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Abstract

Recently, expression quantitative loci (eQTL) mapping studies, where expression levels of 

thousands of genes are viewed as quantitative traits, have been used to provide greater insight into 

the biology of gene regulation. Originally, eQTLs were detected by applying standard QTL 

detection tools (using a “one gene at-a-time” approach), but this method ignores many possible 

interactions between genes. Several other methods have proposed to overcome these limitations, 

but each of them has some specific disadvantages. In this paper, we present an integrated 

hierarchical Bayesian model that jointly models all genes and SNPs to detect eQTLs. We propose 

a model (named iBMQ) that is specifically designed to handle a large number G of gene 

expressions, a large number S of regressors (genetic markers) and a small number n of individuals 

in what we call a “large G, large S, small n” paradigm. This method incorporates genotypic and 

gene expression data into a single model while 1) specifically coping with the high dimensionality 

of eQTL data (large number of genes), 2) borrowing strength from all gene expression data for the 

mapping procedures, and 3) controlling the number of false positives to a desirable level. To 

validate our model, we have performed simulation studies and showed that it outperforms other 

popular methods for eQTL detection, including QTLBIM, R-QTL, remMap and M-SPLS. Finally, 

we used our model to analyze a real expression dataset obtained in a panel of mice BXD 

Recombinant Inbred (RI) strains. Analysis of these data with iBMQ revealed the presence of 

multiple hotspots showing significant enrichment in genes belonging to one or more annotation 

categories.
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1 Introduction

“Complex quantitative traits” are typically defined as characteristics that depend in part on 

inherited factors, but whose magnitude results from interactions between a great number of 

genes and environmental factors. Originally, investigators studying such traits focused 

mostly on physical characteristics and/or physiologic responses, and aimed at locating 

quantitative trait loci (QTL), i.e. genomic locations that had an influence on the manifested 

trait. More recently, since expression levels of genes within tissues can themselves be 

considered as quantitative traits, several studies have identified so-called “expression 

quantitative trait loci” (eQTL). The identification of eQTLs has provided greater insights 

into the biology of gene regulation and/or complex traits (Brem et al., 2002, Schadt et al., 

2003, Goring et al., 2007). By using DNA microarrays, it has now become feasible to map 

eQTLs for basically all genes in the genome.

When an eQTL locus corresponds to that of the gene whose transcript abundance is 

measured, it is identified as a “cis-acting eQTL” (cis-eQTL), meaning that a genetic 

variation in the neighborhood of the gene is associated with the differential abundance of its 

transcript. Equally interesting and abundant are the trans-eQTLs that map to locations 

distant from the gene region. Many studies have reported strong clustering of trans-eQTLs 

(i.e. multiple genes associated with the same loci) into so-called eQTL hotspots (Zhu et al., 

2007, Dixon et al., 2007), which suggests that these genomic regions harbor polymorphisms 

that shape the dynamic and global nature of transcriptional regulation.

Since eQTL studies differ from standard QTL studies only in the number of phenotypes, it is 

not surprising that mostly classical QTL methods have been used to identify eQTLs, one 

gene at a time. However, this “one gene at-a-time” approach ignores the many important 

combinatorial effects and interactions between genes. Moreover, the multiplicity problem is 

such that it is not uncommon to have to perform well over a million tests, and univariate 

methods do not deal appropriately with the problem of multiple testing across markers and 

genes. Over the years, several strategies have emerged in order to address the multiple issues 

raised by the high dimensionality of the data at both the trait level (thousands of gene 

expressions) and the genotype level (thousands of SNPs). For instance, Chun and Keleş¸ 

(2009) proposed using a Sparse Partial Least Square (SPLS) regression technique to account 

for the high dimension and co-linearity of the genotype data. Dependence among gene 

expressions is accounted for by clustering the genes according to their expression profile and 

then applying the SPLS regression at the cluster level. While very appealing, this method 

has the drawback of identifying markers associated with a “meta-transcript” instead of 

individual transcripts. Alternatively, Kendziorski et al. (2006) proposed a Mixture Over 

Marker (MOM) modeling technique to facilitate information sharing across both markers 

and transcripts through an empirical Bayes strategy. Although this method identifies 
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transcripts that map to at least one marker, it has the main disadvantage of identifying at 

most one eQTL per transcript.

Bayesian models have been widely used to solve the extreme multiplicity problem of eQTL 

studies. By borrowing information across genes and/or markers, they provide efficient ways 

to overcome the computation burden imposed by the great number of tests required to 

analyze one gene/one marker at a time. Several approaches based on Sparse Bayesian 

Regression (SBR) modeling have been developed specifically for QTL studies. For example, 

the method of Yi et al. (2005), as implemented for eQTL studies in the R-QTLBIM (QTL-

Bayesian Interval mapping) package, proceeds by analyzing all SNPs simultaneously but all 

genes independently. This method was further extended by Banerjee, Yandell and Yi (2008) 

to handle several traits (genes) simultaneously but is limited in practice to a maximum of 

five traits, due to computational issues. This approach was generalized to continuous and 

categorical traits by Xu et al. (2009) and implemented in the BAYES software package. As 

in the work of Banerjee et al. (2008), this implementation also suffers from the same 

computational downside and cannot be applied to a large number of traits (i.e. gene 

expression profiles) as in a typical eQTL studies. Petretto et al. (2010) introduced an 

efficient evolutionary stochastic search algorithms for variable selection and used it to detect 

eQTLs across multiple tissues, but their approach models each gene separately and no 

information is explicitly shared across genes. Recently, Stegle et al. (2010) proposed a 

Variational Bayes approach (VBQTL) to jointly model the contribution from genotypes as 

well as known and hidden confounding factors in a unified Bayesian framework. Even 

though VBQTL models all genes concurrently, the prior probability of association is 

assumed to be common across all genes and markers, which is unrealistic for such data. In 

addition, as in the MOM model (Kendziorski et al., 2006), the authors constrain each gene to 

have at most one relevant SNP regulator for computational reasons.

