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Abstract
Uncoupling of ERK1/2 phosphorylation from subcellular localization is essential towards the

understanding of molecular mechanisms that control ERK1/2-mediated cell-fate decision.

ERK1/2 non-catalytic functions and discoveries of new specific anchors responsible of the

subcellular compartmentalization of ERK1/2 signaling pathway have been proposed as reg-

ulation mechanisms for which dynamic monitoring of ERK1/2 localization is necessary.

However, studying the spatiotemporal features of ERK2, for instance, in different cellular

processes in living cells and tissues requires a tool that can faithfully report on its subcellular

distribution. We developed a novel molecular tool, ERK2-LOC, based on the T2A-mediated

coexpression of strictly equimolar levels of eGFP-ERK2 and MEK1, to faithfully visualize

ERK2 localization patterns. MEK1 and eGFP-ERK2 were expressed reliably and function-

ally both in vitro and in single living cells. We then assessed the subcellular distribution and

mobility of ERK2-LOC using fluorescence microscopy in non-stimulated conditions and

after activation/inhibition of the MAPK/ERK1/2 signaling pathway. Finally, we used our

coexpression system in Xenopus laevis embryos during the early stages of development.

This is the first report on MEK1/ERK2 T2A-mediated coexpression in living embryos, and

we show that there is a strong correlation between the spatiotemporal subcellular distribu-

tion of ERK2-LOC and the phosphorylation patterns of ERK1/2. Our approach can be used

to study the spatiotemporal localization of ERK2 and its dynamics in a variety of processes

in living cells and embryonic tissues.
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Introduction
Extracellular signal-Regulated protein Kinases 1 and 2 (ERK1/2) are members of the Mitogen
Activated Protein Kinase (MAPK) superfamily. The ERK1/2 signaling pathway plays an
important role in the cellular signaling network by regulating several cellular processes, such as
cell survival, proliferation, migration, differentiation and death, depending on the cellular con-
text [1,2]. The ERK1/2 signaling pathway displays the characteristic three-tiered core cascade
MAPK architecture [3], ensuring not only signal transduction but also amplification of signals
from different membrane-stimulated receptors, such as Receptor Tyrosine Kinases (RTK) and
G Protein-Coupled Receptors (GPCRs) [4,5]. Activation of the pathway by different extracellu-
lar stimuli triggers sequential phosphorylation of the protein kinases Raf, MAPK/ERK Kinase
1/2 (MEK1/2) and ERK1/2, which constitute a conserved signaling module. Compelling evi-
dence indicates that the ERK1/2 cascade is involved in the pathogenesis, progression and onco-
genic behavior of several human cancers, including lung, breast, colorectal and pancreatic
cancer, as well as glioblastoma and melanoma [6,7].

Though the biochemical events of ERK1/2 signaling have been well characterized, a central
question remains: How can this signaling cascade trigger different cellular outcomes? An
increasing number of papers have shown that modulation of the duration, magnitude and sub-
cellular compartmentalization of ERK1/2 activity by specific key regulators are interpreted by
the cell to determine cell fate [8,9]. Moreover, preservation of the integrity of cell decisions
requires control of the dynamic subcellular distribution of ERK1/2 and its ability to access
ERK1/2 substrates. In resting cells, components of the ERK1/2 signaling pathway are mainly
sequestered in the cytoplasm by cytoplasmic scaffold/anchoring proteins [10]. One of the posi-
tive regulators of the ERK1/2 cascade is the evolutionarily conserved Kinase Suppressor of Ras
(KSR), which facilitates activation of the pathway by bringing the components of ERK1/2 sig-
naling close to Ras at the plasma membrane [11]. MEK1 is sequestered in the cytoplasm of rest-
ing cells by its N-terminal nuclear export sequence (NES) and functions as a cytoplasmic
anchor for inactive ERK2 [12]. Upon extracellular stimulation and activating phosphorylation,
MEK1 and ERK2 are released from cytoplasmic anchors and rapidly translocate into the
nucleus [13–16]. Besides its apparent cytoplasmic localization, 5% of MEK1 can be found in
the nucleus at the peak of activation of the pathway [17]. MEK1 can rapidly transit between the
cytoplasm and the nucleus much faster than ERK2 and therefore acts as a nuclear export shut-
tle for ERK2 and other nuclear proteins [18]. Besides differences between cells in spatiotempo-
ral dynamics of ERK1/2 [19], it appears that ERK1/2 phosphorylation and subcellular
distribution are uncoupled in several cellular models due to interaction of ERK1/2 with various
anchors/scaffolds [20,21]. Upon mitogenic stimulation, ERK1/2 signaling upregulates the
expression of short-lived nuclear anchors such as MAPK phosphatases (MKP), which leads to
dephosphorylation of ERK1/2 and accumulation of its inactive form in the nucleus several
hours after pathway activation [21,22]. Monitoring the dynamic behavior of ERK1/2 in single
cells will resolve this apparently conflictual relationship and evaluate the effects of specific reg-
ulators of ERK1/2 compartmentalization on cell fate determination.

To visualize ERK1/2 dynamics in living cells, various studies used ERK1/2 tagged with GFP-
like fluorescent proteins and found that overexpressed eGFP-ERK2 is predominantly localized
in the nucleus of resting cells. This unexpected localization of eGFP-ERK2 was due to the dis-
ruption of MEK/ERK balance [12,15]. This problem has been often ignored [16,23–25] or tack-
led by coexpression of MEK1 to restore the balance and the cytoplasmic localization of ERK2
expressed at high levels in serum-starved cultures without stimulation [26,27]. These coexpres-
sion strategies mostly suffer from the inconsistency of the coexpression patterns of ERK2 and
MEK1 in different cells. Coexpression of eGFP-ERK2 and MEK1 is generally associated with
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an abnormally short persistence of eGFP-ERK2 in the nucleus of resting cells, in contrast to
endogenous ERK2, which remains in the nucleus several hours after mitogenic stimulation
[21,26,27]. To overcome this difficulty, other studies selected cells expressing low levels of eGF-
P-ERK2 (100–150 nM) compared to the estimated endogenous protein level (1 μM) [28] to
obtain a faithful localization profile of the kinase in serum-starved conditions [29]. However,
transfected cells are dimly fluorescent, which are unsuitable for long-term video imaging. As a
new approach to maintain the endogenous MEK/ERK balance, an exogenous tagged version of
ERK1 was re-expressed in ERK1-deficient cell lines by transient transfection of a plasmid
encoding ERK1 under the control of a strong promoter [30]. Cells were selected for tagged-
ERK1 expression level on the basis that the nucleus was not brighter than the cytoplasm in the
starved conditions. Nevertheless, the delicate MEK/ERK balance was progressively disrupted a
few hours after transfection, resulting again in aberrant nuclear accumulation of ERK1 in non-
stimulated conditions. Another study used a retroviral tagging approach and introduced the
full-length sequence of YFP as a new exon into one allele of the erk2 gene [19]. The tagged
ERK2 was in minority compared to the wild-type protein, which led to proper subcellular dis-
tribution of tagged-ERK2 in the starved conditions. But again the fluorescent intensity was dim
due to the low expression level. All these approaches are limited by the need for severe imaging
conditions (causing phototoxicity, photobleaching and decrease of signal to noise ratio) that
are not compatible with live cell video-microscopy, especially considering the stress-sensitive
nature of MAPK pathways [31].

To avoid the artefacts in ERK2 localization patterns and facilitate the long-term functional
imaging, we developed a novel ERK2 localization reporter named ERK2-LOC. We employed
the T2A-mediated coexpression of ERK2 and MEK1 to enable faithful monitoring of eGF-
P-ERK2 localization dynamics in both basal and growth factor-stimulated conditions. Our pro-
cedure was characterized using standard biochemical approaches and validated by live-cell
imaging in living NIH-3T3 cells. Final verification was conducted in the Xenopus laevismodel
during the early developmental stages. This is the first time that ERK2 localization is studied in
living embryos. Our simple approach can be used for the reliable study of the spatiotemporal
dynamic of ERK2 in living cells and in live model organisms.

Materials and Methods

Ethics Statement
All animal experiments were performed at Lille 1 University according to the rules of the Euro-
pean Community Council guidelines (86/609/EEC) for laboratory animal experimentation.
The local institutional review board (Comité d’Ethique en Expérimentation Animale Nord-Pas-
De-Calais (CEEA, 07/2010) approved all animal experimental protocols in this study.

Reagents
Recombinant mouse fibroblast growth factor 4 (FGF4, #5846-F4-025/CF) was purchased from
R&D Systems and fetal bovine serum (FBS, #10082–147) from Gibco, Life Technologies. Other
reagents, e.g., bovine serum albumin (BSA, fraction V, #05482), dimethylsulfoxide (DMSO,
#D8418) and MEK inhibitor (U0126, #U120) were from Sigma Aldrich.

Plasmid constructs
The plasmid pCS2-Myr-TdTomato-T2A-Histone2B-GFP was kindly provided by Dr. Shankar
Srinivas (Department of Physiology Anatomy and Genetics, University of Oxford, United
Kingdom). Xenopus laevis ERK2 (xERK2) plasmid was a kind gift from Dr. Lynn Heasley
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(Health Science Center, University of Colorado, Denver, USA). The plasmid encoding Rattus
norvegicus ERK2 (rERK2) fused at its N-terminal to the enhanced green fluorescent protein
(eGFP-rERK2) was a kind gift from Dr. Georges Baffet (UMR1085 INSERM, University of
Rennes, France). All oligonucleotides are listed in Table 1. The synthetized DNA sequence
encoding the Thosea asigna virus 2A peptide (T2A peptide) was inserted into the pCS2+ back-
bone in frame between untaggedMus musculusMEK1 (mMEK1) and eGFP-rERK2 to build
the expression vector pCS2-mMEK1-2A-eGFP-rERK2 (abbreviated rERK2-LOC). We next
fused a mCherry to the N-terminus of mMEK1 to generate the construct named
pCS2-mCherry-mMEK1-2A-eGFP-rERK2. The full-length cDNA sequences of MEK1 and
ERK2 from Xenopus laevis were subcloned upstream and downstream, respectively, of the T2A
peptide. We fused an eGFP to the N-terminus of xERK2 to generate the construct named
pCS2-xMEK1-2A-eGFP-xERK2 (abbreviated xERK2-LOC). As a control, we fused the T2A
sequence to the N-terminus of eGFP-xERK2 (pCS2-2A-eGFP-xERK2). Based on published
studies, we kept a Gly-Ser-Gly (GSG) linker between MEK1 and the T2A sequences to optimize
cleavage efficiency [32,33]. The cloning procedure is detailed in S1 File. All PCR products were
gel purified and digested with restriction endonucleases according to the cloning strategies. All
resulting constructs were verified by restriction digestion followed by agarose gel electrophore-
sis, or by PCR colony screening (#2200210, MasterTaq Kit, 5Prime), and then validated by
sequencing (Genoscreen, France). Restriction endonucleases Pfu and Taq DNA polymerase,
Klenow fragment, Mung Bean Nuclease, T4 Polynucleotide kinase (PNK), T4 DNA ligase, as
well as dNTPs, ATP and specific buffers were purchased from New England Biolabs. All oligo-
nucleotides were synthesized by Eurogentech (Belgium). Each complementary oligonucleotide
designed to create double-stranded cassettes was 5’-phosphorylated by T4 PNK and then puri-
fied using Bio-Gel P-6 Micro Bio-Spin chromatography columns (#732–6222, Biorad). DNA
fragments were all purified on Qiagen plasmid purification columns (#28106, #28706 and #
27106, Qiagen).

