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Abstract Terpenoids are the largest group of small-molecule
natural products, with more than 60,000 compounds made
from isopentenyl diphosphate (IPP) and its isomer
dimethylallyl diphosphate (DMAPP). As the most diverse
group of small-molecule natural products, terpenoids play an
important role in the pharmaceutical, food, and cosmetic in-
dustries. For decades, Escherichia coli (E. coli) and
Saccharomyces cerevisiae (S. cerevisiae) were extensively
studied to biosynthesize terpenoids, because they are both
fully amenable to genetic modifications and have vast molec-
ular resources. On the other hand, our literature survey
(20 years) revealed that terpenoids are naturally more wide-
spread in Bacillales. In the mid-1990s, an inherent
methylerythritol phosphate (MEP) pathway was discovered
in Bacillus subtilis (B. subtilis). Since B. subtilis is a generally
recognized as safe (GRAS) organism and has long been used
for the industrial production of proteins, attempts to
biosynthesize terpenoids in this bacterium have aroused much
interest in the scientific community. This review discusses
metabolic engineering of B. subtilis for terpenoid production,
and encountered challenges will be discussed. We will sum-
marize some major advances and outline future directions for

exploiting the potential ofB. subtilis as a desired Bcell factory^
to produce terpenoids.
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Introduction

Nature provides an infinite treasure of complex molecules
(Wilson and Danishefsky 2006) which have served as leads
and scaffolds for drug discovery in the past centuries (Newman
and Cragg 2007; Newman and Cragg 2012; Newman et al.
2003). Numerous reports have detailed their diverse structures
and biological functions. The largest and most diverse class of
small-molecule natural products is the terpenoids, also known
as isoprenoids or terpenes (Köksal et al. 2011). The Dictionary
of Natural Products describes approximately 359 types of ter-
penoids, which comprise 64,571 compounds (as of
May 2015). Since these terpenoids account for ca. 24.11 %
(64,571 of 267,783) of all natural products (recorded in the
dictionary, http://dnp.chemnetbase.com/) and are required for
biological functions in all living creatures, they indisputably
play a dominant role in both the scientific community and the
commercial world (Breitmaier 2006).

Along with a growing attraction for sustainable production,
great interest has been expressed in biotechnological produc-
tion of chemical products in general and terpenoids in partic-
ular. Since the 1990s, the interest in biosynthesizing terpe-
noids has skyrocketed, especially for desperately needed effi-
cacious drugs such as artemisinin (Chang et al. 2007; Martin
et al., 2003; Newman et al., 2006; Paddon et al. 2013; Ro et al.
2006; Tsuruta et al. 2009; Westfall et al. 2012) and taxol
(Ajikumar et al. 2010; Jiang et al. 2012). In the past 20 years,
most research has focused on using Escherichia coli, the host
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with the most advanced genetic tools, for biosynthesis of ter-
penoids (Fig. 1). Intensive experimentation in Escherichia
coli (E. coli) has led to high yield production of some
isoprenoids. However, uncertainty still looms around some
aspects such as genetic engineering, characterization, reliabil-
ity, quantitative strategy, and independence of biological mod-
ules (Kwok 2010). More options are needed to validate and
optimize cell factories for terpenoid production. According to
PubMed data, in comparison to other microorganisms,
Bacillales (47.32 %) naturally possess more genes and pro-
teins related to terpenoid biosynthesis pathways (Fig. 1), but
surprisingly, little research effort has been devoted to the study
of Bacillales as factories for natural products.

In the mid-1990s, it was discovered that Bacillus subtilis, a
member of Bacillales that has a fast growth rate and is con-
sidered generally recognized as safe (GRAS) (FDA 1997;
Schallmey et al. 2004; Widner et al. 2005), has inherent
MEP pathway genes (Kuzma et al. 1995; Takahashi et al.
1998). The interest rose in B. subtilis as it has been used
extensively for the industrial production of proteins (Westers
et al. 2004; Sauer et al. 1998; Stockton and Wyss 1946). In
addition, it was also reported that Bacillus is the highest iso-
prene producer among all tested microorganisms including
E. coli, Pseudomonas aeruginosa, and Micrococcus luteus.
The reported isoprene production rate (B. subtilis ATCC
6051) is 7 to 13 nmol per gram cells per hour (Kuzma et al.
1995). This high yield makes it a promising microbial host for
terpenoid biosynthesis (Julsing et al. 2007; Wagner et al.
2000). Furthermore, B. subtilis has a wide substrate range
and is able to survive under harsh conditions. Owing to its
innate cellulases, it can even digest lignocellulosic materials

and use the pentose sugars as its carbon source, hence decreas-
ing the cost of biomass pretreatment (Maki et al. 2009; Ou
et al. 2009). Here, we review major progress in metabolic
engineering of B. subtilis for synthesizing terpenoids. The
related pathway enzymes, genetic engineering reports, terpe-
noid detection methods, and their advantages and challenges
will be summarized and discussed. We hope to provide a
comprehensive review for exploiting the potential of
B. subtilis as a cell factory for terpenoid production.