All the Bayesian models described above assume a common prior distribution for the 

probability of inclusion of a marker in the sparse regression model, across all genes. As we 

shall see in the simulations studies, this leads to an over-detection of common eQTLs and 

thus a high number of false positive hotspots. In this paper, we present an integrated 

Bayesian hierarchical Model for eQTL mapping (iBMQ) that incorporates genotypic and 

gene expression data (and possibly thousands of SNPs and genes) into a single model while 

resolving all the issues mentioned above. Specifically, our model is built around flexible 

prior distributions and is designed to 1) cope with the high dimensionality of eQTL data 

(large number of genes), 2) borrow strength from all gene expression data for the mapping 

procedures, and 3) control the number of false positives to a desirable level. Note that the 

model developed by Richardson et al. (2010) was developed with similar objectives but for 

the detection of common eQTLs across tissues. In this slightly different context, the authors 

had to assume a more restrictive structure on the prior distribution for the probability of 

inclusion of a marker in the model.

This paper is organized as follows: Section 2 introduces our integrated hierarchical Bayesian 

Model for Multivariate eQTL Mapping (iBMQ) and specifies the different parameters and 

their priors. In Section 3, we evaluate our model using a series of simulation studies and 

compare its performance to several other previously developed methods: 1) R-QTL (Broman 
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et al., 2003), 2) QTLBIM (Yi et al., 2005); 3) M-SPLS (Chun and Keleş¸, 2009); 4) remMap 

(Peng et al., 2009); and 5) a simplified version of our full iBMQ model that uses a common 

prior distribution for the probability of inclusion of a marker, i.e. iBMQ with common 

weight (iBMQ-cw). The latter is in fact similar to the BAYES model (Xu et al., 2009) and 

VBQTL (Stegle et al., 2010) which both rely on a common prior probability of association. 

In Section 4, we apply our model to analyze a set of gene expression data obtained in whole 

eyes from a panel of 68 mice BXD Recombinant Inbred (RI) strains. We conclude in 

Section 5 with a discussion on possible future improvements of the model.

2 Model

In this section, we present our integrated hierarchical Bayesian Model used to detect eQTLs 

(iBMQ) and the full conditional distributions used to perform posterior exploration via 

Markov chain Monte Carlo (MCMC). In the current application and following examples, 

individuals are in fact RI strains (where particular combinations of parental alleles have been 

fixed within strains by extensive inbreeding) and genetic markers are Single Nucleotide 

Polymorphisms (SNPs).

2.1 Model Definition

We model gene expression measurements across individuals as follows,

(1)

where

• g = 1, …, G denotes a particular gene or a trait, i = 1, …, n denotes a particular 

strain or individual and j = 1, …, S denotes a particular SNP;

• yig is the expression level of gene g for the individual strain i;

• μg is the overall mean expression level of gene g (across all strains);

• xij represents the genotype at locus j for strain i under an additive, dominant or 

recessive genetic model;

• βjg is the effect size of SNP j on gene g. In practice, only a few markers directly 

affect the phenotype and thus many of the β's should be exactly zero. In order to 

capture the “sparsity” of the model, we need to incorporate indicator variables, γjg, 

specifying which marker should be included in the model.

• γg is a binary inclusion indicator, i.e γg = 1 if SNP j is included in the model for 

gene g and γjg = 0 otherwise;

• εig is an error term assumed to be Gaussian with gene specific variance .

In eQTL studies, we have thousands of gene expression profiles as quantitative phenotypes, 

and analysis of such data typically requires performing univariate QTL analysis for each 

gene expression profile. The model we propose is motivated by two key factors: 1) most 
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eQTLs affect more than one expression profile, with some affecting many genes; 2) genes in 

the same pathway are more likely to be under the influence of common regulators (i.e. their 

expressions are correlated). As a result, there is an opportunity to share information across 

the hundreds or thousands of gene expression traits in such a way that more informative 

conclusions can be drawn. This can be done by allowing for a gene/marker-specific 

probability of QTL, wjg = ℙ(γjg = 1) a priori, and borrow strength across genes to estimate 

this probability via flexible genome-wide prior distributions; see Figure 2.2 for a graphical 

representation. Such a hierarchical structure encourages eQTLs to be associated with more 

than one gene. The rationale is that true eQTLs are probably associated with more than one 

transcript, while eQTLs that are associated with a single gene are possibly due to noise and 

should be down weighted, but not necessarily eliminated.

In the proposed model, we assume that the εig's are independent and identically distributed 

(iid), so that genes are conditionally independent given all model parameters. The gene 

dependence is introduced via an exchangeable prior on the γgj's, thus providing a 

computationally tractable model with a suitable dependence modeling framework. As we 

will see in section 3.1, our approach performs well even in the presence of between gene 

correlations from non-genetic sources.