Cell Culture and Transfection
NIH-3T3 cells were purchased from American Type Culture Collection (VA, USA) and main-
tained at 37°C under 5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM, #11885–084)
supplemented with 10% FBS and 100 U/mL penicillin/streptomycin (P/S, #15140–122) (Gibco,
Life Technologies). For live imaging, NIH3T3 cells were plated on 35-mm dishes (#81156, ibi-
Treat, Ibidi) to reach 60% confluence at the time of transfection, performed using JetPrime
reagent (#114–15, Polyplus) according to the manufacturer’s instructions. Cells were starved
by adding 1% FBS for 24 h before experiments began. One hour before cell imaging, medium
was replaced with preheated Leibovitz L-15 bicarbonate-free medium (#11415–049, Gibco, Life
Technologies) supplemented with 1% FBS and 100 units/mL P/S at 37°C in air.

SDS-PAGE and Immunoblotting
At specified intervals after treatment, NIH-3T3 cells were washed twice in ice-cold PBS and
scraped using ice-cold RIPA lysis buffer (50 mM Tris-HCl, pH 7.5; 150 mMNaCl; 1 mM
EDTA; 0.5% sodium deoxycholate; 1% Triton X-100 and 0.1% SDS) or immunoprecipitation
lysis buffer (10 mM Tris-HCl, pH 8.0; 150 mMNaCl; 2 mM EDTA; 10% glycerol and 1%
NP40). Lysis buffer was freshly supplemented with 1X EDTA-free Complete protease
(#05892791001, Roche) and 1X PhosStop phosphatase inhibitor cocktail (#04906845001,
Roche). Extracted proteins (30 μg) were separated in 12% SDS polyacrylamide gels and then
transferred onto nitrocellulose membranes (Amersham Bioscience). Protein extracts from 10
whole Xenopus laevis embryos were prepared as described [34] and loaded into a 12% SDS
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polyacrylamide gel. Membranes were blocked using TBS with 0.05% Tween20 (TBS-T) con-
taining 5% non-fat dry milk (Biorad) or in 2% BSA for phospho-antibodies. The antibodies
were anti-ERK2 (polyclonal rabbit IgG (C-14) and monoclonal mouse IgG2b (D-2) from Santa
Cruz Biotechnology, 1:1000), anti-actin (polyclonal goat IgG (I-19) from Santa Cruz Biotech-
nology, 1:1000) and anti-GFP (monoclonal mouse IgG1κ, clones 7.1 and 13.1, from Roche
(#11814460001), 1:1000). The phosphorylated forms of MAPK/ERK1/2 were detected using
the anti-MAPK activated (diphosphorylated ERK1/2) antibody (monoclonal mouse IgG1,
clone MAPK-YT, from Sigma Aldrich (M9692), 1:2000). HRP-conjugated secondary antibod-
ies were anti-rabbit IgG, anti-mouse IgG or anti-goat IgG (whole antibody from Santa Cruz

Table 1. Sequence of oligonucleotide primers used in this study.

Primer name Oligonucleotide sequence (5’!3’) Tm
(°C) /
%GC

BackboneΔAgeI-F GCTACTTGTTCTTTTTGCAACCGGTGGATCCCATCGATTCGAATTC 70 /
46

Backbone7G-F1 CCGGTGGCGCGCC GCTAGCGGTGGCGGAGGTGGCGGAGGTTA 84 /
76

Backbone7G-R1 CCGGTAACCTCCGCCACCTCCGCCACCGCTAGC GGCGCGCCA 84 /
76

Backbone7G-F2 CTAGCGGCACCGGTGGCTGTACAAGGGAGGCGGTGGAGGCGGTGGG 82 /
72

Backbone7G-R2 CTAGCCCACCGCCTCCACCGCCTCCCTTGTACAGCCACCGGTGCCG 82 /
72

Backbone7G-F3 CCGGAGGTGGCGGAGGTGGCGGGACTAGTCCAGGCGCGCCTCCGC 84 /
78

Backbone7G-R3 TCGAGCGGAGGCGCGCCTGGACTAGTCCCGCCACCTCCGCCACCT 84 /
73

xERK2.
AgeI-BamHI-F

TACCGGT GGATCCACATGGCAGCGGCAGCGGCCTCGTC 79 /
68

xERK2.XhoI-R GAGGCTCGAGTCAGTACCCTGGCTGGAATCTAGCG 71 /
60

eGFP.AscI-F CGCCGGCGCGCCAGCCATGGTGAGCAAGGGCGAGG 81 /
77

eGFP.NheI-R ACCGCTAGCCTTGTACAGCTCGTCCATGCC 70 /
60

T2A.AscI-F CGCGCCGGACTAGTCCATCGATGGCAGTGGAGAGGGCAGAGGAAGTCTGCTAACATGCGGTGACGTCGAGGAGAATCCTGGCCCAGGTGG 84 /
62

T2A.AscI-R CGCGCCACCTGGGCCAGGATTCTCCTCGACGTCACCGCATGTTAGCAGACTTCCTCTGCCCTCTCCACTGCCATCGATGGACTAGTCCGG 84 /
62

xMEK1.SpeI-F GGACTAGTCCAACATGCCTAAAAAGAAGCCT 64 /
45

xMEK1.ClaI-F CCATCGATGGCCACTCCGGCGGCATGGGTTG 74 /
68

mMEK1.SpeI-F1 GGACTAGTCCAAGATGCCCAAGAAGAAGCCG 67 /
55

mMEK1.SpeI-F2 GGACTAGTCCCAAGAAGAAGCCGACGCCCATCCAGCTG 73 /
61

mMEK1.ClaI-R CCATCGATGGCGATGCTGG CAGCGTGGGTTG 73 /
65

mMEK1.AscI-R AGGCGCGCCTCAGATGCTGGCAGCGTGGGTTGGTGTGCTGGG 81/
69

Abbreviations: 7G, 7-glycine linker; F, forward primer; R, reverse primer. Restriction enzyme sites are underlined and start/stop codons are in bold.

doi:10.1371/journal.pone.0140924.t001
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Biotechnology (sc-2004, sc-2005, sc-2020), 1:10000). Membranes were developed using the
Luminata Classico Western HRP Chemiluminescence Detection Reagents (WBLUC0500,
Millipore).

Immunoprecipitation of MAPK/ERK2 and MBP phosphorylation assay
NIH-3T3 cell lysates (300 μg of protein) were immunoprecipitated directly as described [35].
Briefly, 50 μL of protein G magnetic beads (Millipore) per condition were washed and then
conjugated with 1 μg of anti-ERK2 (C-14) or anti-GFP antibodies on a rotating wheel at 4°C
overnight. Note that this anti-ERK2 antibody can also detect ERK1 although to a lesser extent.
Antibodies against HA (#11583816001, Roche) were used as a control. The next day, antibody-
conjugated beads were added to each sample and incubated on a rotating wheel at 4°C for 2 h.
Supernatant was removed and beads were washed in lysis buffer. The MBP phosphorylation
assay was performed on immunoprecipitated endogenous ERK2 and eGFP-ERK2 according to
the manufacturer’s instructions (#2430444, Millipore). MBP proteins were subjected to
SDS-PAGE (15% gel) and immunoblotted using an anti-phospho MBP antibody (monoclonal
mouse IgG, clone p12, fromMillipore (#05429), 1:1000).

Immunofluorescence
NIH-3T3 cells were seeded in eight-well dishes (#80826, ibiTreat, Ibidi). At specified time
intervals, cells were fixed in 4% paraformaldehyde in PBS for 10 min. Afterwards, cells were
rinsed three times with PBS and permeabilized with 0.5% Triton X-100 in PBS for 5 min. Cells
were then blocked in 2% FBS; 5% normal goat serum and 2% BSA in PBS) for 1 h at room tem-
perature and with primary antibodies in blocking solution at 4°C overnight. The antibodies
were anti-MAPK activated (diphosphorylated ERK1/2, 1:500), anti-ERK2 (D-2, 1:200) and
anti-ERK1/2 (polyclonal rabbit IgG from Abcam (ab17942), 1:200). The next day, cells were
rinsed three times with PBS and incubated in blocking solution containing anti-mouse Alexa
Fluor 488 (polyclonal goat IgG from Life Technologies (A-10667), 1:500) and/or anti-rabbit
Alexa Fluor 594 secondary antibodies (polyclonal goat IgG from Life Technologies (A-11012),
1:500) for 1 h at room temperature in the dark. After three more washes with PBS, slides were
mounted in ProLong Gold anti-fading reagent (P36930, Life Technologies) and stored at 4°C
in the dark.

Xenopus embryo manipulation, RNAmicroinjection and immunostaining
Hormonal stimulation of female frogs, eggs collection, fertilization and dejellying of embryos
were performed as previously described [36]. Xenopus embryos were staged as described [37].
Plasmids encoding eGFP-xERK2, 2A-eGFP-xERK2 and xMEK1-2A-eGFP-xERK2 were linear-
ized with NotI, purified and transcribed using SP6 RNA polymerase and the mMessage mMa-
chine kit (AM1340, Ambion, Life Technologies) according to the manufacturer’s instructions.
Synthetic RNAs were purified with Chroma Spin column (#636073, Clontech). Embryos at the
one-cell stage were microinjected with 500 pg of RNA. Embryos at different stages were col-
lected for western blotting and immunostaining or directly processed for whole-embryo confo-
cal microscopy. Blastula, gastrula and tailbud stage embryos were placed in an imaging
chamber containing a layer of 2% agarose MP (#11388983001, Roche) and 1/10 Marc’s Modi-
fied Ringers (MMR) solution (1 M NaCl; 20 mM KCl; 10 mMMgCl2; 20 mM CaCl2 and 50
mMHepes, pH 7.5). Xenopus laevis embryos were fixed in 4% paraformaldehyde at 4°C over-
night with gentle shaking in glass vials and then processed for whole-mount immunostaining
[38]. Antibodies were anti-ERK2 (D-2, 1:50) and Alexa Fluor 488 goat anti-mouse IgG
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secondary antibodies (1:100). Embryos were cut in half at the equator, and the animal half was
mounted on a curved slide in ProLong Gold anti-fading reagent and stored at 4°C in the dark.

Fluorescence imaging and data analysis
Live-cell, immunofluorescence imaging and FRAP experiments were all performed with an
inverted confocal Leica TCS SP5 X microscope (DMI6000, Leica Microsystems). For all experi-
ments, a 63x/1.2NA water immersion objective was used, except for the result shown in Fig 1A
(40x/1.3NA oil immersion objective). Image size was 1024 x 1024 pixels and the zoom factor
was 1, for a pixel size of 0.5 μm. The confocal pinhole was set to 1.0 Airy, for a 0.921 μm optical
slice. Laser sources were either a white light laser (Koheras) for live-cell imaging and immuno-
fluorescence preparations, or an argon laser (Leica Microsystems) used at a wavelength of 488
nm for FRAP experiments. All experiments were performed at 37°C.