Inherent terpenoid biosynthetic pathways of B. subtilis

Terpenoids are synthesized based on isoprene (C5) units. In
terpenoid biosynthetic pathways, IPP and DMAPP (C5 unit,
diphosphate isoprene forms) are the basic terpenoid building
blocks, generated by the Mevalonate and MEP pathways (the
terpenoid backbone biosynthesis upstream pathways). The
terpenoid backbone downstream pathway is responsible for
biosynthesis of geranyl diphosphate (GPP), farsenyl diphos-
phate (FPP), and geranylgeranyl diphosphate (GGPP), which
are the precursors of monoterpenoids (C10), sesquiterpenoids
(C15), and diterpenoids (C20), respectively. B. subtilis has 15
inherent enzymes, belonging to five terpenoid biosynthesis
pathways: two terpenoid backbone biosynthesis upstream
pathways (the mevalonate pathway and MEP pathway), the
terpenoid backbone biosynthesis downstream pathway, carot-
enoid biosynthesis pathway, and ubiquinone and other
terpenoid-quinone biosynthesis pathway (Table 1, Fig. 2).
For decades, isoprene yield has been considered the bottle-
neck for all terpenoid biosynthesis. Thus, to construct a cell
platform which can produce and tolerate high amounts of

Fig. 1 Percent of terpenoid biosynthesis related articles and terpenoid
related gene reports, by source. a Percent of terpenoid biosynthesis
related articles, by source. b Publication amount of terpenoid

biosynthesis related articles, by year. c Percent of terpenoid related gene
reports, by source
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isoprene and downstream intermediates is crucial. Since
B. subtilis possesses all of the eight MEP pathway enzymes
and can naturally produce high amounts of isoprene, it appears
to be an ideal choice to utilize overexpressionmutants of these
enzymes to increase isoprene production.

However, there are few reports on the B. subtilis MEP
pathway. Most of the MEP pathway studies are based on
E. coli. Withers and Keasling have described the MEP path-
way of E. coli briefly (Withers and Keasling 2007).
Kuzuyama and Seto (Kuzuyama and Seto 2012) clearly illus-
trated the enzymes and reactions involved in the MEP path-
way. Carlsen summarized MEP pathway reactions and cofac-
tors in a table (Carlsen et al. 2013). More details can be found
in Zhao’s review (Zhao et al. 2013). As the kinetics of the
MEP pathway enzymes are still unknown, it is unclear which
step represents the largest barrier. Thus, the lack of knowledge
about the kinetic parameters of the key enzymes is the main
obstacle facing metabolic engineering of the MEP pathway in

B. subtilis to produce terpenoids. Besides that, the low number
of reports about using the B. subtilisMEP pathway to produce
terpenoids highlights the need for more research in this area.

Here, we summarize information about the MEP pathway:

1. The initial enzyme in the MEP pathway is 1-deoxy-D-
xylulose-5-phosphate synthase (dxs), which forms 1-de-
oxy-D-xylulose 5-phosphate (DXP) by the condensation
of D-glyceraldehyde 3-phosphate (GAP) and pyruvate.
This enzyme is not only specific for the MEP pathway
but also plays a role in thiamine metabolism (Sprenger
et al. 1997), which shares the flux with the MEP pathway.
Gene knockout results (Julsing et al. 2007) suggest that
overexpressing dxs may result in a significant improve-
ment in terpenoid production without notable toxicity to
the host cell (Zhao et al. 2011; Zhou et al. 2013b).
Previous studies in other bacteria also supported the the-
ory that dxsmay be the first rate-limiting step of the MEP