2.2 Prior Distributions

In the following, we describe the different prior distributions of the model (1). These priors 

should reflect our a priori knowledge and uncertainty about the model parameters, namely 

. Our priors are defined as follows,

• γjg ∼ ℬernoulli(ωjg), where ℙ(γjg = 1) = ωjg is an unknown parameter that 

represents the inclusion probability of SNP j in the model for gene g. In order to 

reduce the false discovery rate, and since only a small numbers of SNPs act as a 

determinant of a gene expression, we let the inclusion probability parameters ωjg 

take the value 0 a priori most of the time. When ωjg is not 0, it is assumed to come 

from a Beta distribution ℬeta(aj, bj). This can be expressed as a mixture of a Dirac 

mass at 0 and a Beta distribution with weights pj and 1 — pj as follow

The parameter pj (the probability that ωjg is 0) is identical for all genes. This helps 

in detecting a stronger signal when a SNP is weakly associated to many gene 

expressions (Lucas et al. (2006)). Furthermore, we use a common conjugate Beta 

prior for pj with hyperparameters a0 and b0:

Additionally, aj and bj are assumed to follow Exponential distributions with 

hyperparameters λa and λb:
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• , where μg and τg are the empirical mean and variance of gene 

expression g

•
βjg = 0 if γjg = 0 and  if γjg = 1, with , where c is a 

scaling factor parameter and  mimics the regressor 

variance, which leads to the well-known g-prior of Zellner (1986). Here we follow 

the approach of Yi et al. (2005) and consider c to be a constant equal to S the 

number of SNPs. Bottolo and Richardson (2010) considered an Inverse-Gamma 

prior  based on the Zellner and Siow (1980) prior. Recently 

Petretto et al. (2010) considered a common c for all genes with the prior of Liang et 

al. (2008)  in the interval (0, M), where the end point M is M = max(n, S2). 

The term , the overall variance of , ensures that the parameter  is a nuisance 

parameter in the model and can be integrated out.

•
 is a vague prior on the error variances.

A graphical representation summarizing our model and its prior specifications is shown in 

Figure 1. Our model has two clear advantages over alternatives. First, it treats a large 

number of genes at a time, which effectively facilitates the detection of common eQTLs 

hotspots that otherwise could not be detected for genes with weak signals if they were 

analyzed one at a time. The second advantage is that each gene expression/trait has its own 

inclusion indicator γjg at each SNP. In previously published work, the inclusion probability 

parameters ωjg were either (i) considered identical for all SNP positions (ωjg = ω)), with the 

common ω being considered either given or following a Beta prior distribution (Yandell et 

al., 2007, Yi and Shriner, 2008); or (ii) supposed identical for all genes but depending on the 

SNP positions (ωjg = ωj), with each ωj following a Beta prior distribution (Bottolo and 

Richardson, 2010, Petretto et al., 2010). As we will see in the simulations studies, such 

assumptions can have a big impact on the performance of the model.

2.3 Parameter Estimation

Realizations were generated from the posterior distribution via MCMC algorithms (Gelfand 

and Smith, 1990). All updates were done via Gibbs sampling except for aj and bj for which 

no closed form full conditionals are available, and were thus updated via adaptive rejection 

sampling (Gilks and Wild, 1992). All full conditionals are given in Appendix A. We used 

the method of Raftery and Lewis (Raftery et al., 1992, 1996) to determine the number of 

iterations, based on a short pilot run of the sampler. For each dataset presented here, this 

suggested that a sample of no more than about 1,000,000 iterations with 50,000 burn-in 

iterations was sufficient to estimate standard posterior quantities. Guided by this, and 
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leaving some margin, we used 2,000,000 iterations after 50,000 burn-ins for each dataset 

explored here. Results from the diagnostics test and trace plots are presented in Appendix 5. 

Finally, our model depends on four hyperparameters a0, b0, λa and λb that need to be fixed 

in advance. We can choose these values a priori using the expected number of e-QTLs (nγ) 

and its dispersion (nγ), as detailed in Appendix B. Using this approach we have chosen a0 

= λa = 10 and λb = b0 =.1, which favors models with fewer eQTLs.

2.4 Inference and Detection of eQTLs

Our ultimate goal is to identify gene/SNP associations, and this can be done using parameter 

estimates from our model. An eQTL for gene g at SNP j is declared significant if its 

corresponding marginal posterior probability of association (PPA), i.e. Pr(γjg = 1|y), is 

greater than a given threshold. In the context of multiple testing and discoveries, a popular 

approach is to use a common threshold leading to a desired false discovery rate (FDR). In 

the Bayesian paradigm, derivation of the PPA threshold is trivial and can be calculated using 

a direct posterior probability calculation as described in Newton et al. (2004).

3 Simulation Study

We performed two sets of simulation studies: a validation study and a comparison study. 

The goal of the validation study was to investigate the effects of different factors such as the 

correlation between SNPs/genes, the effect size and the spatial structure of the true eQTLs 

with regards to our model's performance. In the comparison study, we compared the 

performance of our proposed model with other standard methods.