To quantify ERK2 nuclear translocation, we measured the average fluorescence intensity in
the nucleus (Fnuc) and in the cytoplasm (Fcyto) to determine a nucleo-cytoplasmic concentra-
tion index (CI) calculated as follows:

CI ¼ Fnuc� BG
Fcyto� BG

where BG corresponds to the average fluorescence intensity background. Fluorescence inten-
sity in fixed cells was quantified manually using ImageJ software (National Institutes of Health)
by drawing specific ROIs in the nucleus and cytoplasm, and outside the cell for background.
Fluorescence intensity quantification of ERK2-LOC dynamics in single cells was done auto-
matically with Volocity image analysis software (Perkin Elmer), which required segmentation
of fluorescence labeled cells throughout the entire time-lapse. This was done by incubating the
cells with Hoechst before starting the experiment to discriminate nuclei from whole cells and
to define a mask around each nucleus. Cytoplasm fluorescence intensity of ERK2-LOC was
then measured by subtracting fluorescence intensity due to the nucleus from that of the whole
cell.

Whole Xenopus laevis embryos at early stages of development were imaged with an upright
confocal Nikon A1 microscope (Eclipse FN1, Nikon). A 25x/1.1NA objective lens was used,
and pinhole was set to 0.6 Airy for an optical slice of 1.04 μm. Image size was 1024 x 1024 pixels
acquired at a speed of 0.5 frames/sec (scanning speed of 512 Hz). The zoom factor was 1 for a
pixel size of 0.5 μm. 3D reconstructions of the confocal z-stack images were performed using
NIS Elements 4.3 software (Nikon) and ImageJ (National Institutes of Health). Xenopus laevis
embryos tailbud stage were imaged on an upright Nikon Eclipse 80i epifluorescence micro-
scope equipped with a 4x/0.13NA Plan Fluor objective (Nikon) and a CoolSNAP ES CCD
Photometrics camera (Roper Scientific).

Fast-FRAP experiments
In Fast-FRAP experiments, pre-bleach acquisition, bleaching and fluorescence recovery mea-
surements were performed by repeatedly scanning one line across a targeted cell. Scanning was
bidirectional at 1400 Hz. The zoom factor was 5, yielding a pixel size of 0.048 μm. Resulting X
(t) images were 1024 x 14416 pixels. Pre-bleach acquisition was carried out to compensate for
the loss of fluorescence due to the acquisition. A bleaching ROI was set across either the cell
nucleus or the cytoplasm. Fast-FRAP acquisition was as follows: 1 sec of pre-bleach acquisition,
150 ms of bleaching, and 3 sec of fluorescence recovery measurements. Bleaching was achieved
with the laser operating at 95% power with the AOTF set to 100%. For imaging, laser power
was attenuated to 2% of the AOTF. Fluorescence was detected between 500 nm and 570 nm.
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Fig 1. Overexpression of eGFP-rERK2 induces nuclear accumulation of eGFP-rERK2. (A) NIH3T3 cells were serum-starved for 24 h (a) and then
stimulated with 10% serum (b) or 100 ng/mL FGF4 (f). In other conditions, cells were pretreated with 20 μMU0126 (c, e, g) or vehicle DMSO (d, h) for 30 min
before stimulation with 10% serum (c, d) or FGF4 (g, h). Cells were fixed, processed for double immunofluorescence with antibodies against total ERK1/2
and activated di-phosphorylated YT-ERK1/2, and then imaged by confocal microscopy. A maximum-intensity projection of a 5-μm thick z-stack (step size:
0.3 μm) for each overlapping image is shown. (B) NIH-3T3 cells were transiently transfected with increasing amounts of eGFP-rERK2 plasmid as indicated
on the top left of each image, serum-starved for 24 h, fixed, and then imaged by confocal microscopy. The total amount of DNA was kept at 500 ng/mL of
medium in all conditions. Higher magnification images of representative eGFP-rERK2 localization are shown in white squares (bottom right). Scale bars:
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Fluorescence recovery curves were exported and analyzed using LAS AF and MATLAB (Math-
Works). Curve normalization was done using the “double normalization” formula [39]:

IFRAP NORM ¼ IRef Pre

IRef ðtÞ
� IFRAPðtÞ
IFRAP Pre

with IFRAP(t) as the fluorescense intensity in the FRAP ROI, IRef(t) as the reference fluorescence
intensity along the same line scan, IFRAP Pre as the mean fluorescence intensity before bleaching
in the FRAP ROI, and IRef Pre as the reference for mean fluorescence intensity before bleaching
along the same line scan. All measurements were corrected for background noise.

Statistics
Results are presented as means ± SEM. Statistical analyses were performed using PRISM 6.0
software (GraphPad). One-way and two-way ANOVA and Dunnett’s test, accepting p� 0.05
as significant, as well as a two-tailed unpaired t-test were used to compare CI values. Curves of
FRAP experiments were fitted by one-phase exponential equations. Differences between two
groups for half-life recovery and percentage of immobile fraction were analyzed using a two-
tailed unpaired t-test. The cleavage efficiency of T2A peptide, the expression level of tagged-
ERK2 and the ratio of phospho/total ERK2 were quantified by densitometry using Image J
(National Institutes of Health).

Results

Validation of endogenous ERK1/2 dynamics in NIH3T3 cells
To ensure that our cellular system behaves as described [21], the phosphorylation profile and
subcellular localization of endogenous ERK1/2 in NIH-3T3 fibroblast cells were examined
using specific activators and/or inhibitors of the pathway (Fig 1A). In non-stimulated condi-
tions, ERK1/2 displayed a basal phosphorylation and was localized mainly in the cytoplasm (a).
Pretreatment of non-stimulated cells with U0126 reduced this phosphorylation (e). Phosphory-
lation of ERK1/2 induced by serum (10%) or FGF4 (100 ng/mL) resulted in ERK1/2 nuclear
translocation and homogenous distribution of ERK1/2 throughout the cells (b and f). U0126
pretreatment dramatically decreased both serum- and FGF4- induced phosphorylation of
ERK1/2 and prevented the nuclear accumulation of ERK1/2 (c and g). However, ERK1/2 phos-
phorylation was not completely abolished when cells were simultaneously treated with U0126
and serum: phosphorylation signals were still detectable in the cytoplasm and the nucleus (c).
In contrast, neither phosphorylation nor localization of ERK1/2 was altered when cells were
treated with DMSO and either serum or FGF4 (d and h). These results are in accordance with
previous reports [21] and demonstrate the proper functioning of our biological system.

Artefacts in localization of over-expressed eGFP-rEKR2 in NIH-3T3 cells
We assessed the subcellular distribution of overexpressed eGFP-ERK2 in NIH-3T3 cells in
serum-starved and non-stimulated conditions. We documented ERK2 localization in NIH-3T3

50 μm. (C) Relationship between the concentration of eGFP-rERK2 plasmid and the concentration index (CI). Higher CI values reflect greater accumulation
of eGFP-ERK2 in the nucleus. Average CI was determined by examination of at least 30 randomly selected cells for each of the transfected conditions from
two independent experiments. Average CI value for endogenous ERK1/2 in serum-starved NIH-3T3 is also shown (green dotted line). (D) NIH-3T3 cells
transfected with 25, 125 or 500 ng/mL of eGFP-rERK2 were observed under severe imaging conditions to visualize cells that express very low level of eGFP-
rERK2 protein (upper panel, white squares). Higher magnification images of these cells exhibiting mainly cytoplasmic localization of eGFP-rERK2 are also
shown (bottom panel, white arrows). Scale bars: 50 μm.

doi:10.1371/journal.pone.0140924.g001
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cells transiently transfected with the rat ERK2 (rERK2) fused to the C-terminus of the
enhanced green fluorescent protein (eGFP-rERK2). Note that the eGFP-rERK2 function was
not altered as previously reported [29]. To obtain various eGFP-rERK2 expression levels within
a population of NIH-3T3 cells, they were transiently transfected with eGFP-rERK2 plasmids in
concentrations ranging from 25 to 1000 ng/mL to generate dim and bright fluorescence. The
subcellular distribution of overexpressed eGFP-ERK2 in serum-starved and non-stimulated
NIH-3T3 cells is presented in Fig 1B. eGFP-rERK2 accumulated in the nucleus of brightly fluo-
rescent cells but was homogenously distributed between cytoplasm and nucleus in weakly fluo-
rescent cells. This pattern was confirmed by the nucleo-cytoplasmic concentration index (CI)
results (Fig 1C, red dots), which are different from those of endogenous ERK1/2
(CI = 0.733 ± 0.030, n = 16,) in similar experimental conditions (Fig 1Aa and 1C, green dotted
line). The differences observed in CI values among plasmid concentration (Fig 1C) reflect
important cell-to-cell variations in eGFP-rERK2 expression and thus in eGFP-rERK2 subcellu-
lar distribution. eGFP-ERK2 in serum-starved NIH-3T3 cells across the range of plasmid con-
centrations used was faithfully detected only in the weakly fluorescent cells (Fig 1D) and when
the previously described severe imaging conditions were used [29]. Consistent with previous
studies, plasmids encoding eGFP-rERK2 and mCherry-mMEK1 (Fig 2A, #2 and #3) were tran-
siently co-transfected in equal amounts (final concentration of 1 μg/mL) to avoid saturation of
ERK2 binding partners in the cytoplasm and subsequent nuclear accumulation of eGFP-
rERK2 [26,27]. Twenty-four hours after transfection and serum starvation, confocal images of
fluorescent single cells in the red and green channels showed a marked heterogeneous expres-
sion of mCherry-mMEK1 and eGFP-rERK2 due to transient transfection (Fig 2B, upper
panel). In cells coexpressing eGFP-rERK2 and mCherry-mMEK1 in similar proportions,
eGFP-rERK2 was localized in the cytoplasm. But cells expressing more eGFP-rERK2 in com-
parison to mCherry-mMEK1 showed a more prominent nuclear localization of the kinase (Fig
2Bc and 2Bd).

Faithful eGFP-ERK2 localization restored in living NIH3T3 cells
To provide an accurate and faithful read-out of the subcellular distribution of ERK2 regardless
of its expression level, and to monitor the spatiotemporal signature of ERK2 in living cells by
fluorescence imaging, we constructed and validated a novel molecular tool: rERK2-LOC (Fig
2A, #4). Based on previous reports and our own observations (Figs 1 and 2Ba–2Bd), we rea-
soned that over-expression of eGFP-rERK2 should be counter-balanced by coexpression of
equal amounts of mMEK1, the main interacting partner of ERK2, in order to maintain the sys-
tem’s equilibrium. To that end, we used the T2A peptide, which functions as a reliable ribo-
somal skip mechanism to produce multiple polypeptides from a unique translation start site
(Fig 2Aa and Materials and Methods).