Table 1 B. subtilis inherent terpenoid biosynthesis enzymes

Inherent pathways EC number Strains

Mevalonate pathway 2.3.1.9 Bacillus subtilis subsp. Subtilis 168
Bacillus subtilis subsp. Subtilis RO-NN-1
Bacillus subtilis subsp. Subtilis BSP1
Bacillus subtilis subsp. Subtilis 6051-HGW
Bacillus subtilis subsp. Subtilis BAB-1
Bacillus subtilis subsp. Subtilis AG1839
Bacillus subtilis subsp. Subtilis JH642
Bacillus subtilis subsp. Subtilis OH 131.1
Bacillus subtilis subsp. spizizenii W23
Bacillus subtilis subsp. spizizenii TU-B-10
Bacillus subtilis subsp. Natto BEST195
Bacillus subtilis BSn5
Bacillus subtilis QB928
Bacillus subtilis XF-1
Bacillus subtilis PY79

MEP/DOXP pathway 2.2.1.7, 1.1.1.267, 2.7.7.60, 2.7.1.148, 4.6.1.12, 1.17.7.1, 1.17.1.2, 5.3.3.2

Terpenoid backbone
biosynthesis (downstream)

2.5.1.1, 2.5.1.10, 2.5.1.29, 2.5.1.30, 2.5.1.31

Ubiquinone and other
terpenoid-quinone
biosynthesis

2.5.1.74, 2.1.1.163, 2.5.1.-

Carotenoid biosynthesis 2.5.1.32

• Detailed information can be found at KEGG website, http://www.kegg.jp/

• Underlined enzymes (B. subtilis): functional parameters can be found at the BRENDAwebsite, http://brenda-enzymes.info/index.php

• 2.3.1.9, acetyl-CoA acetyltransferase, yhfS

• 2.2.1.7, 1-deoxy-D-xylulose-5-phosphate synthase, dxs

• 1.1.1.267, 1-deoxy-D-xylulose 5-phosphate reductoisomerase, dxr

• 2.7.7.60, 2-D-methyl-D-erythritol 4-phosphate cytidylyltransferase, ispD

• 2.7.1.148, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, ispE

• 4.6.1.12, 2-D-methyl-D-erythritol 2,4-cyclodiphosphate synthase, ispF

• 1.17.7.1, (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase, ispG

• 1.17.1.2, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, ispH

• 5.3.3.2, isopentenyl-diphosphate delta-isomerase, idi

• 2.5.1.1, 2.5.1.10, 2.5.1.29, geranylgeranyl diphosphate synthase, type II, ispA

• 2.5.1.30, heptaprenyl diphosphate synthase component 2, hepT

• 2.5.1.31, undecaprenyl diphosphate synthase, uppS

• 2.5.1.74, 2.5.1.-, 1,4-dihydroxy-2-naphthoate octaprenyltransferase, menA

• 2.1.1.163, demethylmenaquinone methyltransferase, ubiE

• 2.5.1.32, phytoene synthase, crtB
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pathway, as overexpressing dxs can increase isoprenoid
production (Estévez et al. 2001; Kim et al. 2006; Xue and
Ahring 2011). Moreover, compared to the mevalonate
pathway, the theoretical mass yield of terpenoids from
glucose is 30% fromDXP, 5% higher than the yield from
MVA (Rude and Schirmer 2009; Whited et al. 2010),
which emphasizes the importance of dxs in the MEP
pathway.

2. The enzymes 4-diphosphocytidyl-2-C-methyl-D-
erythritol synthase (ispD), 4-diphosphocytidyl-2-C-meth-
yl-D-erythritol kinase (ispE), and 2-C-methyl-D-erythritol
2,4-cyclodiphosphate synthase (ispF) are required to con-
v e r t MEP t o 2 -C -me t hy l - D - e r y t h r i t o l 2 , 4 -
cyclodiphosphate (MECDP) (Herz et al. 2000;
Kuzuyama et al. 2000a; Kuzuyama et al. 2000b;
Lüttgen et al. 2000; Rohdich et al. 1999). In most organ-
isms containing MEP pathway homologs, the genes
encoding ispD and ispF are neighbors on the chromo-
some with the ispE at a distal location. They are also
regarded as key enzymes in the MEP pathway
(Ajikumar et al. 2010; Lu et al. 2014; Yuan et al. 2006;
Zhou et al. 2013b). IspD and ispF are essential for cell
survival due to their significant impact on cell wall bio-
synthesis and depletion (Campbell and Brown 2002).
IspE has also been identified as crucial for survival of
pathogenic bacteria and essential in Mycobacterium
smegmatis (Eoh et al. 2009).

