontal therapy. Subsequent studies
focused on the characterization of PDLSCs; for instance several studies compared the
properties of these cells with the properties of mesenchymal stem cells or skeletal stem cells.
These studies showed that PDLSCs present with self-renewal and multilineage
differentiation capabilities, expression of mesenchymal stem cell surface markers such as
CD44, CD73, CD 90, CD105, CD106 (VCAM-1), CD146 (MUC-18), and Stro-1, and lack
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of expression of hematopoietic markers such as CD31, CD34, and. CD45 (Fujii et al., 2008;
Huang et al., 2009; Wada et al., 2009). In addition, PDLSCs possess unique characteristics
that make them distinct from other mesenchymal or skeletal stem cells. In fact, it has been
shown that these cells have higher proliferation rate than skeletal stem cells derived from
bone marrow (Seo et al., 2004). Furthermore, PDLSCs express scleraxis, a tendon/ligament-
specific transcription factor, at higher level compared to bone marrow or dental pulp derived
stem cells (Seo et al., 2004). It has also been demonstrated that PDLSCs are able to generate
PDL attachment in vivo by forming Sharpey’s fiber-like collagen bundles that are connected
to cementum-like structure (Seo et al., 2004). These unique features of PDLSCs make them
a promising cell source for cell-based regenerative periodontal therapy. Hence, several
studies have evaluated the potential of these cells for regeneration of periodontal defects
(Table 3).

A study by Liu et al used autologous PDLSCs extracted from teeth of miniature pigs for
periodontal regeneration in a swine periodontitis model (Liu et al., 2008). The periodontal
defect was created by surgically removing alveolar bone around teeth and by subsequently
inserting a ligature around them. In this study, the so formed periodontal defect was treated
with a combination of alloplasts (hydroxyapatite and tricalcium phosphate) and cultured
autologous PDLSCs; results showed newly formed bone, cementum, and periodontal
ligament in the treated defect, supporting the feasibility of periodontal regeneration therapies
based on the use of ex vivo expanded PDLSCs (Liu et al., 2008). The application of
autologous PDLSCs for the treatment of periodontal defects is also reported in one clinical
case series (Feng et al., 2010). Feng and colleagues treated intrabony periodontal defects in a
limited number of patients with autologous PDLSCs from extracted third molars using
hydroxyapatite as a carrier. They reported that periodontal parameters were significantly
improved in all shown cases, without any adverse event during 32—72 months of follow-up
(Feng et al., 2010). Obviously, further well-designed clinical trials with larger patient
population and appropriate controls are needed before drawing a conclusion regarding the
clinical efficacy and safety of autologous PDLSCs.

Although autologous PDLSCs have shown promising results in preclinical studies, sources
of autologous PDLSCs are limited for clinical applications as isolation of PDLSCs involves
extraction of teeth. Furthermore, availability and function of PDLSCs is influenced by the
age and disease status of donors (Mrozik et al., 2013). Indeed, it appears that the
proliferative capacity, migratory potential, and multi-lineage differentiation ability of
PDLSCs diminishes in older compared with younger individuals (Zhang et al., 2012).
Hence, additional studies started to investigate the potential of cryopreserved or allogeneic
PDLSC:s as a feasible alternative cell source for PDLSCs-based regenerative periodontal
therapy.

Two studies have shown that human PDLSCs can be recovered from cryopreserved
PDLSCs and that cryopreservation does not affect the growth capacity of these cells (Seo et
al., 2005; Vasconcelos et al., 2012). The cryopreserved PDLSCs maintained their stem cell
characteristics such as expression of STRO-1, multipotent differentiation capacity, and
ability to form cementum/periodontal-ligament-like tissues (Seo et al., 2005; VVasconcelos et
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al., 2012). These data suggest that utilization of cryopreserved human PDLSCs for cell-
based therapy may be a valid clinical approach.