To assess mouse ERK2 localization in serum-starved conditions, NIH-3T3 cells transiently
transfected with the mCherry-mMEK1-2A-eGFP-rERK2 plasmid (Fig 2B, lower panel) were
imaged by fluorescence confocal microscopy. eGFP-rERK2 and mCherry-mMEK1 were co-
expressed in all transfected cells, as observed in the overlay image (Fig 2Bg). Co-localization
analysis based on the generation of a scatter-plot on the whole image of red intensities versus
green intensities for each pixel confirmed co-localization and indicated comparable expression
levels of ERK2 and MEK1 (Fig 2Bh). The results show that T2A mediated the equimolar coex-
pression of eGFP-rERK2 and mCherry-mMEK1 and that cytoplasmic localization of eGF-
P-ERK2 was restored in serum-starved, non-stimulated cells regardless of the expression level
(Fig 1Aa). However, the nuclei of transfected cells appear “darker” than the nuclei of non-
transfected cells harboring a more uniform distribution of endogenous ERK1/2 between the
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Fig 2. Equimolar co-expression of eGFP-rERK2 andmMEK1 restores cytoplasmic localization of eGFP-rERK2. (A) Schematic representation of all
genetically encoded molecular constructs used in this study. The corresponding amino acid sequence of 2A (yellow box) encodes a T2A peptide isolated
from plasmid Myr-TdTomato-2A-H2B-eGFP (#1). Amino acids (GSG) and (GGAP) improve cleavage efficiency. The red slash symbol at the peptide C-
terminal end indicates the 2A peptide cleavage site. (B) Fluorescence confocal imaging of NIH-3T3 cells after transfection with different plasmids and serum
starvation for 24 h: top, transfection with eGFP-rERK2 (#2) and mCherry-mMEK1 (#3) plasmids; bottom, transfection with mCherry-mMEK1-2A-eGFP-
rERK2 (#5). Representative images are shown of rERK2 protein distribution (green: a, e), mMEK1 distribution (red: b, f) and the merged image (c, g).
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cytoplasm and the nucleus (Figs 1Aa and 2C, ERK2 immunostaining). We hypothesized that
this could be due to the disruption of the initial MEK1/ERK2 ratio in NIH-3T3 cells after T2A-
mediated coexpression of eGFP-rERK2 and mCherry-mMEK1 [40]. To increase the propor-
tion of MEK1 with respect to that of endogenous ERK2, NIH-3T3 cells were then transfected
with mCherry-mMEK1, serum starved for 24 h, and then immunostained for total ERK2 (Fig
2C). Interestingly, mCherry-mMEK1 overexpression decreased the level of endogenous ERK2
in the nucleus, consistent with our previous observations (Fig 2Be).

Functional validation of the 2A-mediated eGFP-rERK2 and rMEK1
coexpression system
Analysis of western blot data from NIH3T3 cells transfected with the mMEK1-2A-eGFP-
rERK2 plasmid and harvested 0, 6, 24, 36, 48, and 60 h later showed that eGFP-rERK2 expres-
sion was detectable 24 h after transfection and remained stable from 36 h (Fig 2D, upper and
middle panel). Interestingly, the average abundance of eGFP-rERK2 ranged from 0.6- to
1.2-fold relative to that of endogenous ERK2 (Fig 2D, below middle panel) normalized against
actin (Fig 2D, lower panel). Average cleavage efficiency decreased slightly over time from
95.2% to a minimum of 92.1% (Fig 2D, below upper panel). All experiments were performed
24 h after transfection, when average cleavage efficiency and relative abundance were optimal.
rERK2-LOC was validated by monitoring its phosphorylation status (Fig 2E) and kinase activ-
ity (Fig 2F) on NIH3T3 cells transfected with rERK2-LOC upon activation and/or inhibition of
the ERK1/2 signaling pathway. Similar phosphorylation patterns were observed for
rERK2-LOC and endogenous ERK1/2 (Fig 2E, upper panel). rERK2-LOC and endogenous
ERK2 were substantially phosphorylated in response to serum and FGF4 compared to absence
of stimulation. However, densitometry (below the upper panel) revealed a pronounced effect of
serum (between 5.2- and 7.4-fold higher, lanes 2 & 6) and FGF4 (7.9-fold higher, lane 3) rela-
tive to the basal phosphorylation of rERK2-LOC (lane 1) when compared with the phosphory-
lation status of endogenous ERK2 (between 3.4- to 3.6-fold higher in serum-treated conditions
(lanes 2 & 6) and 2.8-fold higher in FGF4-treated condition (lane 3) relative to the basal value.
Pretreatment with U0126 prevented serum- and FGF4-induced phosphorylation of both
rERK2-LOC and endogenous ERK2; no phosphorylation signal was detectable in lanes 4 and 5,
except for endogenous ERK2 in lane 5, which has a 0.4-fold phosphorylation signal relative to
the basal value. In a complementary approach, MBP-based in vitro kinase assay was used to
determine the kinase activities of rERK2-LOC (Fig 2F, upper panel) and endogenous ERK2
(Fig 2F, middle panel). Phospho-MBP (p-MBP) immunoblotting showed that rERK2-LOC

Corresponding scatter plots of green and red intensities of each pixel on the whole images are shown (d, h). Co-localized pixels are visualized in yellow.
Scale bar: 20 μm. (C) Fluorescence confocal imaging of NIH-3T3 cells transfected with mCherry-mMEK1 (middle, red) and labeled with an anti-ERK2
antibody (left, green) after 24 h of serum starvation. Co-localization of rERK2 and mCherry-mMEK1 is shown in the merged images (right, yellow). White
arrows point to nuclei of transfected cells. Scale bar: 20 μm. (D)Western blot analysis of NIH-3T3 cells transfected with rERK2-LOC at the indicated time-
points. Cell lysates were analyzed by immunoblotting with the indicated antibodies (left of each blot). The percentage of uncleaved polypeptide (full-length
mMEK1-2A-GFP-rERK2, red triangle) was quantified by densitometry. Quantitative comparison of the levels of overexpressed rERK2-LOC and endogenous
ERK2 (green triangles, middle panel) is indicated below the blot as IrERK2-LOC/ IrERK2. (E) After 24 h of serum starvation, NIH-3T3 cells transfected with
rERK2-LOC were left untreated or were pretreated for 1 h with U0126 or DMSO, and then stimulated with serum or FGF4 for 15 min. Corresponding cell
lysates were immunoblotted with the indicated antibodies (left of each blot). Relative phosphorylation levels of rERK2-LOC (green triangles) and endogenous
ERK2 (blue triangles) were measured by densitometry. The ratios of phosphorylated protein to total proteins (IpYT-rERK2-LOC / IrERK2-LOC and IpYT-ERK2 /
IERK2) are indicated below the top blot. (F) rERK2-LOC—transfected NIH-3T3 cells were serum starved for 24 h and then left untreated or incubated or not
with U0126 for 1 h before stimulation with serum or FGF4 for 15 min. Cells lysates were immunoprecipitated with anti-eGFP (top panel) or anti-ERK2
antibodies (middle panel), and ERK1/2 kinase activity was assayed in vitro. The phosphorylated form of MBP (pMBP) was detected by immunoblotting.
Unconjugated beads and beads conjugated with anti-HA antibodies were used as a control in the assays. Lysate inputs for immunoprecipitation were probed
with anti-β-actin antibody as a loading control. At least two independent experiments and 15 cells were measured from fixed cells. Biochemical data are
representative of at least two independent experiments.

doi:10.1371/journal.pone.0140924.g002
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and endogenous ERK2 had equivalent phosphorylation capabilities in cells treated with serum
or FGF4, demonstrating the functional kinase activity of rERK2-LOC. Treatment with U0126
impaired the kinase activity of both rERK2-LOC and endogenous ERK2 alike. The results of
biochemical assays show that eGFP-rERK2 was coexpressed with mMEK1 by means of the 2A
system, and that it fulfills the biochemical functions of endogenous ERK2 in NIH3T3 cells.

Enhanced contrast monitoring of eGFP-ERK2 in living cells
The relevance and the faithfulness of our novel ERK2 localization reporter were further charac-
terized. The subcellular distributions of overexpressed eGFP-rERK2 and rERK2-LOC were
examined and compared to immuno-localized endogenous ERK1/2 proteins monitored by
fluorescence imaging on fixed NIH-3T3 cells following different treatments. In accordance
with our other observations (Fig 1B), overexpressed eGFP-rERK2 accumulated heavily in the
nucleus in both non-stimulated and treated cells regardless of the treatment (Fig 3A, middle
panel). By contrast, T2A-mediated MEK1/ERK2 coexpression resulted in a subcellular distri-
bution of rERK2-LOC (Fig 3A, lower panel) like that of endogenous ERK1/2 (Fig 3A, upper
panel). The results show that rERK2-LOC localization was strictly cytoplasmic when the
ERK1/2 signaling pathway was inhibited, and that it accumulated in the nucleus when the
pathway was activated.

To quantify the ERK2 subcellular distribution in different experimental conditions, CI val-

ues were normalized between 0 and 1 (abbreviated CI values) (Fig 3B) and are listed in Table 2.
We noticed no significant variations in overexpressed eGFP-rERK2 subcellular distribution

regardless of the treatment used to activate or inhibit the ERK1/2 pathway, except for CIU0+S
and CIV+S (Table 2). More importantly, incubation of the cells with U0126 in the presence or
absence of serum or FGF4 failed to reestablish the cytoplasmic localization of eGFP-rERK2.

Normalized CI values for eGFP-rERK2 transfected cells treated with serum (CIS) or U0126

and serum (CIU0+S) were respectively 1.1- and 1.3-fold higher than non-stimulated cells

(referred as baseline condition, CIBsln) (0,692 ± 0,083, n = 5 and 0.767 ± 0.043, n = 6 versus
0.586 ± 0.024, n = 10; p� 0.05), indicating that eGFP-ERK2 concentrated much more in the
nucleus in U0126 condition. These data do not agree with the effect of treatments on endoge-

nous ERK1/2 (Table 2). Remarkably, consistent with the data in Fig 2B and 2C, CIBsln as well

as CIU0 values for cells expressing rERK2-LOC were respectively 3.1- and 2.5-fold lower than
that of endogenous ERK1/2 in non-stimulated conditions (0.064 ± 0.009, n = 12 versus
0.200 ± 0.009, n = 16; p� 0.001) (Table 2). Whereas in non-stimulated cells rERK2-LOC was
localized mainly in the cytoplasm, stimulation by serum or FGF4 provoked nuclear accumula-

tion that was markedly enhanced relative to endogenous ERK1/2. CI values of rERK2-LOC in
cells stimulated with serum or FGF4 were 7.5- and 7.9-fold higher than non-stimulated cells,

respectively. In comparison, CI values of endogenous ERK1/2 were 1.4- and 1.5-fold higher
than baseline value under the same experimental conditions (Table 2). The difference of aver-

aged CI values (ΔCI) between baseline and serum or FGF4 stimulation for rERK2-LOC was
5.7- and 4.9-fold higher than that for endogenous ERK1/2, confirming several orders of magni-
tude in the nuclear translocation for rERK2-LOC (Table 2). In addition, treatment with U0126

alone or combined with serum or FGF4 caused no significant change in CI for rERK2-LOC, in
accordance with endogenous ERK1/2 (Table 2).