3. The most controversial enzymes in the MEP pathway
are 1-deoxy-D-xylulose-5-phosphate reductoisomerase
(dxr) and isopentenyl-diphosphate delta-isomerase
(idi). Some researchers consider them as key enzymes
in the MEP pathway (Berthelot et al. 2012; Soliman
et al. 2011; Sun et al. 1998; Xue et al. 2015), while
others find that they are not essential, at least in some
cases (Fox and Poulter 2005; Lagarde et al. 2000;
Sangari et al. 2010; Xue and Ahring 2011; Zhao et al.
2011). As far as we know now, there are two families
of idi, B. subtilis possesses type 2 idi, which was con-
sidered as a nonessential enzyme in the bacillus MEP
pathway (Julsing et al. 2007; Takagi et al. 2004).

4. Other important enzymes in the MEP pathway are (E)-4-
hydroxy-3-methylbut-2-enyl-diphosphate synthase
(ispG) and 4-hydroxy-3-methylbut-2-enyl diphosphate
reductase (ispH), but their catalytic mechanisms are still
unclear (Zhao et al. 2013). The enzyme ispH catalyzes the
2H+ 2e− reduction of hydroxy-2-methyl-2-butenyl-4-di-
phosphate (HMBDP) producing an approximately 5:1
mixture of IPP and DMAPP in return (Wang et al.
2010). This enzyme and ispG are deemed essential en-
zymes for cell survival (Liu et al. 2012; Rohmer 2008).
It has been reported that ispG can effectively reduce the
efflux of methylerythritol cyclodiphosphate (MECDP),
resulting in a significant increase in downstream terpenoid
production (Zhou et al. 2012). Additional information on

Fig. 2 B. subtilis inherent
terpenoid biosynthesis pathways
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the bio-organometallic chemistry of ispG and ispH can be
found in Wang’s review (Wang and Oldfield 2014).

Genetic engineering of B. subtilis

Most of the knowledge about the MEP pathway was obtained
from research in E. coli and other bacteria. Therefore, research
into the progress of genetic engineering of MEP pathway en-
zymes in B. subtilis can provide more direct support for uti-
lizingB. subtilis as amicrobial host for terpenoid biosynthesis.

Wagner first described the phases of isoprene formation
during growth and sporulation of B. subtilis (Wagner et al.
1999). They found that isoprene formation is linked to glucose
catabolism, acetoin catabolism, and sporulation. One possible
mechanism is that isoprene is a metabolic overflowmetabolite
released when flow of carbon to higher isoprenoids is restrict-
ed. This phenomenon can be illustrated as follows: (a) when
cells are rapidly metabolizing the available carbon sources,
isoprene is released; (b) when less carbon is available during
transitions in carbon assimilation pathways, isoprene produc-
tion declines; and (c) when cell growth ceases and spore for-
mation is initiated, production of isoprene continues. In 2000,
it was confirmed that isoprene is a product of the MEP path-
way in B. subtilis (Wagner et al. 2000). It was also reported
that isoprene release might be used as a barometer of central
carbon flux changes during the growth of Bacillus strains
(Shirk et al. 2002). Besides that, the activity of isoprene syn-
thase (ISPS) was studied by using permeabilized cells. When
grown in a bioreactor, B. subtilis cells released isoprene in
parallel with the ISPS activity (Sivy et al. 2002).

In order to gain more insight into the MEP pathway of
B. subtilis, conditional knockouts of the MEP pathway genes
of B. subtilis were constructed, then the amount of emitted
isoprene was analyzed. The results show that the emission of
isoprene is severely decreased without the genes encoding
dxs, ispD, ispF, or ispH, indicating their importance in the
MEP pathway. In addition, idi has been proven not to be
essential for the B. subtilis MEP pathway (Julsing et al.
2007). Xue and Ahring first tried to enhance isoprene produc-
tion by modifying the MEP pathway in B. subtilis. They
overexpressed the dxs and dxr genes. The strain that
overexpressed dxs showed a 40 % increase in isoprene yield
compared to the wild-type strain, whereas in the dxr overex-
pression strain, the isoprene level was unchanged.
Furthermore, they studied the effect of external factors and
suggested that 1 % ethanol inhibits isoprene production, but
the stress factors heat (48 °C), salt (0.3 M), and H2O2

(0.005 %) can induce the production of isoprene. In addition,
they found that these effects are independent of SigB, which is
the general stress-responsive alternative sigma factor of
B. subtilis (Xue and Ahring 2011). Hess et al. co-regulated
the terpenoid pathway genes in B. subtilis. Transcriptomics

results showed that the expression levels of dxs and ispD are
positively correlated with isoprene production, while on the
other hand, the expression levels of ispH, ispF, ispE, and dxr
are inversely correlated with isoprene production. Moreover,
their results supported Xue’s conclusions about the effect of
external factors (Hess et al. 2013).