In lack of autologous PDLSCs, allogeneic PDLSCs may represent a valid alternative. A key
feature that allows for the utilization of allogeneic PDLSCs is that, similar to BMSSCs,
these cells appear to be immunoprivileged (Mrozik et al., 2013). It has also been shown that
PDLSCs have the ability to suppress immune responses and inflammatory reactions (Wada
et al., 2009). A study by Ding and colleagues compared the autologous and allogeneic
PDLSC:s for the treatment of induced periodontitis in a swine model of periodontal disease.
They demonstrated successful periodontal regeneration of the defects with both autologous
and allogeneic PDLSCs. Importantly, they reported that there were no significant differences
in percentage of T cell-related immunological markers such as CD3, CD4, and CD8 between
the autologous or the allogeneic PDLSCs, suggesting that transplanted allogeneic PDLSCs
cause no immunological rejection (Ding et al., 2010a). Similar observation was reported by
Mrozik and colleagues using allogeneic PDLSCs to reconstruct surgically created
periodontal dehiscence in an ovine model of periodontal defects. Although no
immunological evaluations were performed in this study, they reported that allogeneic
PDLSC implants were in general well tolerated, as no inflammation, infection, or root
exposure was observed in any of the animals (Mrozik et al., 2013). Thus, it seems that
allogeneic PDLSCs have the ability to evade or suppress the immune system response.

The putative immunoprivilege status of stem cells has formed the basis for the development
of allogeneic stem cell-based therapies in various medical fields. There are several clinical
trials that have reported that SSCs may be administered to humans without inducing
clinically relevant immune reactions (Ascheim et al., 2014; Hare et al., 2012; Hare et al.,
2009). However, it should be noted that there are some studies that have raised concerns
over the clinical application of allogeneic stem cells. An animal study by Huang and
colleagues reported that there is the possibility that allogeneic bone marrow-derived stem
cells lose their immnoprivileged status during differentiation (Huang et al., 2010). They
demonstrated that levels of expression of the major histocompatibility complex-la and —II
are very low in undifferentiated cells, while their level of expression increases significantly
after differentiation into endothelial or smooth muscle cells. (Huang et al., 2010). Thus, it
becomes crucial to determine, by means of additional studies, if the phenomenon translates
into the use of dental-derived stem cells, such as allogeneic PDLSCs.

Dental Pulp Stem Cells for Periodontal Regeneration

Dental pulp-derived stem cells (DPSCs) were the first identified human dental stem cells
(Gronthos et al., 2000). Dental pulp contains a heterogeneous population of cells, including
fibroblasts, nerve cells, vascular cells, and undifferentiated stem cells or dental pulp stem
cells. DPSCs are often found in highly vascularized regions of the pulp and can be collected
from the pulp tissue of clinically extracted human teeth of both young and aged individuals
by various isolation methods (Huang et al., 2006; Laino et al., 2005). It has been shown that
DPSCs are able to differentiate into odontoblast-like cells, osteoblasts, adipocytes, and
smooth and skeletal muscle cells (d’Aquino et al., 2007; Karaoz et al., 2010). Additionally,
several studies have reported that DPSCs express mesenchymal stem cell surface markers

J Cell Physiol. Author manuscript; available in PMC 2017 January 01.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bassir et al.

Page 11

such as CD10, CD13, CD29, CD44, CD59, CD73, CD90 and CD105, and do not express
CD14, CD34, CD45, HLA-DR (Huang et al., 2009; Tran and Doan, 2015).

In vivo ectopic transplantation experiments demonstrated that DPSCs can form a dentin-
pulp-like complex associated with vascularized pulp-like tissue (Gronthos et al., 2000), as
well as a bone-like tissue (Graziano et al., 2008). However, the potential of DPSCs for
periodontal regeneration may be questionable because of their limited capacity to form
cementum. In fact, Xu and colleagues have shown that these cells are not able to form
distinct cementum-like structure after ectopic transplantation in a rat model (Xu et al.,
2009). Another study by Park et al, using a canine model, compared the regenerative
potential of autologous DPSCs with that of autologous PDLSCs for the treatment of
surgically created periodontal defects (Park et al., 2011). In a 3-mm-wide circumferential
periodontal defect, they reported only 0.35 mm attachment gain for sites treated with DPSCs
group compared to 3.02 mm gain for sites treated with PDLSCs. Furthermore, histological
evaluations revealed that periodontal regeneration was not achieved in DPSCs group, while
the defects in PDLSCs groups were regenerated by means of new cementum, bone, and
Sharpey’s fibers connecting the tooth to the alveolar bone (Park et al., 2011). Therefore, the
current evidence, although somehow limited, indicates that DPSCs may not be the most
ideal multipotent stem cells for periodontal regeneration.