As several studies reported that simple coexpression of MEK1 with tagged-ERK2 derived
from different plasmids disturbed the distribution of tagged ERK2, evidenced by its abnormally
short persistence in the nucleus upon stimulation [26,27,30], we monitored the localization of
rERK2-LOC and compared it with that of endogenous ERK1/2 at 1 and 2 h after serum or
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Fig 3. rERK2-LOC expression faithfully reports localization of ERK2. (A) Non-transfected (top row) and transfected NIH-3T3 cells overexpressing either
eGFP-rERK2 (middle row) or rERK2-LOC (bottom row) were serum starved for 24 h, and then were left untreated or were treated with U0126 or DMSO for 1
h. Next, they were stimulated with serum or FGF4 for 15 min, or were left unstimulated (baseline). All cells were fixed and non-transfected cells were
processed for immunofluorescence using the anti-ERK1/2 antibody (top row) and all cells were imaged by confocal microscopy. Shown are representative
images of ERK2 localization under the different treatments. Scale bars: 20 μm. (B)Quantitative comparison of the nucleo-cytoplasmic concentration index
(CI) of ERK2 between endogenous ERK1/2 (blue bars), overexpressed eGFP-rERK2 (red bars) and rERK2-LOC (green bars). CI values were normalized
between 0 and 1 (CI values), where 0 and 1 are respectively the minimal and maximal CI values obtained. Bsln: baseline, S: serum, F: FGF4, U0: U0126, V:
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vehicle (DMSO). (C) Non-transfected (top row) and transfected NIH-3T3 cells overexpressing rERK2-LOC (bottom row) were serum starved for 24 h and
then stimulated with serum or FGF4 for 1 or 2 h, or left untreated (baseline). All cells were fixed and non-transfected cells were processed for
immunofluorescence using the anti-ERK1/2 antibody (top row) and all cells were imaged by confocal microscopy. Shown are representative images of ERK2
localization under the different treatments. Scale bar: 20 μm. (D)Quantitative comparison of nucleo-cytoplasmic concentration index (CI) of ERK2 at the
indicated time-points between endogenous ERK1/2 (blue bars) and overexpressed rERK2-LOC (green bars). CI values were normalized between 0
(minimum obtained) and 1 (maximum obtained) (CI values). Bsln: baseline; 1S and 1F: 1 h serum and 1 h FGF4; 2S and 2F: 2 h serum and 2 h FGF4. (E)
Monitoring of the subcellular distribution of rERK2-LOC in (24h) serum-starved NIH-3T3 cells by time-lapse confocal microscopy every 2 min for 10 min
(baseline) and after FGF4 stimulation (100 ng/mL) for 30 min. (F) Nuclear and cytoplasmic intensities of each rERK2-LOC transfected cell were measured
with Volocity software for each time-point to calculate the concentration index values (CI). Vertical error bars represent the average ± SEM. Two-way ANOVA
test, accepting p� 0.05 as significant, was performed to compareCI values differences between endogenous ERK1/2, eGFP-rERK2 and rERK2-LOC for a
same treatment. One-way ANOVA test, accepting p� 0.05 as significant, was performed to compareCI values among all the treatments (Tables 2 and 3). At
least two independent experiments were performed. The number of cells per condition (n) from fixed cells is indicated in Tables 2 and 3 for statistical
analysis; at least 80 cells were measured for time-lapse microscopy.

doi:10.1371/journal.pone.0140924.g003

Table 2. Statistical analysis of CI and ΔCI values for overexpressed eGFP-ERK2, endogenous ERK1/2 and rERK2-LOC, 15 min after serum or
FGF4 stimulation.

Treatments CI n S p value Fold-change ΔCI Ratio rERK2-LOC / IF:ERK1/2

eGFP-rERK2 Baseline 0.586 ± 0.024 10

Serum 0.692 ± 0.083 5 ns 0.4658 1.18

FGF4 0.643 ± 0.050 6 ns 0.9065 1.10

U0126 0.659 ± 0.054 8 ns 0.6977 1.13

U0126 + serum 0.767 ± 0.043 6 * 0.0355 1.31

U0126 + FGF4 0.598 ± 0.019 11 ns 0.9997 1.02

DMSO + serum 0.759 ± 0.068 7 * 0.0353 1.30

DMSO + FGF4 0.701 ± 0.036 10 ns 0.1933 1.20

IF:ERK1/2 Baseline 0.200 ± 0.009 16

Serum 0.273 ± 0.007 9 *** 0.0003 1.37 0.073 ± 0.011

FGF4 0.291 ± 0.008 27 **** < 0.0001 1.46 0.091 ± 0.012

U0126 0.204 ± 0.011 13 ns 0.9996 1.02 0.004 ± 0.014

U0126 + serum 0.230 ± 0.012 12 ns 0.2652 1.15 0.030 ± 0.016

U0126 + FGF4 0.214 ± 0.019 7 ns 0.957 1.07 0.014 ± 0.021

DMSO + serum 0.271 ± 0.010 18 **** < 0.0001 1.36 0.071 ± 0.013

DMSO + FGF4 0.287 ± 0.025 6 *** 0.0002 1.44 0.087 ± 0.026

rERK2-LOC Baseline 0.064 ± 0.009 12

serum 0.480 ± 0.007 7 **** < 0.0001 7.50 0.416 ± 0.041 5.70

FGF4 0.508 ± 0.008 16 **** < 0.0001 7.94 0.444 ± 0.040 4.88

U0126 0.083 ± 0.011 15 ns 0.9952 1.30 0.019 ± 0.016 4.75

U0126 + serum 0.082 ± 0.012 6 ns 0.9994 1.28 0.018 ± 0.014 0.60

U0126 + FGF4 0.112 ± 0.019 11 ns 0.7481 1.75 0.048 ± 0.013 3.43

DMSO + serum 0.353 ± 0.010 7 **** < 0.0001 5.52 0.289 ± 0.058 4.07

DMSO + FGF4 0.358 ± 0.025 18 **** < 0.0001 5.60 0.294 ± 0.026 3.38

Statistical significance for differences among overexpressed eGFP-rERK2, endogenous ERK1/2 and rERK2-LOC was tested by one-way ANOVA and

Dunnett’s test, accepting p � 0.05 as significant. The ratio between ΔCI of endogenous ERK1/2 and rERK2-LOC shows the differences in magnitude

order in function of the treatment. Symbols: CI, average of CI values ± SEM; ΔCI, difference between means compared to baseline value as reference;

SEM, Standard Error of Mean; n, number of cells analyzed; S: statistically significant; ns, p > 0.05;

*, p � 0.05;

**, p � 0.01;

***, p � 0.001;

****, p � 0.0001.

doi:10.1371/journal.pone.0140924.t002
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FGF4 stimulation (Fig 3C). Consistent with a previous study [21], endogenous ERK1/2 was
distributed relatively homogenously throughout the cells 1 h after addition of serum or FGF4
(Fig 3C, upper panel). But 2 h after serum or FGF4 stimulation, it accumulated in the nucleus.
Surprisingly, the results clearly show that rERK2-LOC mimicked endogenous ERK1/2 in
response to the different treatments (Fig 3C, bottom panel) and exhibited progressive nuclear

accumulation in serum-starved NIH-3T3 cells treated with serum or FGF4 (Fig 3D). CI values
of rERK2-LOC after 2 h in serum- or FGF4-stimulated conditions were 5.7- and 5.2-fold higher

than baseline, respectively. In comparison, CI values of endogenous ERK1/2 were only 2.0-
and 1.7-fold higher than baseline under the same experimental conditions (Table 3). The dif-

ference of averaged CI values (ΔCI) between baseline and 2 h serum or 2 h FGF4 stimulation
for rERK2-LOC was 1.7- and 2.2-fold higher than that for endogenous ERK1/2, confirming
that late nuclear accumulation is also markedly enhanced using rERK2-LOC (Table 3).

To monitor rERK2-LOC dynamics at higher temporal resolution in living NIH-3T3 cells,
we used automated time-lapse confocal microscopy with a temporal resolution of 2 min for 40
min. After a baseline period of 10 min (CI = 0.582 ± 0.004), rERK2-LOC entered the nucleus
between 2 and 4 min after FGF4 addition and reached a maximum within 8 min after stimula-
tion (CI = 0.880 ± 0.002) (Fig 3E and 3F and S1 Movie). These results are in agreement with
previous studies on ERK2 translocation kinetics following FGF4 treatment on NIH-3T3 cells
[29]. Whereas a sustained ERK2 nuclear localization was reported in similar experimental con-
ditions [21,29], our results show a decrease of 54% from the initial peak, but sill 46% above the
baseline for the remaining time of the experiment (CI = 0.719 ± 0.006). Taken together, these
results show that our novel molecular reporter of ERK2 localization substantially set up the
monitoring of ERK2. It provides an emphasized relocation of the coexpressed ERK2 while
remaining faithful to that of the endogenous under all experimental conditions.

rERK2-LOC provides a relevant read-out for ERK2 mobility
To finalize our characterization and validation in living cells, we determined mobility of
rERK2-LOC in living NIH-3T3 cells in comparison to that of overexpressed eGFP-rERK2 or
eGFP alone using high-speed FRAP measurements. Fixed NIH3T3 cells expressing eGFP were
used to calibrate our imaging setup (Fig 4A). Based on rERK2-LOC dynamics in serum-starved
NIH-3T3 cells after FGF4 stimulation (Fig 3E), only serum-stimulated cells with rERK2-LOC
accumulating in the nucleus were imaged and compared to cells overexpressing free eGFP or
eGFP-rERK2 (Fig 4B and 4C).

Comparative analysis of cumulative fluorescence recovery curves showed that nuclear free
eGFP (blue curve) retained very high mobility, reflecting the passive diffusion of the fluorescent
protein throughout the cell (Fig 4D). The fluorescence recovery curve of overexpressed eGFP-
rERK2 (red curve) mimicked that of free eGFP, as previously reported [29]. In contrast, after
serum stimulation and accumulation of rERK2-LOC in the nucleus (t = 8 min after stimula-
tion), fluorescence recovery of rERK2-LOC (green curve) indicated a marked reduction of
mobility in the nucleus, which contrasts with a previous study reporting no difference in mobil-
ity measurements between overexpressed free eGFP and eGFP-rERK2 [26].

Next, fluorescence recovery curves were fitted to a one-phase exponential-association equa-
tion (Fig 4E) and the recovery process was characterized by the half-life of fluorescence recov-
ery (t1/2) to accurately describe and compare protein mobility (Fig 4F). In comparison with the
extremely high mobility of free eGFP (t1/2 = 0.046 s ± 0.005, n = 24), the half-life recovery of
overexpressed eGFP-rERK2 versus rERK2-LOC were 0.123 s ± 0.010 (n = 23) and 0.155
s ± 0.009 (n = 20), respectively (p = 0.03). We did not observe a more significant difference
between eGFP-rERK2 and rERK2-LOC, indicating that overexpressed eGFP-rERK2 may still

ERK Dynamics in Living Cells and Tissues

PLOS ONE | DOI:10.1371/journal.pone.0140924 October 30, 2015 16 / 30



bind slightly to nuclear partners. We also calculated the percentage of the immobile fraction
(IF) (Fig 4G) defined by the value between the complete fluorescence recovery asymptote and
the pre-bleach value being equal to 1 (Fig 4E, black dotted line). The corresponding values for
free eGFP and overexpressed eGFP-rERK2 were 12.68% ± 0.85 (n = 24) and 9.95% ± 0.68
(n = 23), respectively (p� 0.05). This was clearly significantly different from the value obtained
with rERK2-LOC (IF = 18.37% ± 0.80, n = 20, p� 0.0001). Thus, despite very rapid ERK2
shuttling to and from the nucleus, we detected, as previously reported [29], a significantly
slower mobility and turnover of rERK2-LOC in the nucleus of stimulated cells compared to
overexpressed eGFP-rERK2.