In 2009, Yoshida et al. first successfully transcribed and
transfected crtM and crtN genes into B. subtilis to direct the
carbon flux from the MEP pathway to C30 carotenoid biosyn-
thesis and successfully produced 4,4′-diapolycopene and 4,4′-
diaponeurosporene (Yoshida et al. 2009). Thereafter, Maeda
reported amethod to produce glycosylated C30 carotenoic acid
by introducing Staphylococcus aureus (S. aureus) crtP and
crtQ genes into B. subtilis, together with crtM and crtN
(Maeda 2012). Later, Zhou overexpressed dxs and idi genes
along with introducing ads (ads encodes the synthase which
cyclizes farnesyl diphosphate into amorphadiene) in
B. subtilis and got the highest yield of amorphadiene
(∼20 mg/L) at shake-flask scale. They thought that the lack
of genetic tools for fine-tuning the expression of multiple
genes is the bottleneck in production of terpenoids in
B. subtilis. So they modified B. subtilis genes by using a
two-promoter system to independently control the expression
levels of two gene cassettes (Zhou et al. 2013a). After that,
Xue et al. systematically studied the B. subtilisMEP pathway
enzymes (Xue et al. 2015). A series of synthetic operons ex-
pressing MEP pathway genes were analyzed by using the
level of C30 carotenoid production as a measure of the effect
of those modulations. All of the overexpressed gene con-
structs showed higher production of carotenoids compared
to wild type. Dxs and dxr (8-fold and 9.2-fold increase in
carotenoid production) have been validated as the most pro-
ductive part of the MEP pathway genes in this study.

Other reports are related to C35 terpenoids and their en-
zymes, which were found in B. subtilis, like heterodimeric
enzyme, heptaprenyl diphosphate synthase (HepS and
HepT), and tetraprenyl-β-curcumene synthase (YtpB), which
are responsible for forming long prenyl diphosphate chains
(C35) (Sato et al. 2011). As Heider noted in his review,
B. subtilis has not yet been a major focus to produce caroten-
oids (Heider et al. 2014). Furthermore, we cannot find other
research about terpenoid biosynthesis in B. subtilis. Since
B. subtilis possesses many advantages as mentioned above
in the introduction section, biosynthesis of terpenoids via the
B. subtilis MEP pathway could be both an opportunity and a
challenge.

Detection and metabolomics methods for engineering
terpenoid pathway

As is known, most metabolic engineering work is improved
by using a combination of random and targeted approaches.
Mariët and Renger (Wilson and Danishefsky 2006) pointed
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out that the selection of these targets has depended at best on
expert knowledge but to a great extent also on Beducated
guesses^ and Bgut feeling.^ Consequently, time and money
are wasted on irrelevant targets or only a minor improvement
result. Along with the development of systems biology, meta-
bolomics, a technology that includes non-targeted, holistic
metabolite analysis of the cellular and/or environmental
changes combined with multivariate data analysis tools is be-
ing increasingly used to replace empirical approaches for
targeted natural product biosynthesis (Newman et al. 2006;
Paddon et al. 2013). Gregory’s group (Ajikumar et al. 2010)
has used metabolomics analysis of their previous strains, lead-
ing them to identify a noticeable metabolite by-product that
inversely correlated with taxadiene accretion. This hint helped
them to achieve approximately 1 g per liter taxadiene from
E. coli.

Because the research on the Bacillus MEP pathway is still
at an early stage, it is urgent to develop guidelines for unbiased

selection of the best rational design approach to engineering
the terpenoid. The newest developments of metabolomics,
meta-omics, computer, and mathematic sciences offer more
options for not only unbiased selection and ranking methods
but also high-throughput and more precise prediction models
that enable a mechanistic description of microbial metabolic
pathways (Breitmaier 2006; Martin et al., 2003). Scheme 1
summarizes the workflow, essential reports, and resources
for the study of terpenoid microbial metabolomics.