3.1 Validation Study

For the first experimental set, we used n = 100 individuals, G = 40 genes, S = 1000 SNPs 

and ; the latter two values being taken from the experimental data (section 4). We 

also considered two types of correlation structures between SNPs and genes. First, SNPs 

were considered as either independent or dependent. In the latter case, SNPs were divided 

into 100 blocks of 10 SNPs each. We assumed that blocks were independent and imposed a 

correlation ρx = 0.4 among the SNPs within each block. Second, genes were also considered 

as either independent or dependent (i.e. correlated, meaning that they show some level of co-

expression due to non-genetic causes). In the latter case, genes were divided into 4 

independent blocks of 10 consecutive genes each and we chose a correlation ρε = 0.5 within 

each block. In addition, we simulated two different scenarios for eQTLs positions within 

gene blocks. These scenarios are illustrated in Figure 2 (a-b) and mimic situations where 

correlations among genes are due to either genetic causes (when they share the same SNP) 

or non-genetics causes (when genes belong to the same block of genes). In the first scenario, 

7 genes share a common eQTL and 8 genes share a common eQTL at another SNP, with 4 

genes having both eQTLs in common. In the second scenario, each of the total 40 genes 

have either 0, 1, 2 or 3 eQTLs. When a gene had more than 1 eQTL, the eQTLs were 

selected on different SNP blocks. For all scenarios, eQTLs were simulated using two 

different values of the regression coefficients: β* = 0.5 and β* = 0.2. These values, based on 

the values estimated on the experimental data used in section 4, allowed us to compare the 

performance of the model in situations where the magnitude of the effect due to genetic 
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causes varied from small to large. Altogether, the various situations described above 

amounted to 16 different combinations. In each case, eQTLs were called using an FDR level 

of 10%.

Table 1 shows the sensitivity, specificity, positive predictive value, and negative predictive 

value obtained with our model across the different simulation settings we described. These 

values were computed based on the total number of false positive and false negative across 

all genes and SNPs (this means that a false positive SNP on 2 different genes would be 

counted twice).Table 1 also shows the effects of different parameters on the detection of 

eQTLs and the capability of our model to perform even in difficult situations. In particular, 

we observed that correlation between SNPs had a very small impact on eQTL detection, and 

that the model had difficulty in detecting eQTLs with small effect sizes (β* = 0.2). Further 

investigation showed that this was true except in cases where many genes with weak 

association values all share one identical SNP (results not shown).

3.2 Comparison Study

The second set of experiments was based on settings bearing more resemblance to real 

datasets. The simulated-eQTL distribution is illustrated in Figure 2 (c): 10 genes have three 

eQTLs each (one cis-eQTL, one trans-eQTL and one hotspot common to all 10 genes), one 

gene has one eQTL, and three genes have two eQTLs each. The regression coefficients were 

selected (randomly but once for all replications) among the values 0.2, 0.5 and 1. The total 

number of genes (40) and SNPs (1000) and error variance  were set as in the previous 

simulation study. The first settings were performed with n = 75 and the other settings were 

performed in order to show the effect of the population size n on the identification and 

magnitude of detected eQTLs: we repeated the previous settings with n = 50 and n = 25 

individuals all other parameters remaining the same. For each setting, we used 50 

replications and results were averaged post-processing over the 50 replications.

In this section, we compare the performance of iBMQ to that of QTLBIM (Yi et al., 2005), 

M-SPLS (Chun and Keleş¸, 2009), R-QTL (Broman et al., 2003), remMAP (Peng et al., 

2009), and iBMQ with common inclusion weight (iBMQ-cw). The utility of each tested 

model and settings used for each are as outlined as follows,

• QTLBIM. This Bayesian model is similar to our implementation but was 

originally designed for classical QTL studies, and thus enables the analysis of only 

one gene at a time. When applying QTLBIM for comparison, we simply ran it G = 

40 times, one gene at time. We disabled the options “genome update” and 

“epistasis effect” and we used the same number of iterations, burn-in and recording 

sweeps as in the other methods we compare. We set the mean prior number of 

eQTLs to 3 and the maximum number of eQTLs to 8. We noticed that QTLBIM 

has a tendency to detect accessory signals on SNPs that surround the SNP 

associated with the main signal. When computing the results, we aggregated main 

and accessory SNPs as only one signal.

• M-SPLS. In this approach, a first step consisted in clustering genes into groups on 

the basis of their expression similarity. We have used the R package Mclust (Yeung 
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et al., 2001) for gene clustering and did a sparse partial least-squares (SPLS) 

regression on the optimal number of clusters. SPLS does not output posterior 

probabilities, but calculates bootstrapped confidence intervals of SPLS coefficients 

with default parameters for each simulation.

• iBMQ-cw. This simplified version of iBMQ was used (with the same parameters as 

iBMQ except for w, which is common to all genes/SNPs) and can be representative 

of other models that make the same assumption, e.g. BAYES (Xu et al., 2009) and 

VBQTL Stegle et al. (2010).

• R-QTL. This non-Bayesian tool was designed initially for classical phenotypic 

QTL studies. It corresponds to the simplest method, and is still used in the vast 

majority of real data studies. When applying R-QTL for comparisons, we simply 

ran it G = 40 times, one gene at time. The interval mapping option was disabled. 

We have performed a permutation test to get a genome-wide LOD significance 

threshold per gene.

• remMap. We have also performed a comparison using the remMap method, which 

implements a penalized regression approach, and used the BIC procedure to select 

tuning parameters.