Additional FRAP experiments were next performed to assess changes in the mobility of
rERK2-LOC between the cytoplasm and the nucleus of serum-starved NIH-3T3 cells before
and after serum stimulation (S1 Fig). Following the same experimental protocol, a stripe across
the nucleus and the cytoplasm of the same cell was bleached a few seconds apart (Figure A in
S1 Fig). As shown in Figures B-D in S1 Fig, the immobile fraction of rERK2-LOC was signifi-
cantly reduced in the cytoplasm of serum-stimulated cells (IF = 6.36% ± 0.99, n = 12) in com-
parison to that of rERK2-LOC in the cytoplasm of serum-starved cells (IF = 14.00% ± 2.70,
n = 9, p� 0.05), demonstrating the dissociation of a pool of rERK2-LOC from its cytoplasmic
partners upon stimulation. Interestingly, the immobile fraction of rERK2-LOC in the nuclei of
serum-stimulated cells (IF = 14.83% ± 1.26, n = 12) was significantly larger from that of
rERK2-LOC in the cytoplasm of the same analyzed cells (p� 0.0001). We observed also similar
immobile fractions of rERK2-LOC in the nuclei of serum-stimulated cells and the cytoplasm of
serum-starved cells, suggesting that rERK2-LOC binds to nuclear and cytoplasmic scaffolds/
anchors, respectively. Collectively, the data obtained with equimolar expression of eGFP-
rERK2 and mMEK1 are consistent with previous studies using different strategies to report
ERK1/2 dynamics in living cells [29,30]. In contrast to these studies, no stringent imaging

Table 3. Statistical analysis of CI and ΔCI values for endogenous ERK1/2 and rERK2-LOC, 1 h and 2 h after serum or FGF4 stimulation.

Treatments CI n S p value Fold-change ΔCI Ratio rERK2-LOC / IF:ERK1/2

IF:ERK1/2 Baseline 0.267 ± 0.016 18

1 h—serum 0.357 ± 0.013 21 ** 0.0066 1.34 0.090 ± 0.021

1 h—FGF4 0.343 ± 0.009 27 * 0.0172 1.29 0.077 ± 0.018

2 h—serum 0.529 ± 0.029 19 **** < 0.0001 1.98 0.262 ± 0.033

2 h—FGF4 0.449 ± 0.035 14 **** < 0.0001 1.68 0.183 ± 0.038

rERK2-LOC Baseline 0.093 ± 0.018 13

1 h—serum 0.189 ± 0.025 11 ns 0.4524 2.03 0.096 ± 0.031 1.07

1 h—FGF4 0.367 ± 0.066 15 *** 0.0003 3.95 0.274 ± 0.069 3.56

2 h—serum 0.532 ± 0.053 16 **** < 0.0001 5.72 0.439 ± 0.055 1.68

2 h—FGF4 0.486 ± 0.026 12 **** < 0.0001 5.23 0.393 ± 0.032 2.15

Statistical significance for differences among endogenous ERK1/2 and rERK2-LOC was tested by one-way ANOVA and Dunnett’s test, accepting

p � 0.05 as significant. The ratio between ΔCI of endogenous ERK1/2 and rERK2-LOC shows the differences in magnitude orders in function of the

treatment. Symbols: CI, average of CI values ± SEM; ΔCI, difference between means compared to baseline value as reference; SEM, Standard Error of

Mean; n, number of cells analyzed; S: statistically significant; ns, p > 0.05;

*, p � 0.05;

**, p � 0.01;

***, p � 0.001;

****, p � 0.0001.

doi:10.1371/journal.pone.0140924.t003
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Fig 4. Mobility of rERK2-LOCmeasured by high-speed FRAP. (A) eGFP-transfected NIH-3T3 cells were fixed. Individual living cells were imaged as
described in the Materials and Methods section. Image sequences before (left) and after (right) photobleaching are shown. Scale bars: 10 μm. (B) NIH-3T3
cells were transfected with eGFP (left), eGFP-rERK2 (middle) or rERK2-LOC (right) and then serum starved for 24 h. Cells overexpressing rERK2-LOC were
stimulated with serum to trigger its nuclear translocation. Bleached ROI correspond to the red lines drawn across the nuclei. Scale bars: 10 μm. (C)
Representative kymograms (xt) of fluorescence intensity measured along the line (both red and white) across the selected cells for each experimental
condition over-time are shown, indicating the FRAPmeasurement sequence: pre-bleach of 1 s (broken dark line), bleach of 150 ms (red lines) and post-
bleach of 2 s (solid dark line). Correction for overall bleaching effects was applied. Nucl: nucleus (green line), Cyto: cytoplasm (purple line), BG: background
(yellow line). (D-E) Curves of cumulative fluorescence recovery over time for fixed eGFP (grey curve), free eGFP (blue curve), overexpressed eGFP-rERK2
(red curve) and rERK2-LOC after serum stimulation (green curve, 8 min after serum stimulation) were normalized (D) and fitted (E). (F-G) Average half-life of
recovery (t1/2) and immobile fraction (IF) calculation for cells serum-starved for 24 h and overexpressing free eGFP (blue symbol) or eGFP-rERK2 (red
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conditions were required, making our approach compatible with long-term functional moni-
toring of ERK2 dynamics in living cells.

Spatiotemporal subcellular distribution of xERK2-LOC in Xenopus laevis
embryo
After fully characterizing and successfully validating the faithful reporting of ERK2 dynamics
by our T2A-mediated coexpression system in living cells, we tested our reporter rERK2-LOC
in a relevant multicellular model organism. In Xenopus laevis embryos, FGF signaling plays a
crucial role in the formation of mesoderm [41] and particularly in maintenance of the meso-
derm through a feedback loop that involves MAPK/ERK2 cascade-mediated stabilization of
Brachyury expression [42–44]. Several studies used a specific antibody against activated ERK1/
2 in whole Xenopus laevis embryos at different stages of development. Immunohistochemical
analysis showed strong activation of ERK2 in whole-mount embryos at the end of gastrulation
around the dorsal lip of blastopore [45,46]. To gain insight into ERK2 localization in relation
to spatiotemporal patterns of ERK2 activation at different stages of development (Fig 5B), we
further employed our 2A-mediated coexpression approach. To test whether the T2A peptide
functions in Xenopus laevis embryos, we microinjected mRNA from the original plasmid
pMyr-TdTomato-T2A-H2B-eGFP (Fig 2A, #1) into embryos at the one-cell stage. Maximum-
intensity projection showed that in stage 8 embryos H2B-eGFP and Myr-TdTomato were pres-
ent exclusively in the nucleus and at the plasma membrane, respectively, as reported in other
model organisms [47,48] (Fig 5A). To determine the subcellular distribution of endogenous
xERK2, we immunostained fixed, whole-mount, stage 8 embryos with anti-ERK2 antibody
(Fig 5C). Overlay of anti-ERK2 and Hoechst staining revealed that most xERK2 was localized
in the cytoplasm of ectodermal cells.

To explore xERK2 dynamics in living embryos, we microinjected embryos at the one-cell
stage with mRNA encoding eGFP-xERK2, 2A-eGFP-xERK2 without xMEK1 sequence as a
control, or xMEK1-2A-eGFP-xERK2 (xERK2-LOC). Given that ERK2 can be activated by
mechanical stress or wounding [46], live imaging of intact embryos was performed, while pre-
serving ectodermal tissue integrity (Fig 5E). Maximum-intensity projection revealed nuclear
accumulation of eGFP-xERK2 and 2A-eGFP-xERK2. In contrast, expression of xERK2-LOC
resulted in a more homogenous distribution of the kinase within blastomeres, with a slight ten-
dency towards the cytoplasm, reminiscent of the immuno-localization of endogenous ERK2 in
fixed embryos (Fig 5C). In parallel, we assessed xERK2-LOC protein expression levels in
embryos at stage 8 by western blot analysis (Fig 5D) using both anti-GFP (upper panel) and
anti-ERK2 (middle panel) antibodies. The proportion of uncleaved polypeptide was slightly
lower in Xenopus laevis embryos (5.3%) in comparison to cultured NIH-3T3 cells (Fig 2D,
upper panel).

At the gastrula stage (stage 11), we investigated xERK2-LOC subcellular distribution in
embryonic cells of the dorsal lip of the blastopore region, where FGF signaling is known to acti-
vate ERK1/2 pathway. In line with this information, we observed a patch of ectodermal cells
just above the dorsal lip of the blastopore exhibiting a strong accumulation of xERK2-LOC in
the nucleus (Fig 5F, left panel and S3 Movie). These observations are in agreement with the
previously reported immuno-localization of activated di-phosphorylated ERK2 [46]. Finally, a

symbol), and serum-stimulated cells overexpressing rERK2-LOC (green symbol, 8 min after serum stimulation). At least two independent experiments were
performed. The number of individual cells used for each condition is indicated above each symbol. Statistical significance was determined by a two-tailed
unpaired t-test (ns, no significant; *,� 0.05; ****,� 0.0001).

doi:10.1371/journal.pone.0140924.g004
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Fig 5. Spatiotemporal subcellular distribution of xERK2-LOC in living Xenopus laevis embryo. (A) Embryos were injected with 500 ng of Myr-
TdTomato-T2A-Histone2B-GFPmRNA. Maximum-intensity projection of a z-stack of 40 confocal images with a z-step of 0.59 μm is shown at 40X (left, scale
bar: 10 μm) and at 63X magnification (right, scale bar: 20 μm). Pictures were merged to visualize Myr-mCherry at the plasmamembrane and H2B-eGFP in
the nucleus. (B) xERK2-LOC subcellular distribution was visualized at several stages of Xenopus laevis development (stage 9 blastula, stage 12 blastula and
stage 32 tadpole). Scale bar: 200 μm. (C) Stage 9 embryos were fixed and processed for immunofluorescence with antibody against total ERK2 (green) and
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nuclear localization of xERK2-LOC was seen in large endodermal cells of the yolk plug (Fig 5F,
right panel and S4 Movie), although no activation of ERK2 had been detected by immunohis-
tochemistry [46].

Since no toxicity was observed and embryos developed normally, we explored the localiza-
tion of xERK2-LOC at later developmental stages in living embryos. At the early tadpole stage
(stage 32), GFP fluorescence was detected mainly in the neural tube, the notochord, and the
somites (white arrows), as well as in the otic vesicle and the branchial arch region (white aster-
isks) (Fig 5G). Red fluorescence due to known autofluorescence of Xenopus laevis embryos was
advantageously used to achieve optimum contrast for accurate localization of xERK2-LOC in
embryonic structures. At stage 38, when the Xenopus laevis tadpole becomes transparent,
xERK2-LOC was widespread in the head region and the para-axial structures (Fig 5H and S5
Movie). Remarkably, xERK2-LOC accumulated in the nuclei of a small patch of cells in the
forebrain-midbrain boundary but not in para-axial structures (Fig 5H and S5 Movie). Once
again, our results highlighted the faithful subcellular distribution of xERK2 provided by
xERK2-LOC in comparison to immuno-localized activated di-phosphorylated ERK2 in the
Xenopus laevis embryo.