Stem Cells from Human Exfoliated Deciduous Teeth for Periodontal Regeneration

A multipotent stem cell population can be isolated from the remnant pulp of human
exfoliated deciduous teeth. Similar to DPSCs, stem cells from exfoliated deciduous teeth
(SHED) have the capacity to differentiate into osteogenic, adipogenic, chondrogenic, and
myogenic cell lineages (Miura et al., 2003). These cells also express Oct4, CD13, CD29,
CD44, CD73, CD90, CD105, CD146 and CD166, but do not express hematopoietic markers
such as CD14, CD34 or CD45 (Liu et al., 2015; Pivoriuunas et al., 2010). Furthermore, it
has been shown that SHED have higher proliferation rate compared to BMSSCs and DPSCs
(Nakamura et al., 2009). SHED are able to form bone and dentin structures after ectopic
transplantation into brain of mice. Unlike DPSCs, these cells were not able to form complete
dentin-pulp complex (Miura et al., 2003). However, it has been shown that these cells might
be promising for bone regeneration as Ma and colleagues reported that both fresh and
cryopreserved SHED were able to repair calvarial critical size bone defects in
immunocompromised mice (Ma et al., 2012). Despite promising outcome in bone
regeneration, the evidence supporting the use of SHED in periodontal regeneration is still
elusive.

Dental Follicle Stem Cells for Periodontal Regeneration

Dental follicle is a loose connective tissue derived from ectomesenchymal cells. It surrounds
the enamel organ and the developing tooth germ before eruption and plays different roles
during tooth development (Honda et al., 2010). It has been shown that dental follicle-derived
stem cells (DFSCs) can undergo osteogenic, chondrogenic, and adipogenic differentiation in
vitro (Kemoun et al., 2007). DFSCs express CD9, CD10, CD13, CD29, CD44, CD53,
CD59, CD73, CD90, CD105, CD106, CD166 and CD271, but not hematopoietic markers
such as Cd31, CD34, CD45 and CD133 (Liu et al., 2015). DFSCs have shown to possess
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potential for regeneration of periodontal tissue. Yokoi et al. transplanted immortalized
mouse DFSCs subcutaneously into immunocompromised mice (Yokoi et al., 2007). Their
study showed that, after ectopic transplantation, these cells can form PDL-like structures
with collagen type I fibril assemblies. Furthermore, the PDL-like structures showed
expression of periostin, scleraxis, and type XII collagen, indicating the ability of DFSCs to
regenerate PDL in vivo (Yokoi et al., 2007). A canine study by Park and colleagues
demonstrated that transplantation of autologous DFSCs into surgically created periodontal
defects results in regeneration of the defects (Park et al., 2011). Histological analysis
revealed the regeneration of the defects with newly formed alveolar bone, cementum, and
PDL. The net volume of regenerated bone in defects treated with DFSCs, however, was
lower compared with defects treated with autologous PDLSCs (Park et al., 2011). The
potential of DFSCs for formation of PDL is further supported by a study by Guo et al.
(2012), where DFSCs isolated from human impacted third molars (Guo et al., 2012) and
implanted into nude mice subcutaneously induced the formation of cementum-PDL-like
complex. In this study, DFSCs were found to express high level of CD146 and STRO1 and
were positive for other markers, such as Notch-1, alkaline phosphatase, COL-I, COL-III,
osteocalcin, bone sialoprotein (BSP) and Runx2 (Guo et al., 2012). Similar findings were
reported by Han et al., who detected formation of a cementum-PDL complex upon ectopic
transplantation of DFSCs in mice (Han et al., 2010). It appears, therefore, that DFSCs cells
may represent an alternative to PDLSCs, although not an equally effective one.

Dental Apical Papilla Stem Cells for Periodontal Regeneration

The apical papilla is the soft tissue found at the apices of developing teeth. This tissue is
only present during root development, before the eruption of teeth into the oral cavity
(Sonoyama et al., 2006; Sonoyama et al., 2008). The third molars are commonly extracted
while undergoing root formation and therefore they may represent an excellent source of
dental apical papilla stem cells (DAPSCs) (other than DPSCs and PDLSCs). DAPSCs have
the potential to differentiate into odontoblast-like cells, osteoblasts, adipocytes, and neuronal
cells. (Huang et al., 2009) In addition, they have capacity to induce root formation (Huang et
al., 2009; Liu et al., 2015). They express mesenchymal markers, including STRO-1, CD13,
CD24, CD29, CD44, CD73, CD90, CD105, CD106 and CD146, and not hematopoietic
markers such as CD18, CD34, CD45 or CD150 (Ding et al., 2010b; Huang et al., 2009; Liu
etal., 2015).