To observe and optimize the terpenoid biosynthesis path-
ways, detection methods are also crucial. The techniques that
are currently employed in the study of microbially produced
terpenoids are usually gas chromatography-mass spectrome-
try (GC-MS) and liquid chromatography-MS (LC-MS). Other
techniques such as nuclear magnetic resonance (NMR) (Hecht
et al. 2001) and Raman spectroscopic analysis (de Oliveira
et al. 2010) are also used in terpenoid analysis, although com-
pared with MS-based coupling techniques, they are less

Scheme 1 Flowchart and resources for terpenoid microbial
metabolomics study. a Microbial metabolic engineering workflow. b
Related information of each step for microbial metabolic engineering. *
Selected resources: 1. MS data of B. subtilis metabolites (Coulier et al.
2006; Koek et al. 2006; Soga et al. 2003). 2. The metabolomics standards
initiative (Fiehn et al. 2007). 3. Microbial metabolomics study examples
for terpenoid biosynthesis (Paddon and Keasling 2014; Zhou et al. 2012).
4. Databases, software packages, and protocols (Thiele and Palsson 2010)
and http://omictools.com/. 5. Genome-scale data of reconstructed B.

subtilis metabolic net (impact of single-gene deletions on growth in B.
subtilis) (Oh et al. 2007). 6. Comparative microbial metabolomics study
of E. coli, B. subtilis, and S. cerevisiae (van der Werf et al. 2007). 7. The
complete genome sequence of B. subtilis (Kunst et al. 1997). 8.
Constraint-based modeling methods (Bordbar et al. 2014). 9. Software
applications for flux balance analysis (including a software comparative
list) (Lakshmanan et al. 2012). 10. Sample treatment methods (Jia et al.
2004; Larsson and Törnkvist 1996; Maharjan and Ferenci 2003; van der
Werf et al. 2007; Villas-Bôas and Bruheim 2007)
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sensitive and/or reliable. Most likely, the currently existing
methods for the quantitative determination of terpenoids in
bacteria are sufficient. There are numerous articles about
quantifying and identifying terpenoids (esp. carotenoids, see
Foppen’s tables (Foppen 1971)) in plants, microorganisms,

and other organisms. Most of these methods can be applied
in B. subtilis.

In 1995, Kuzma discovered that B. subtilis can produce
isoprene efficiently (Kuzma et al. 1995). This Colorado re-
search group focused on the isoprene biosynthesis mechanism

Table 2 Detection and analysis reports of B. subtilis terpenoid pathway metabolites

Method Compound Characteristic Reference

GC-MS Isoprene Rt = 16.5 min, m/z 39, 53, 67 Kuzma et al. 1995

GC Isoprene Wagner et al. 1999

GC-MS (13C, 2H
labeling)

Isoprene Common substrate m/z 39, 53, 67;
Substrate: U-[13C6] glucose m/z 42, 57, 72; 1-[

13C]
pyruvate m/z 40, 54, 68; 2-[13C] pyruvate m/z 40,
55, 69; 3-[13C] pyruvate m/z 40, 54, 69.

Wagner et al. 2000

GC DMAPP Fisher et al. 2001

GC Isoprene Rt = 2.6 min Shirk et al. 2002
HPLC Acetoin Rt = 5.5 min, 354 nm

Kits Glucose

Kits Lactic, pyruvic acids

CIMS (M + H)+(H2O)n: Custer et al. 2003
Acetaldehyde m/z 63 (n = 1)

Acetoin m/z 89 (n = 0)

Acetone m/z 77 (n = 1)

2,3-Butanediol m/z 91 (n = 0)

Butanol m/z 111 (n = 2)

2-Butanone m/z 91 (n = 1)

Butyraldehyde m/z 91 (n = 1)

Butyl acetate m/z 135 (n = 1)

Diacetyl m/z 123 (n = 2)

Dimethyl sulfide m/z 63 (n = 0)

Ethanol m/z 83 (n = 2)

Ethyl acetate m/z 107 (n = 1)

Isoamyl alcohol m/z 107 (n = 1)

Isoprene m/z 69 (n = 0)

GC Isoprene Julsing et al. 2007

HPLC 4,4′-Diapolycopene Rt = 26.8 min, Absorption: 293, 443, 472, 501 nm Yoshida et al. 2009
4,4′-Diaponeurosporene Rt = 28.9 min, Absorption: 266, 415, 439, 469 nm