Discussion
The MAPK/ERK1/2 pathway plays an important role in many cellular processes: cell prolifera-
tion, migration, differentiation, and even cell death [14,49–51]. Aside from the activity of
ERK1/2, its subcellular localization is instrumental in signal integration in the cell fate decision
[8,52,53]. Many approaches have been used to monitor ERK1/2 dynamics in living cells, but
some of them do not localize the kinase of interest correctly in non-stimulated cells [24,26].
Moreover, they are often laborious and unsuitable for long-term imaging [29], or they are time
consuming because transgenic cell lines have to be generated [30]. We overcame these limita-
tions by designing a novel molecular tool, ERK2-LOC. Characterization and validation of the
tool in living cells and tissue showed that ERK2-LOC is functional, faithful, easy to use, and
biologically relevant.

Various studies used ERK2 tagged with GFP-like fluorescent proteins to monitor the spatio-
temporal localization of ERK2 in individual living cells. However, these studies disregarded the
predominantly nuclear localization of eGFP-rERK2 in resting cells [16,23–25] (Fig 1). It has
been known for a long time that disruption of the MEK/ERK balance disturbs ERK2 localiza-
tion [12,15]. Aside from favoring conditions where a low expression level of eGFP-rERK2 was
managed [29] (Fig 1D), this problem was solved by co-expressing mMEK1, thereby restoring

stained for DNA with Hoechst (blue) as described in the Materials and Methods section. Scale bar: 100 μm. (D) Protein extracts were prepared from
uninjected (WT, lane 1), H2O injected (lane 2) and xERL2-LOC overexpressing embryos (lane 3) and immunoblotted with antibodies against GFP (top panel),
ERK2 (middle panel) and β-actin (bottom panel). The percentage of uncleaved xERK2-LOC was measured by densitometry and is shown below the top
panel in lane 3. The levels of overexpressed xERK2-LOC relative to endogenous ERK2 (green triangles, middle) are indicated below the blot as IxERK2-LOC/
IxERK2. (E) Embryos were injected with 500 ng of eGFP-xERK2, 2A-eGFP-xERK2 (control) or xERK2-LOCmRNA. Projections of at least 60 confocal 0.7-μm
sections of animal cells at stage 9 blastula are shown. Higher magnification images of representative subcellular distributions of xERK2 are shown in white
squares (top left). Scale bar: 150 μm. (F)Monitoring of xERK2-LOC subcellular distribution in the cells of the dorsal blastoporal lip (left panel) and the yolk
plug (right panel) in stage-12 gastrula. Projection and 3D reconstruction of z-series of 108 confocal 1.50-μm sections (left panel) and 86 confocal 1.00-μm
sections (right panel) are shown. White arrows indicate the trajectories of the cells leading to a progressive internalization of the yolk plug. Scale bar: 150 μm.
(G-H) Several images from different viewpoints were recorded and combined to create a whole image of the developing embryos expressing xERK2-LOC,
head to the left, at stage 32 (G) and stage 38 (H) tadpoles. The spatiotemporal localization of xERK2-LOC (green) in the embryonic structures, enhanced by
autofluorescence of embryo and yolk (red signal), corresponds to notochord (nc), neural tube (nt) (both white arrows), otic vesicle (ov) and branchial arch
region (bar) (both white asterisks) (G). Higher magnification of the forebrain-midbrain boundary (fmb) and para-axial structures (pax) are shown in yellow
squares (H). Small white arrows indicate xERK2-LOC nuclear accumulation in several cells of the forebrain-midbrain boundary. Scale bar: 500 μm. At least
two independent experiments were performed from animal caps, fixed embryos, or live embryos, and at least ten embryos were imaged. Biochemical data
are representative of at least two independent experiments.

doi:10.1371/journal.pone.0140924.g005
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the proper cytoplasmic localization of overexpressed eGFP-rERK2 in serum-starved cultures
without stimulation [26,27]. This results in a more controlled MEK/ERK ratio in transfected
cells (Fig 2B, upper panel). Given that expression levels of co-transfected mCherry-MEK1 and
eGFP-ERK2 in the same cell cannot be controlled due to the limitations of co-transfection
techniques [26] (Fig 2B, upper panel), ERK2 subcellular distribution throughout the cell is nec-
essarily affected. From this observation, it became obvious that proper quantification of ERK2
dynamics in response to specific stimuli requires a robust system for reliable coexpression at
the single cell level. While multiple heterologous proteins can be coexpressed in living cells by
different approaches, such as use of the Internal Ribosomal Entry Site (IRES) sequence and use
of bidirectional or multiple promoters in the same plasmid, these systems suffer from problems
related to coexpression efficiency [54,55]. A more promising approach described as a 2A-medi-
ated coexpression system (for review [33,48,56]), was used in our study. 2A-linked proteins
have been efficiently expressed in vitro in a wide variety of cultured eukaryotic cells and embry-
onic stem cells, and even in vivo in embryos and whole organisms [47,48] but never reported in
Xenopus laevismodel. While no protein degradation or side effects of premature termination
of translation have been reported [57], previous work described variability in the 2A peptide-
mediated cleavage, depending on the choice of 2A peptide and the cellular model [48]. Further
support for the 2A strategy is found in previous studies demonstrating robust equimolar coex-
pression of this approach in studies of the molecular interactions of G-coupled proteins [55]
and T-cell development in CD3-deficient mice [58]. Although we used an optimized peptide
(see Materials and Methods), a slight difference in cleavage efficiencies between NIH-3T3 cells
and an embryonic cell system was noted. The efficiency ranged from 91.1% (Fig 2D) in
NIH3T3 cells to 94.7% in Xenopus embryos (Fig 5D); the presence of an uncleaved MEK1/
ERK2 polypeptide could affect ERK2 functions in both model systems. Actually, MEK1—
ERK2 fusion polypeptide was reported to produce a constitutively active fusion ERK2 in the
absence of upstream signaling [59]. In this context, a mutated form of MEK1 (nuclear export/
activity region) in fusion with ERK2 was able to induce PC12 differentiation and NIH3T3
transformation. Wild type and mutated MEK1-ERK2 fusions had no effect on the activity of
endogenous ERK1/2 [59]. Interestingly, immunofluorescence results showed that the subcellu-
lar localization of the mutated MEK1—ERK2 fusion protein was nuclear, while that of the wild
type was essentially cytoplasmic. A more efficient 2A derived peptide, such as P2A, might be
used to alleviate system perturbation linked to uncleaved MEK1—ERK2 polypeptide [48].

Recent studies quantified the MEK/ERK ratio in different cellular contexts by biochemical
approaches [60,61]. Both proteins are in the micromolar range, but the reported MEK/ERK
ratios in HeLa cells are considerably different: 3.1/2.1 [62], 1.4/0.96 [60] and 1/10 [61], as well
as in PC12 cells, 0.6/1.25 [63] and 0.68/0.26 [64]. They also varied depending on the cell type,
ranging from 1 in Xenopus laevis oocyte, Cos7 and Rat1 cells, to about 2 in CHO, 208F, and
PC12 cells, and up to almost 13 in NIH3T3 cells [40,60,61]. Recently the role of ERK2 has been
emphasized. In a murine system, ERK2-/- embryonic lethality was attributed to failure of pla-
centa and trophoblastic development [65,66], while ERK1-/- embryos are viable and fertile but
have problems in thymic development. In the same line of thought, knockdown of ERK2 in
zebrafishmodel prevents epiboly and the blastula to gastrula transition, while ERK1 knock-
down provokes subtle defects in the embryogenesis [67]. Moreover, the reported 4/1 ERK2/
ERK1 ratio in NIH-3T3 cells in both relative and activated forms was proposed to explain the
preeminent role of ERK2 in cellular functions over that of ERK1 [68]. In the Xenopus laevis
model, the maternally inherited ERK2 isoform is important for oocyte maturation and the
MEK/ERK ratio is 1:1 [60,69]. In all cellular models, ratios were determined in systems at equi-
librium. In our approach, one can only assume that co-expression generated equimolar ERK2
and MEK1 concentrations, but these were not quantified in our experimental systems at
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equilibrium. Therefore, we settled on a consensual 1:1 co-expression ratio of MEK1/ERK2
based on the following considerations. First, these studies quantified the pool of ERK1/2 and
MEK1/2 rather than distinct isoforms. Second, various MEK/ERK ratios have been reported
for the same cell type. Third, it is technically difficult to express 13 times more rERK2 than
mMEK1 proteins in living NIH3T3 cells. Fourth, we intended to use our reporter in the Xeno-
pus laevismodel system. Indeed, our purpose here was foremost to counter-balance eGFP-
rERK2 overexpression with identical amounts of its partner MEK1. We did not intend to
reproduce a mammalian expression system shadowing that of the cellular model system or
even a synthetic network, but rather to faithfully mimic the subcellular distribution of the
endogenous ERK2 for functional monitoring purposes.

Our approach resulted in the intended disruption of the initial MEK/ERK balance by co-
overexpression of ERK2 and MEK1 in equimolar proportions at the single cell level. We show
that it did not disturb ERK2 dynamics in living cells (Fig 3E) or embryos (Fig 5G and 5H).
Although ERK2 is the only ERK isoform expressed in Xenopus embryos until mid-blastula
transition, a two-fold increase in the proportion of total xERK2 (Fig 5D) and overexpression of
xMEK1 via our xERK2-LOC reporter did not alter embryonic development (Fig 5G and 5H).
In addition, overexpression of eGFP-xERK2 was not toxic to Xenopus embryos, indicating that
artefacts in eGFP-xERK2 nuclear localization were not detrimental to ongoing cellular pro-
grams at these developmental stages (data not shown). Specific GFP fluorescence signals were
detected at later stages (late gastrula, tadpole), pointing to the long half-life of exogenous
xERK2 protein in these embryos. We conclude that our strategy is a non-invasive method for
assessing functional ERK2 dynamics in living embryos during early Xenopus laevis embryogen-
esis. We were well aware of the uncoupling functions of ERK, but we used ERK2 localization in
Xenopus as a surrogate for ERK activation. Any disruptive effects of xERK2-LOC on the signal-
ing network will be further characterized in the future.