In each case, eQTLs were called by controlling the false discovery rate (FDR) at 10% except 

for remMap, which only performs variable selection and does not compute uncertainty 

measures (e.g. p-values or posterior probabilities).

The results of the simulations are shown in Figure 3 and Figure 4. Figure 3 compares the 

ROC curves of iBMQ to those obtained with the other approaches for the different 

scenarios. Figure 4 shows the PPA plot (for iBMQ, iBMQ-cw and QTLBIM) or the 

frequency of associations (for M-SPLS and R-QTL) for 20 genes (10 of which sharing the 

common eQTL “hotspot”) for the setting with 25 individuals. This figure shows the gain of 

power of iBMQ compared to QTLBIM and M-SPLS while showing the gain in flexibility 

compared to iBMQ-cw. Regarding the population size, we observed that all models lose 

power when the number of individuals decreases. However, even when simulating a 

population as small as 25 individuals, iBMQ still detected most eQTLs with β* coefficient 

higher than 0.2. Figure 4 allows us to understand the behavior of the model in a more visual 

fashion. A comparison of iBMQ to QTLBIM and R-QTL shows that iBMQ is better at 

detecting eQTLs within hotspots. A comparison with iBMQ-cw shows that both models are 

good at detecting eQTLs within hotspots, but that iBMQ-cw generates noisy signals outside 

of the hotspots due to the common weight, which has a tendency to include non relevant 

SNPs into the model. In addition, M-SPLS fails to detect many eQTLs outside of the 

hotspots, possibly because of the initial clustering, thus showing to what extent the latter can 

influence the results. iBMQ gains power by sharing information across genes but the model 

is flexible enough not to create background noise. Overall, the analyses showed that iBMQ 

increased the power of detecting eQTL hotspots while keeping a low false positive rate, 

particularly in cases with a small number of individuals. The detection of eQTL hotspots 

represents an important gain of the multivariate model versus univariate ones in situations 
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where many genes display weak associations with one common shared SNP. Note that for 

simulations with the present parameters (n <= 75) remMap did not detect any eQTLs.

4 Application to Data from Mouse RI Strains

In this section, we have applied our model to the whole eye tissue data generated by 

Williams and Lu, and available from the Gene Network Website (genenetwork.com). This 

dataset consists of the mRNA profiles of whole eye tissue from n = 68 BXD RI mouse 

strains, as measured using Affymetrix M430 2.0 microarrays (Geisert et et al., 2009). To 

ease calculation and facilitate comparison with other methods we set G = 1000 

corresponding to the probes showing the highest variation in expression level, while all 1700 

markers (SNPs) were used. Such preselection of high variance genes is often done in eQTL 

studies to facilitate computation and increase power (Richardson et al., 2010).

After applying the direct posterior probability approach and determining a cutoff 

corresponding to an FDR of 10% (corresponding PPA= 0.74), iBMQ detected a total of 759 

significant eQTLs, in comparison to 182 eQTLs detected by QTLBIM (FDR of 10%, PPA≥ 

0.44), 1400 eQTLs detected with M-SPLS (FDR of 10%) and 5727 eQTLs detected with R-

QTL (FDR of 10%). The remMap method detected a total of 1365 eQTLs (when 

considering all results different from zero as eQTLs). The overlap eQTLs detected by the 

different methods is presented by in the Table 2. The genome-wide distribution of eQTLs 

found by all 3 methods provides further information about the performance characteristics of 

each model (see Figure 5). Almost all eQTLs detected by QTLBIM were in fact cis-eQTLs 

(as represented on the diagonal of Figure 5b). Our iBMQ method detected (in addition to the 

cis-eQTLs represented on the diagonal) several “hotspots” of trans-eQTLs (represented by 

the dots aligning along vertical lines in Figure 5a). Finally, M-SPLS did not detect any cis-

eQTL, but identified several large groups of trans-eQTLs (Figure 5c). Altogether, the 

number of hotspots containing more than 30 probes amounted to 5 for iBMQ, 3 for remMap, 

and 16 for M-SPLS. No hotspots were detected by R-QTL and QTLBIM.

To verify whether the hotspots detected by iBMQ (and not by the other 4 methods) showed 

biologic relevance and coherence, we tested whether corresponding groups of trans-eQTLs 

showed enrichment in genes belonging to categories within Gene Ontology, using the 

DAVID Bioinformatics Resources analysis of Huang et al. (2009) (Table 3-4). Five hotspots 

comprising more than 30 genes were found on 5 different chromosomes. Interestingly, each 

hotspot showed enrichment for genes related to a GO term dealing with characteristics and 

properties of epithelial cells (Table 3). One hotspot was enriched in genes corresponding to 

the “Epithelial cell differentiation” GO term. Other genes belonged to 2 other related GO 

term categories, and comprised almost exclusively gene from the claudin and keratin 

families, both of which play essential roles in the maintenance of epithelial cell functions. 