MALDI-TOF MS 4,4′-Diapolycopene m/z 399.9

4,4′-Diaponeurosporene m/z 401.9

GC-MS Isoprene Rt = 1.9 min Xue and Ahring 2011

HPLC Glycosyl 4,4′-diaponeurosporenoate Rt = 10.0 min, Absorption: 282, 469 nm Barredo 2012
4,4′-Diapolycopene Absorption: 293, 443, 472, 501 nm

4,4′-Diaponeurosporene Rt = 14.4 min, Absorption: 265, 414, 441, 469 nm

UPLC-MS DXP Rt = 5.6 min, m/z 213.0170 Tsuruta et al. 2009; Zhou et al.
2012; Zhou et al. 2013aMEP Rt = 5.2 min, m/z 215.0330

CDP-ME Rt = 6.2 min, m/z 520.0730

CDP-MEP Rt = 7.3 min, m/z 600.0390

MEC Rt = 6.6 min, m/z 276.9884

HMBPP Rt = 7.0 min, m/z 260.9920

GC-MS Trans-Caryophyllene Rt = 3.4 min, m/z 189, 204

Amorpha-4,11-diene Rt = 3.5 min, m/z 189, 204

LC-Fourier transform MS (Untargeted metabolomics study) Cho et al. 2014
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in B. subtilis. They used GC, GC-MS, HPLC, 13C, and 2H
labeling methods, non-radioactive methods, and online
chemical-ionization mass spectrometry (CIMS) to measure
isoprene and MEP pathway metabolites (Custer et al. 2003;

Fisher et al. 2001; Kuzma et al. 1995; Shirk et al. 2002;
Wagner et al. 2000; Wagner et al. 1999). Table 2 summarizes
their methods, as well as more recent methods to detect and
analyze B. subtilis terpenoid metabolites.

Table 3 MS information of B. subtilis inherent terpenoid pathway intermediates

Compound Formula Mass ESI-Q-TOF

Mode CE (V) m/z

G3P C3H7O6P 169.9980 + 40 80.9730, 62.9631, 98.9823, 45.0347

DXP C5H11O7P 214.0242 − 0 213.0167, 96.9695, 138.9795,78.9592

MEP C5H13O7P 216.0399

CDP-ME C14H25N3O14P2 521.0812

CDP-ME2P C14H26N3O17P3 601.0475

MECDP C5H12O9P2 277.9957 + 40 98.9830, 83.0480, 55.0538, 65.0394, 80.9733, 43.0536

HMBDP C5H12O8P2 262.0007

IPP C5H12O7P2 246.0058 − 0 244.9979, 78.9591

DMAPP C5H12O7P2 246.0058 − 0 244.9979, 78.9592

GPP C10H20O7P2 314.0684 − 0 313.0629, 78.9593

FPP C15H28O7P2 382.1310

GGPP C20H36O7P2 450.1936

PPDP C40H68O7P2 722.4440

Phytoene C40H64 544.5008

HepPP C35H60O7P2 654.3814

UDPP C55H92O7P2 926.6318

PDP C20H42O7P2 456.2406

OPP C40H68O7P2 722.4440

2-Phytyl-1,4-naphthoquinone C30H44O2 436.3341

2-Demethylmenaquinone C50H70O2 702.5376

Phylloquinone C31H46O2 450.3498 + 40 187.0749, 57.0703, 43.0550, 71.0856, 171.0799, 199.0758,
105.0326, 157.0650

Menaquinone C41H56O2 580.4280

• Data sources: http://www.hmdb.ca/, http://www.massbank.jp/index.html?lang=en, http://www.chemspider.com/, https://metlin.scripps.edu/index.php,
http://pubchem.ncbi.nlm.nih.gov/

• G3P D-glyceraldehyde 3-phosphate

• DXP deoxy-D-xylulose 5-phosphate

• MEP 2-C-methyl-D-erythritol 4-phosphate

• CDP-ME 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol

• CDP-ME2P phospho-4(Cytidine 5′-diphospho)-2-C-methyl-D-erythritol

• MECDP 2-C-methyl-D-erythritol 2,4-Cyclodiphosphate

• HMBDP hydroxy-2-methyl-2-butenyl 4-diphosphate

• IPP isopentenyl-PP

• DMAPP dimethylallyl-PP

• GPP geranyl-PP

• FPP (E,E)-farnesyl-PP

• GGPP geranylgeranyl-PP

• PPDP prephytoene-PP.