In contrast to overexpressed eGFP-rERK2, the dynamics of ERK2-LOC was faithful under
our experimental conditions. Visualization of rERK2-LOC was actually enhanced at the single
living cell level, as shown by fluorescence microscopy (Fig 3B and 3D). Depending on the treat-
ment, ERK2-LOC nuclear translocation or cytoplasmic retention was readily visible (Fig 3A)
and faithfully matched that of the endogenous pattern. This was not the case for overexpressed
eGFP-rERK2 even in U0126 pre-treated cells (in the presence or absence of serum or FGF4).
Cells accumulated overexpressed eGFP-rERK2 in the nucleus independently of MEK1-me-
diated TEY-phosphorylation (Fig 3A, middle image row, U0126 treatments), pointing-out the
limit of eGFP-rERK2 over-expression and questioning the consequences and relevance of
MEK1 phosphorylation of the overexpressed eGFP-rERK2 in this experimental context. The
marked absence of a fluorescence signal in the nuclei of rERK2-LOC transfected cells in non-
stimulated conditions (Fig 2B, lower panel and Fig 3A, bottom row left) resembles the endoge-
nous situation (Fig 3A, top row left). This prompted us to assess the role of overexpressed
MEK1, and we showed that the increased amount of MEK1 in the cellular system was responsi-
ble for retention of the pool of endogenous ERK2 in the cytoplasm (Fig 2C).

Protein over-expression is bound to affect signaling networks and cellular functions. Using
Fig 2B as an example, FGF increases the CI for endogenous ERK1/2 by about 50% but increases
it about ten-fold for the rERK2-LOC reporter. The balance of ERK2 binding to MEK1 versus
other interacting proteins, such as anchors, scaffold, activators and effectors, is likely influ-
enced. ERK2 activation of targets may well be increased, and overexpressed MEK1 likely also
influences endogenous ERK2 and the binding of exogenous ERK2 to DNA and microtubules.
To prevent over-expression from perturbing the spatio-temporal aspects of the signaling path-
ways, recently developed alternative approaches could be implemented. Nowadays, based on
directed genome editing technology by Clustered Regularly Interspaced Short Palindromic
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Repeats (CRISPR) [70], endogenous proteins can be knocked in to insert fluorescent proteins.
However, based on our experience, two conditions should be met to make long-term functional
imaging feasible: the expression level of the protein of interest should be sufficiently high, and
fluorescent proteins with a high quantum yield (brightness) should be used.

Quantitative analysis of rERK2-LOC after different treatments (Fig 3B) also faithfully shad-
owed that of endogenous ERK2, with comparable kinetic in NIH3T3 cells (Fig 3F and S1
Movie) and in HeLa cells (S2 Movie). This enhanced translocation was seen in time-lapse
experiments, in which NIH3T3 cells expressing rERK2-LOC were monitored every 2 min
before and after FGF4 treatment (Fig 3F). Based on the calculated concentration index, an ini-
tial nuclear burst of rERK2-LOC was visible, peaking between 4 to 8 minutes after FGF4 induc-
tion, as expected [29]. With regards to over-expression driven perturbations of the signaling
network, several explanations can be proposed for the subsequent CI decrease. Nuclear anchors
saturation and the presence of exogenous MEK1 in ERK2 export from the nucleus could be
responsible. However the expected sustained activation profile of ERK2 [29] has been main-
tained since CI did not decrease to initial baseline level.

Concerning ERK2 diffusion, the significantly slower mobility of rERK2-LOC compared to
overexpressed eGFP-rERK2 in FRAP experiments (Fig 4D) indicates the stimulus-dependent
binding of ERK2 to specific nuclear targets. So, saturation of ERK2-binding sites due to overex-
pression of eGFP-rERK2 without sufficient amount of MEK1 around altered the shuttling and
resulted in accumulation of the kinase in the nucleus, where eGFP-rERK2 behaved as a free
monomer. However the slight difference in diffusion of overexpressed eGFP-rERK2 (Fig 4D)
could indicate that it might still bind slightly to nuclear partners. Our results using rERK2-LOC
unambiguously showed a decrease of ERK2 mobility in the nucleus, demonstrating that equi-
molar coexpression of mMEK1 counterbalances the overexpression of eGFP-rERK2 and thus
prevents saturation of the limited ERK2 nuclear binding sites. This result is at odds with a pre-
vious study [26] that reported no difference in mobility between overexpressed free eGFP and
eGFP-rERK2, and which was attributed to the use of cells with strong overexpression [29].
Because of the high ERK2 nuclear concentration, detection of eGFP-rERK2 nuclear binding
upon stimulation of the pathway was not possible in their experimental settings.

As described in previous studies, mitogenic stimulation triggers rapid entry of ERK2 into
the nucleus followed by massive nuclear accumulation of ERK2 several hours after the stimula-
tion. On the other hand, non-mitogenic signals trigger only the initial translocation of ERK2
[21,71]. The characteristic mitogenic response was observed in NIH-3T3 cells transfected with
rERK2-LOC, whereas an abnormally brief nuclear localization of ERK2 was generally associ-
ated with uncontrolled coexpression of MEK1/ERK2 [26,27,30]. Indeed, rERK2-LOC subcellu-
lar distribution was identical to that of endogenous ERK1/2 [21], with progressive nuclear
accumulation 1 h and 2 h after either serum or FGF4 stimulation. It was reported that the late
nuclear accumulation of ERK2 requires nuclear anchors such as MKP1 and MKP2, the expres-
sion of which is induced by ERK1/2 signaling [21,22,71]. ERK2-mediated phosphorylation of
MKPs triggers inactivation and nuclear retention of ERK2 through high-affinity interactions,
limiting access to activated MEK1 in the cytoplasm. Consistent with previous studies, this late
accumulation of ERK2 in the nucleus is uncoupled from MEK1-dependent TEY-phosphoryla-
tion of ERK2 [20,22]. Thus, since rERK2-LOC subcellular distribution matched endogenous
ERK2 localization over time, we suggest that our rERK2-LOC reporter is regulated in the same
way as the endogenous ERK2 by the endogenous regulatory proteins of the ERK1/2 signaling
pathway. In addition, recent findings identified a similar mechanism for uncoupling TEY-
phosphorylation from ERK2 nuclear localization at the early phase of the stimulation [20].
This uncoupling mechanism is not explainable by the sole expression of specific nuclear
anchors and relies on a Casein Kinase 2-dependent SPS-phosphorylation in the kinase insert
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domain of ERK2 that is independent of ERK2 activation [72]. In Xenopus laevis embryo, spa-
tiotemporal distribution of xERK2-LOC coincided with that of phosphorylated ERK2 in the
region around the blastopore at stage 12, where an increase of ERK2 activation occurs, as well
as at late gastrula and tadpole stages [46] (Fig 5E, left panel, Fig 5G and 5H and S3 Movie). In
addition, we also found xERK2-LOC in the nuclei of large cells of the yolk plug at stage 12 (Fig
5F, right panel and S4 Movie), although no activation of ERK2 was previously detected by
immunohistochemistry [46]. These findings shed light on the importance of closely correlating
ERK1/2 activation to its subcellular localization to determine cell fate and assess the involve-
ment of specific spatiotemporal regulators of the ERK1/2 pathway. Considering the kinase-
independent functions of ERK2 that have been reported both in the cytoplasm and in the
nucleus [73,74], this has become particularly relevant.

Conclusion
In this study, limitations in eGFP-tagged ERK2 expression were solved by using a T2A “self-
cleaving” peptide in bicistronic plasmids. Previous studies have shown that the cleavage effi-
ciency of T2A is much higher than that of other 2A sequences [47,48]. So we fused the T2A
sequence in frame between MEK1 and ERK2. The 2A peptide strategy enabled equimolar coex-
pression of MEK1 and ERK2 and restored the localization dynamics of ERK2. More impor-
tantly, we show that the expression pattern of the coexpressed proteins was consistent among
the transfected cells. We confirmed the functionality of rERK2-LOC by using several biochemi-
cal approaches. Upon stimulation, rERK2-LOC rapidly translocated into the nucleus, but its
translocation was blocked by MEK1/2 inhibition. Fast-FRAP experiments in the nucleus and
in the cytoplasm revealed a differential diffusion of rERK2-LOC, depending on its activation
state and its subcellular localization. Given the stability of T2A-linked protein coexpression, we
coexpressed MEK1 and eGFP-xERK2 in Xenopus laevis embryos to monitor xERK2 localiza-
tion at different embryonic developmental stages. This is the first report on the subcellular
localization of xERK2 in living embryos. Our ERK2-LOC reporters could be used in conjunc-
tion with ERK1/2 activity measurements [60,75,76] in several biological systems to assess
whether pharmacological inhibitors affect specifically ERK1/2 activity and/or ERK2 subcellular
distribution [7]. Finally, this 2A-mediated coexpression system is versatile and makes it possi-
ble to build on existing reporters by adding coding sequences from other genes (Raf, KSR,
PEA-15) that are relevant to the regulation of the ERK1/2 signaling pathway. Taken together,
our study has revealed that 2A-mediated coexpression of eGFP-ERK2 and MEK1 is a reliable
and user-friendly strategy to faithfully monitor ERK2 in living cells and in a whole organism.

Supporting Information
S1 File. Supplementary material, plasmid constructs.
(PDF)

S1 Fig. Comparison of rERK2-LOC mobility in the nucleus and cytoplasm of NIH-3T3 by
high-speed FRAP measurements. (A) NIH-3T3 cells were transfected with rERK2-LOC and
serum-starved for 24 h. Bleaching was first performed in the cytoplasm of non-stimulated cells,
and in both the nucleus and the cytoplasm of the same cell after serum stimulation along the
red lines drawn (left panel). Representative kymograms (xt) of fluorescence intensity measured
along the lines (both red and white) across the selected cells for each experimental condition
over time are shown (right panel). Scale bar: 10 μm. (B-C) Curves of cumulative fluorescence
recovery over time for rERK2-LOC in resting cell cytoplasm (blue curve), and in cytoplasm
(green curve) and nucleus (red curve) 8 min after serum stimulation were normalized (B) and
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fitted (C). (D) Immobile fractions (IF) were calculated for all conditions (corresponding color
symbols). The number of photobleached cells is indicated above each symbol. Statistical signifi-
cance was determined by a two-tailed unpaired t-test (ns, no significant; �,� 0.05; ����,�
0.0001).
(PDF)

S1 Movie. rERK2-LOC spatiotemporal localization in serum-starved NIH-3T3 cells after
FGF4 stimulation.
(MP4)

S2 Movie. rERK2-LOC spatiotemporal localization in serum-starved HeLa cells after hEGF
stimulation.
(MP4)

S3 Movie. xERK2-LOC subcellular distribution in a living Xenopus laevis embryo at the
dorsal lip of the blastopore. The movie shows a vegetal view of the embryo (stage 12, late gas-
trula) and is made from 108 confocal z-planes using a 1.50-μm step size between sections. The
confocal z-series 3D reconstruction of the dorsal lip of blastopore shows the accumulation of
rERK2-LOC in the nuclei of blastoporal cells located in the push inward area.
(MP4)

S4 Movie. xERK2-LOC subcellular distribution in a living Xenopus laevis embryo at the
yolk plug. The movie shows a vegetal view of the embryo (stage 12, late gastrula) overexpres-
sing xERK2-LOC and is made from 86 confocal z-planes using a 1.00-μm step size between sec-
tions. The confocal z-series 3D reconstruction of the yolk plug shows the accumulation of
rERK2-LOC in the nuclei of large endodermal cells.
(MP4)

S5 Movie. Imaging of xERK2-LOC in a whole living Xenopus laevis stage 38 tadpole. The
embryo, head to the left, shows substantial nuclear accumulation of xERK2-LOC in the cells of
the forebrain-midbrain boundary.
(MP4)
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