The potential use of DAPSCs for periodontal regeneration is supported by the study of Xu et
al (Xu et al., 2009). In this study, Xu and colleagues isolated DAPSCs from the apical
region of developing mandibular first molars of Sprague—Dawley rats. Using a model of
ectopic transplantation, they demonstrated that the mineralization potential of these cells is
superior to that of DPSCs and that DAPSCs are able to form PDL-like, dentin-like,
cementum-like, and bone-like tissues (Xu et al., 2009).

Not enough studies evaluating the potential use of DAPSCs in periodontal regeneration exist
and therefore we feel that a recommendation for the use of DAPSCs in periodontal
regeneration cannot be made at the present time.

J Cell Physiol. Author manuscript; available in PMC 2017 January 01.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bassir et al. Page 13

Dental Socket Stem Cells for Periodontal Regeneration

Evian and colleagues in 1982 studied the osteogenic activity of healing extraction sockets in
humans by analyzing the bone cores removed from post-extraction sockets (Evian et al.,
1982). Histological evaluations of the retrieved tissue samples revealed the presence of
osteoblasts and osteoid starting from the 41 up to the 8t week post-extraction, suggesting a
high osteogenic activity during this healing phase. This study, however, did not specifically
evaluated the presence of skeletal stem cells within the healing extraction sockets (Evian et
al., 1982). Nevertheless, dental sockets have been recently shown to be a potential source for
stem/progenitor cells. A study performed in a canine model of extraction sockets showed
that the granulation tissue collected 3 days after extraction contains dental socket-derived
stem cells (DSSCs) expressing CD44, CD90 and cD271 and not expressing hematopoietic
markers such as CD34 and CD45. They showed that these cells are able to differentiate into
osteogenic, adipogenic and chondrogenic cells in vitro (Nakajima et al., 2014). In addition,
autologous transplantation of these cells into one-wall periodontal defects resulted in
regeneration of the defects by formation of new bone, periodontal ligament-like fibers, and
cementum-like tissue (Nakajima et al., 2014). Therefore, although limited to an animal
model, data in support of the use of DSSCs for periodontal regeneration exist and appear
promising. Besides the use of extraction sockets as source of DSSCs, intraoral small bone
defects in remote areas of the mandible (i.e. the ascending part of the ramus) may be
generated ad hoc prior to the regenerative procedure and serve as source for multipotent
stem cells during the periodontal regenerative procedure.

IPS-DERIVED CELLS IN PERIODONTAL REGENERATION

Reprogramming somatic cells to become pluripotent cells (induced pluripotent stem cells,
iPS cells) may represent an alternative to multipotent adult stem cells in periodontal
regenerative therapy.

Initial approaches to nuclear reprogramming initiated in 1960 (Yamanaka and Blau, 2010)
and generation of iPS cells was successfully achieved in 2006 by inducing overexpression of
four key transcription factors, Oct3/4, c-Myc, Klf4, and Sox2, into fibroblasts (Takahashi
and Yamanaka, 2006). Since then, iPS cells have been tested for regeneration of diverse
tissues such as heart, pancreatic islets, liver, bone, cartilage, and brain (Duan et al., 2011,
Revilla et al., 2015). Few studies have used iPS cells for periodontal regeneration as well
(Table 4) (Duan et al., 2011; Hynes et al., 2013; Yang et al., 2014). In a study by Duan et al,
iPS cells from mice, delivered by means of a silk scaffold in a combination with enamel
derived factors, were used to induce regeneration of periodontal tissues in a murine model of
periodontal defect (Duan et al., 2011). After treatment, histomorphometric analysis revealed
that significantly greater amounts of new bone and cementum formation were evident when
defects were treated with the combination of cells, scaffold, and enamel derived factors
rather than scaffold alone or a combination of scaffold and growth factors, suggesting that
transplantation of iPS cells can enhance periodontal regeneration (Duan et al., 2011).