• HepPP heptaprenyl-PP

• UDPP di-trans, poly-cis-undecaprenyl-PP

• PDP phytyl-PP

• OPP octaprenyl-PP
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As is the case for biosynthesis of different chemical com-
pounds, genetic modification often leads to dead ends. The
difficulties in metabolic engineering of bacteria for terpenoid
production normally are not terpenoid detection but problems
in the complex metabolic net (Baidoo and Keasling 2013).
Although the latest reports (Zhou et al. 2012; Zhou et al.
2013a) describe a promising method that can simultaneously
detect MEP pathway intermediates, the repeatability is not as
good for CDP-MEP as for the other intermediates, especially
when the amount of CDP-MEP in bacteria is very low
(summarized MS information of MEP pathway metabolites
can be found in Table 3). In addition, even if the reported
methods are sufficient to analyze all the MEP pathway inter-
mediates, it is still difficult to predict and identify the un-
known mechanisms for improving terpenoid production and
other relevant compounds due to the fact that all of the MEP
pathway enzymes are also involved in other metabolic activ-
ities (http://www.kegg.jp/). Cho’s untargeted metabolomics
study (Cho et al. 2014) may have pointed out a direction that
can help solve some of these problems, whereas few
untargeted metabolomics research for B. subtilis metabolic
pathway study can be found online. As mentioned above,
integrated metabolomics studies and constraint-based models
might orient future study for biosynthesis of terpenoids (see
Scheme 1). The current state of analysis methods, which can
be integrated into metabolomics researches and be used in
terpenoid biosynthesis studies, raises questions about the fol-
lowing issues: (1) detailed preparation work such as reproduc-
ible growth of B. subtilis, sampling, and quenching methods,
which can be used in metabolomics studies to elucidate the
mechanisms of the MEP pathway; (2) extraction methods that
maintain the original structure of intermediates and subse-
quently allow the identification of those compounds and their
accurate quantification; (3) extraction coupled quantification
methods that can be used to quantify minor components from
small-scale bacterial cultures to reduce the workload; and (4)
data pre-processing, biostatistics, and bioinformatics methods
for big data analysis, integration, and modeling that can reflect
the cell bio-net, narrow the research scope, target the key
products, genes, and enzymes, and finally lead us to further
improvements.

Summary

B. subtilis offers new opportunities and good prospects for
terpenoid biosynthesis. This review provides a brief account
of metabolic engineering of B. subtilis for terpenoid produc-
tion, summarizing our understanding of B. subtilis, the MEP
pathway, and related techniques. While the mevalonate path-
way and terpenoid biosynthesis in E. coli have been studied
for decades, research on the Bacillus MEP pathway is still at
an early stage. That is why, at this point, there is no sufficient
data on Bacillus yield to make a fair comparison with

published yields of terpenoids in E. coli and other cell facto-
ries. However, theoretically, B. subtilis has the potential to be
optimized as a high-yield-producing cell factory. The advan-
tages of studying terpenoid biosynthesis in B. subtilis include
(1) its fast growth rate and ability to survive under harsh con-
ditions, (2) its GRAS status, (3) its wide substrate range and
inherent MEP pathway genes, (4) the fact that it is a naturally
high isoprene producer, (5) its clear genetic background,
abundant genetic tools, and (6) its innate cellulases, which
can digest lignocellulosic materials and use the breakdown
products as its carbon source, which would decrease large-
scale production costs. Still, B. subtilis share some of the fea-
tures of other gram-positive bacteria like plasmid instability.
Also, there are some B. subtilis-specific engineering chal-
lenges that need to be explored. The catalytic mechanisms of
two MEP pathway enzymes (IspG, IspH) in B. subtilis are
unclear yet. The importance of DXR and IDI in the MEP
pathway is controversial. DXS has been generally regarded
as the essential rate-limiting enzyme, but even the functional
parameters of DXS in B. subtilis have not yet been reported.
Many questions regarding the mechanism of the MEP path-
way, the interactions of related enzymes and metabolites, and
the kinetic parameters of MEP pathway enzymes in B. subtilis
remain unanswered. Obviously, the organism is promising
and the questions are fascinating. There is thus significant
reason for detailed investigations of terpenoid biosynthesis
via the B. subtilis MEP pathway, particularly in metabolic
engineering where there is not yet sufficient knowledge about
the precise mechanisms or the effects of co-regulation of the
enzymes.
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