All 3 GO terms thus dealt with the characteristic and properties of epithelial cells, which 

may be in keeping with the fact that the majority of cells within whole eye tissue (including 

the eye bulb, the conjunctiva and the cornea) are epithelial in nature. It is interesting to note 

that some genes were specific to each hotspot while others were found repeatedly in several 

hotspots on different chromosomes (Table 4). Although the 3 GO categories corresponding 

to the hotspots were also detected when testing for enrichment in the whole set of genes 
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corresponding to the 1000 probes showing highest level of variance in expression, these 3 

GO categories were underrepresented: only 2 out of the 3 above GO categories were 

represented among the 50 most significant GO categories in the original dataset, and they 

ranked only fourteenth and twenty-third in terms of significance of enrichment. In particular, 

categories corresponding to photoreceptor functions showed most significant enrichments 

and represented the majority of enriched categories. Thus, the enrichment of the functions 

related to epithelial cell in the hotspot analysis is not likely to be a mere reflection of 

category enrichment in the original dataset. Of note, the selection of only a fraction of genes 

in the dataset was performed to facilitate comparisons across methods. A comprehensive 

analysis of all eQTL hotspots would require longer calculations using all gene expression 

data, but could possibly detect other hotspots in addition to the ones reported here, including 

hotspots of genes related to other functions (such as for instance retinal genes).

5 Discussion

In this paper, we introduced an integrated Bayesian model for eQTL mapping, iBMQ, that 

can handle simultaneously thousands of genes and thousands of SNPs. Our methodology is 

designed to deal with any Bayesian regression problem even when data are available for a 

limited number of individuals and when the number of measurements (gene expression 

and/or traits) per individual and the number of regressors (SNPs) are large. The main 

contribution of our model is that the association binary indicator γjg (between SNP j and 

gene g) and the corresponding association probability ωjg of a SNP is specific for each gene 

and each SNP. In previous studies the association indicators γj were common for all genes, 

and the probability of association was considered as either constant ω over genes and SNPs, 

or dependent only on SNPs and identical for all genes ωj. We believe that this is one of the 

strengths of our modelization as it helps in the detection of hotspots, as supported by the 

results of the simulation studies.

Our model could still be further refined when non-genetic correlations among gene 

expressions are large compared to the level of genetic correlations. One theoretically 

“obvious” solution to this issue consists in relaxing the hypothesis of the independence of 

errors assumed in model (1). In practice, however, this is an unfeasible challenge in terms of 

tractability, conjugacy and computability In fact, if genes are no longer presumed 

independent, the variances , g = 1,…, G need to be replaced by a variance-covariance 

matrix Σ. To keep the conjugacy of the priors and hence an analytical integration of the 

posterior distribution for Σ, we have to select an Inverse Wishart (as a generalization to the 

Inverse Gamma) distribution for Σ as described in Bottolo and Richardson (2010) and 

Petretto et al. (2010), among others. Although this works well in models where the 

association indicator γjg is common to all genes, it is not feasible in the model we propose, 

as it will lead to a loss of the conjugacy property and represent a heavy computational issue. 

As an alternative, we shall try in future work to incorporate correlations among genes by 

considering blocks of genes within the model, as this might improve the detection of weak 

associations.

Other future work will also consider the issues of correlation among SNPs due to linkage 

disequilibrium. It is unrealistic to totally neglect these issues mainly in highly dense genetic 
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maps: as genetic maps become denser, the correlations between nearby SNPs become 

higher. A starting point may be the the concept of (left and right) flanking SNPs (Yi et al., 

2005), with the construction of SNP blocks being potentially useful to convert the concept of 

neighbours in term of probabilities.

In this article, we have compared our model with five alternatives, but there are other 

methods for analyzing eQTL data. While additional methods are available (Stegle et al., 

2010), we chose these five because they are either obvious baseline methods, widely used or 

have already been compared to other methods (Chun and Keleş, 2009). Note that the recent 

work on Bayesian models for sparse regression analysis of high dimensional data in 

Richardson et al. (2010) also provides a good alternative to our model, as a multiplicative 

model for the probability structure of the association binary indicator γjg is presented.

While our model requires more computing than some other methods because it integrates all 

genes and SNPs jointly via MCMC (Appendix C), we believe that the improved results are 

worth the additional computing time. In addition, our current C implementation makes use 

of the openMP API (Dagum and Menon, 1998) and automatically parallelizes calculations 

over genes, which can dramatically improve computational time for large datasets. The 

current implementation of iBMQ in R and C is available from GitHub: https://github.com/

raphg/iBMQ. An R package is currently under preparation to be made available via the 

Bioconductor project (Gentleman et al., 2004).
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Appendix

Appendix A: Full conditional posterior distributions

The set of parameters of the model is . The posterior 

distribution of the parameter set θ is given by the product of the prior distributions π(θ) with 

the likelihood L(y|x, θ), that is

(2)

Where

For a specific parameter θk, the full conditional π(θk| …) is obtained by conditioning the 

posterior π(θ|y, x) in (2) on the remaining parameters.
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• The full conditional of μg is , where  and  are obtained by 

updating the prior parameters mg and τg as follows:

• The full conditional of  is , an Inverse Gamma distribution 

with parameters  and  where  and

• The parameters γjg and βjg require special attention. These two parameters are 

updated simultaneously using their joint full conditional π(γjg, βjg|…). We first 

sample γjg from the marginal posterior π(γjg|…) obtained by integrating out βjg in 

π(γjg,βjg|…) and then βjg is simulated from the conditional distribution π(βjg|γjg, 

…). The joint full conditional π(γjg,βjg|…) is given by

(3)

where L(γjg, βjg |…) is the part of the likelihood containing γjg and βjg (i.e. the 

contribution of gene expression g) and is given by

Furthermore, in equation (3),  is the Bernoulli prior 

of γjg and π(βjg|γjg) is the prior distribution of βjg conditional on γjg such that:

In order to sample γjg from π(γjg|…), we integrate out βjg and we let
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It follows that π(γjg = 0|…) ∝ (1 – ωjg)p0 and π(γjg = 1|…) ∝ ωjgp1. Further 

computation leads to p1 = Cp0, where the quantity C is equal to

Finally, the parameter γjg is sampled from  and 

As we mentioned earlier, the parameter βjg is sampled from the conditional 

posterior distribution π(βjg|γjg). Precisely, βjg = 0 if γjg is sampled as 0 and βjg is 

generated from a  if γjg is sampled as 1. The quantities  and  are 

given by

• The full conditional of ωjg is , which is a 

mixture of a Dirac mass in 0 and a Beta distribution with parameters 

and  and with respective weights r and 1 – r, where r is given by

and ℬ(.,.) is the Beta function.
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•

The full conditional of pj is pj ∼ ℬeta(a′, b′), with  and 

, where  represents the number of genes for which 

SNP j has zero probability to be an eQTL and  represents the number of 

genes with positive probability to have an eQTL at SNP j.

• Full conditionals for aj and bj are not available in closed form but are given by

Therefore, if ωjg = 0 for all g, the parameters aj and bj are simply sampled from 

their corresponding priors ℰxp(λa) and ℰxp(λb). When ωjg ≠ 0 for at least one g, we 

employ the adaptive rejection sampling algorithm of Gilks and Wild (1992) to 

sample from π(aj|…) and π(bj|…).

Appendix B: Choice Of The Hyperparameters Of The Model

Reasonable prior guesses for λa, λb, a0 and b0 can be obtained by computing the a priori 

expected number of eQTLs by gene, namely (ng,eQTL) and the variance of the number of 

eQTLs (ng,eQTL). Given the conditional indepence structure of the model, it can be seen 

that after integrating out wjg, aj, bj, pj, the distribution of γjg is again Bernoulli with 

probability w* = b0/(a0 + b0)I where I = ∫∫aba/(a + b)λa exp{− λaa}λb exp {− λbb}dadb.

It follows that (ng,eQTL) = Sw* and (ng,eQTL) = Sw*(1 – w*) where S is the number of 

SNPs. For example, if S = 1000 and λa = a0 = 10 and λb = b0 = 0.1, which we used here, we 

have (ng,eQTL) ≃ 0.37 and (ng,eQTL) ≃ 0.36. These values correspond to a scenario where 

the prior number of eQTLs per gene lies between , 

thus privileging the null model (the model without eQTLs). Note that we used these 

equations as guidelines only, and the resulting priors are midly informative. More 

informative prior values could be derived from previous experiments, assuming that such 

experiments are available. Alternatively, one could use a simple one transcript vs. one SNP 

regression approach (e.g. R-QTL) to provide reasonable estimates on the number of eQTL 

per transcript.

Appendix C: Comparison of computation times

Table 5 compares computational times for the different methods used in our comparison. 

The average times are based on the simulation study where n = 50.
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Appendix D: MCMC convergence diagnostics

Given the large number of parameters in our model, it is impossible to report diagnostic 

convergence results for each one. Here, we have opted to report results for three gene × SNP 

combinations, with low, medium and large posterior probabilities of association. We feel 

that by looking at a range of posterior probabilities from low to high, the three gene/SNP 

combinations reported are well representative of all other combinations. Table 6 shows the 

results of the Raftery et al. (1992) convergence test as implemented in the coda package 

(Plummer et al., 2006) applied to our experimental dataset. The calculations show that the 

number of iterations used for the results reported here is clearly sufficient. This result is also 

confirmed by the trace plots included here (Figure 5). Note that given the large number of 

simulations performed, we did not perform any diagnostic for the simulated data. However, 

the ROC curves presented and the diagnostic on the much larger experimental data suggests 

that convergence was not an issue for these data.
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Figure 1. 
Graphical representation of the eQTL model. The rectangles represent either fixed 

hyperparameters or the data, circles represent unknown (and random) quantities. For each 

gene, the gene expression phenotype yg is expressed as a linear model 

 The gene/marker specific regression coefficient βjg is assumed to 

be normally distributed with distribution . The prior for μg is, 

, and the prior for σ2 is π(σ2) ∝ 1/σ2. The prior distribution for γjg is assumed to 

be Bernoulli with parameter wjg. The wjg's are given ωjg ∼ pjδ0(ωjg) + (1 – pj)ℬeta(aj, bj)

(ωjg). Additionally, aj and bj are assumed to follow Exponential distributions with 

hyperparameters λa and λb and pj ∼ ℬeta(a0,b0).
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Figure 2. 
Graphical illustration of the scenarios used for the simulation study. Rows represent genes 

(divided into 4 blocks of 10 correlated genes each), columns represent SNPs and red dots 

correspond to simulated eQTLs. In the third scenario, the size of red dots is proportional to 

the strength of the eQTL association and corresponds to β* = 1, β* = 0.5 and β* = 0.2.
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Figure 3. 
The Receiver Operating Characteristic (ROC) curves of iBMQ, iBMQ-cw, QTLBIM, M-