Prevention of periodontal bone resorption was observed when iPS cells were transplanted
into circumferential defects in a rat model of periodontal disease (Yang et al., 2014). In this
model, periodontal defects were developed by means of wire ligature and inoculation of P.
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gingivalisinto the oral cavity. Application of iPS cells showed decreased inflammation and
inhibition of alveolar bone resorption. Although the mechanism by which iPS cells
controlled bone resorption was not investigated, one possibility is that these pluripotent cells
can control inflammation, therefore indirectly preventing bone destruction. In another study,
surgically created periodontal fenestration defects in immunodeficient rats treated with
human iPS cells clotted with fibrinogen and thrombin and labeled with BrdU exhibited
significantly greater area of mineralized tissue formation compared to non-treated defects
and defects treated with clotting factors only (Hynes et al., 2013). The used iPS cells were
shown to express mesemchymal stem cell markers such as CD73, CD90, CD105, CD146,
CD106, HSP90 and pluripotency markers such as TRA160, TRA180, and ALKPOS. The
BrdU —labeled cells were found to be integrated into the newly formed tissues, suggesting
that iPC cells can directly contribute to the regeneration of the defects (Hynes et al., 2013).

Unfortunately, these studies do not fully address the safety and the efficacy of iPS for
periodontal regeneration. It is well described that iPS cells may not exhibit phenotypic
stability once transplanted in vivo (Hynes et al., 2013) and might become immunogenic due
to abnormal gene expression upon differentiation (Zhao et al., 2011). Defining the number
of cells that will suffice the threshold for tissue regeneration will also need to be
accomplished in future investigations in order to avoid uncontrollable regeneration of tissues
(Lin et al., 2015). Thus, future studies are needed to identify the exact environmental,
chemical, and biomechanical cues to modulate the therapeutic use of iPS. Until then, these
cells remain just a promising tool for periodontal tissue regeneration.

CLINICAL APPLICABILITY AND FUTURE DIRECTIONS

The use of pluripotent stem cells, such as iPS cells, for regeneration of periodontal tissue
appears far from being feasible at the moment. On the contrary, several of the mentioned
animal studies seem to indicate that multipotent stem cells can be effectively used for
regeneration of the periodontium. However, apart from a few case reports (Table 5), there is
no available information on the safety and efficacy of multipotent stem cells for periodontal
regeneration in the clinical setting. If long-term clinical trials confirm the safety and efficacy
of multipotent stem cells, standard clinical protocols may be developed for the effective use
of these cells in periodontal regenerative therapy.

Allogeneic multipotent stem cells have been proposed as an alternative to autologous
multipotent stem cells for periodontal regenerative therapies. However, a major challenge of
non-autologous stem cell therapy includes graft-versus-host disease (Li et al., 2009). Thus,
at least for now, it appears that the safest approach to multipotent stem cell-based therapy is
the autologous transplantation. Based on the studies evaluated in this review, it appears that
PDLSCs are the most promising phenotype although SSCs may also be effectively used for
periodontal regeneration. Other dental derived stem cells, such as DPSCs, SHEDs, DFSCs,
and DAPSCs do not appear to be as effective in regenerating periodontal tissues and
therefore it may not be worth to test them in future clinical trials.

If effective clinical therapeutic protocols are established, a challenge remains in terms of
tissue culturing and ex-vivo expansion of the autologous multipotent stem cells. Culturing
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SSCs or PDLSC is challenging, time-consuming, time-sensitive and, as per today, very
costly. Additionally, the FDA has implemented strict regulations for stem cell tissue
culturing (Halme and Kessler, 2006). This is because xenogenic products, such as fetal
bovine serum, are often used in stem cell-culture medium. Furthermore, the culture
conditions that would maintain the cells in an optimal environment without cross-
contaminations or infections have neither been fully studied nor fully developed (Karring et
al., 1993; Lin et al., 2009). Another technical challenge arises from cell manipulation as
instability and gene mutations have been observed after prolonged culturing of stem cells,
thus suggesting that freshly prepared stem cell cultures should be used (Jo et al., 2007).
Furthermore, cryopreservation has been routinely utilized for hematopoietic stem cells and
other stem cells (Hunt, 2011); however, questions remain on whether or not it transmission
of infections may occur during direct immersion of cells into liquid nitrogen (Hawkins et al.,
1996; Mazzilli et al., 2006).

One effective way to by-pass the problems identified above is to develop safer, more
efficient, and cost effective “disposable” bioreactors for the ad hoc preparation of
autologous multipotent stem cells (Martin et al., 2009). Until then the only alternative could
be based on the utilization of bone competent cells isolated from extraction sockets or from
previously created intraoral bone defects that may serve as in vivo autologous bioreactors
during procedures of periodontal regeneration.
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