SPLS, R-QTL and remMap for the three different simulation scenarios. a) The ROC curves 

represent results of the n = 75, b) the curves present the results of the n = 50, c) the curves 

present the results of the simulation with n = 25. Note that remMap does not detect any 

eQTLs, hence the line y = x.
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Figure 4. 
Association plots of 20 genes (simulation with 25 individuals): 10 genes share a common 

eQTL “hotspot”. The grey horizontal lines correspond to the PPA cutoff used for eQTL 

detection (corresponding to a False Discovery Rate of 10%), and the red dots represent true 

eQTLs. a) Posterior Probability plots obtained with iBMQ: the method detects 8/10 genes in 

the hotspot; b) Posterior Probability plots obtained with iBMQ-cw: the method detects all 10 

genes in the hotspot. Although all 10 genes in the hotspot are detected, all other genes 

(which should not be detected), also display a significant PPA for that SNP; c) Posterior 

Probability plots obtained with QTLBIM: the method detect only 4/10 genes in the hotspot; 

d) Frequency of detection of associations with M-SPLS over 50 simulations: the methods 

detects 7/10 genes in the hotspot; e) Frequency of detection of associations with R-QTL 

over 50 simulations: the method detects 4/10 genes in the hotspot. f) Frequency of detection 

of associations with remMap over 50 simulations: this methods did not detect any eQTLs 

under the present parameters.
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Figure 5. 
Genome-wide distribution of eQTLs found by a) iBMQ, b) QTLBIM, c) M-SPLS, d) R-

QTL and e) remMap for the 1000 probes showing most variance of expression in the whole 

eye tissue from 68 BXD mouse recombinant inbred strains. The x-axis gives the position of 

each eQTL along the genome; the y-axis gives the position of the probe set target itself. The 

grey lines mark chromosome boundaries. Cis-QTLs form a diagonal line. Vertical bands 

represent groups of transcripts linked to a single trans-eQTL. iBMQ detects hotspots of 

trans-eQTLs (on chromosomes 2,4,8,10 and 12) that are not detected by QTLBIM. No cis-

eQTL are detected by M-SPLS. d) R-QTL detect cis-eQTL but virtually no trans-eQTLs. e) 

No cis-eQTL are detected by remMap and the trans-eQTL hotspot do not overlap those 

detected by iBQM nor M-SPLS.
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Figure 6. 
Trace plot of parameters aj, bj, μg and σg for three gene/SNP combination with low, medium 

and high PPA. These plots are based on 2,000,000 iterations after 40,000 burn-in.
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Table 2

Overlap of eQTL detection between different methods. All numbers originate from tests perform with 5 

different methods on the real data set. The total number of eQTLs detected by each method is presented 

between parentheses. Each column contain the number of eQTLs detected in common for a given methods.

iBMQ QTLBIM M-SPLS R-QTL remMap

iBMQ (759)

QTLBIM (182) 66

M-SPLS (1400) 33 0

R-QTL (5727) 139 113 2

remMap (1365) 0 0 0 11
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Table 4

For each hotspot from Table 3, there was significant enrichment for genes belonging to Gene Ontology (GO) 

categories. All corresponding genes are listed under the GO term they belong to. Genes present on hotspot on 

different chromosomes are formatted in bold.

Chr 2 Chr 4 Chr 8 Chr 10 Chr 12

GO:0030855 GO:0005198 GO:0005198 GO:0005198 GO:0005882

E74-like factor 3 claudin 4 claudin 23 claudin 23 keratin 1

ets homologous factor claudin 7 claudin 7 claudin 4 keratin 10

keratin 14 keratin 13 keratin 14 claudin7 keratin 13

keratin 17 keratin 14 keratin 16 collagen type III keratin 14

keratin 4 keratin 19 keratin 4 keratin 13

keratin 6A keratin 4 keratin 14

patched homolog 1 keratin 6A keratin 15

stratifin keratin 7 keratin 19

small proline-rich protein 1A keratin 4

trans. related protein 63 keratin 6A keratin 7
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Table 5

Computation times for the different tools used in this paper when applied to the simulated data with n = 50. 

Times reported are the means of 50 simulations with standard deviations between parentheses. iBMQ was 

performed on 4 CPU and the other methods were perform using 1 CPU.

iBMQ QTLBIM MSPL RQTL remMAP

25.3 mn (1.9) 4.2 mn (.44) < 1 mn < 1 mn < 1 mn
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Table 6

Recommended chain run lengths to estimate .025 quantiles within an error margin of .005, based on the 

Raftery-Lewis convergence diagnostic for Markov Chain Monte Carlo. Run lengths are calculated on four 

different parameters at three levels of the highest estimated PPA. The column N gives the run length required 

to achieve the desired margin of error, Nmin gives the minimum run length when no autocorrelation is 

present, and the Dependence Factor indicates the inflation factor from Nmin to N, representing the effect of 

autocorrelation. In all cases the recommended N is less than half of the total number of iterations sampled in 

our chain.

Parameter PPA level N Nmin Dependence Factor

Low 74960 74920 1

A Mid 228840 74920 3.05

High 177720 74920 2.37

Low 76480 74920 1.02

B Mid 552300 74920 7.37

High 78060 74920 1.04

Low 237840 74920 3.17

σ2 Mid 816000 74920 10.90

High 969540 74920 12.90

Low 76980 74920 1.03

μ Mid 157480 74920 2.10

High 89360 74920 1.19
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