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Abstract

Acute Myeloid Leukemia (AML) is a set of related diseases characterized by the immortalization 

and uncontrolled expansion of myeloid precursors. Core therapy for AML has remained 

unchanged for nearly 30 years, and survival rates remain unsatisfactory. However, advances in the 

immunotherapy of AML have created opportunities for improved outcomes. Enforcing a tumor-

specific immune response through the re-direction of the adaptive immune system, which links 

remarkable specificity with potent cytotoxic effector functions, has proven particularly 

compelling. This may be coupled with immune checkpoint blockade and conventional therapies 

for optimal effect. Engineered antibodies are currently in use in AML and the repertoire of 

available therapeutics will expand. NK cells have shown effectiveness in this disease. New 

methods to optimize the targeting and activation of AML cells show potential. Most significantly, 

adoptive immunotherapy with tumor-specific T cells, and particularly T cells re-directed using 

genetically introduced TCR or chimeric antigen receptors, have particular promise. Each of these 

approaches has unique benefits and challenges that we explore in this review.
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Introduction

In 2000, Weinberg and Hanahan described the hallmarks of cancer as growth self-

sufficiency, resistance to growth inhibitory and apoptotic signals, limitless replication, 

ability to acquire nutrition by promoting angiogenesis, and invasion and metastasis. In 2011, 

they refined this, recognizing that immune evasion is an additional core attribute of cancer 

cells (Hanahan and Weinberg, 2011). This fundamental feature of cancer is particularly 

salient in acute myeloid leukemia (AML).

Myeloid cells play central roles in immunity. Dendritic cells, macrophages, granulocytes, 

and platelets are critical in activating and sustaining adaptive and innate immunity. Mature 

and immature myeloid cells, the latter of which in many respects resemble AML blasts, can 
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also suppress immunity. Myeloid cells, and particularly dendritic cells, localize to sites of B 

and T cell development where they tolerize lymphocyte precursors that recognize myeloid 

cell-associated antigens (Klein et al., 2014; Rowland et al., 2013). Immature and unactivated 

myeloid cells also possess potent veto and suppressive activities, and are key mediators of 

mature lymphocyte tolerance (Gur et al., 2002; De et al., 2014).

The strong natural interactions of myeloid cells with the immune system provide unique 

opportunities for immunotherapeutic exploitation so as to target leukemic blasts. 

Immunotherapy for AML is in its infancy, but proceeding along multiple fronts (Fig. 1). 

New findings have raised the significant promise that in the near future it will occupy a 

prominent place in the armamentarium against this difficult disease.

Current treatment of AML

Over thirty years ago, the “3 + 7” regimen (three days of daunorubicin plus 7 days of 

cytarabine) was shown to induce remission in approximately 60% of AML patients and 

became standard induction therapy for children and adults with this disease. Clinical trials 

conducted in the 1990s demonstrated the benefit of intensive postremission therapy, which 

included high-dose cytarabine-based chemotherapy or hematopoietic stem cell 

transplantation (HSCT). Although remission and overall survival rates for children with 

AML are now greater than 90% and 60%, respectively, all contemporary treatment regimens 

are still based on anthracyclines, nucleoside analogues, and intensive postremission therapy 

(Rubnitz et al., 2010a; Gamis et al., 2014). Efforts to improve the outcome of patients with 

AML have included the replacement of daunorubicin with idarubicin or mitoxantrone 

(Creutzig et al., 2013); the intensification of cytarabine (Rubnitz et al., 2010a) or 

daunorubicin during induction; and the addition of maintenance therapy (Perel et al., 2002). 

With the exception of maintenance therapy, which was associated with an inferior survival, 

most regimen modifications have had modest effects and most randomized trials have 

shown no significant difference in outcome between treatment arms. Despite these 

disappointing results, excellent supportive care, adaptation of therapy on the basis of each 

patient’s response, and the selective use of HSCT have all contributed to improved treatment 

results.

The graft-versus-leukemia effects that are elicited after HSCT suggest that anti-tumor 

immunity may be potent at eradicating leukemia and preventing subsequent relapse. Indeed, 

many studies have demonstrated that HSCT is associated with lower rates of relapse 

compared to chemotherapy (Niewerth et al., 2010). However, because HSCT has high rates 

of treatment-related mortality and morbidity, the indications for performing HSCT in first 

remission remain controversial (Niewerth et al., 2010). In general, study groups in the 

United States recommend HSCT for a larger proportion of patients than do European 

investigators (Horan et al., 2008; Niewerth et al., 2010). In recent years, improvements in 

supportive care and more comprehensive HLA and NK typing have contributed to greater 

benefits and fewer side effects among HSCT treated patients (Leung et al., 2011). An 

important predictor of outcome after HSCT is the level of leukemia at the time of transplant, 

indicating the importance of inducing deep remissions prior to transplant (Leung et al., 

2012). One strategy that has been used is the incorporation of tyrosine kinase inhibitors 
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(TKIs) into the chemotherapy backbone. For example, internal tandem duplications of the 

FLT3 gene (FLT3 ITD) occur in approximately 15% of pediatric and 30% of adult AML 

cases and are associated with a poor outcome, particularly in cases with high ratios of FLT3-

ITD to wild-type FLT3 (Staffas et al., 2011). Sorafenib, sunitinib, and other FLT3 inhibitors 

are highly active in patients with FLT3 mutations, but prolonged use of these agents is 

associated with the development of resistance, most commonly caused by acquired D835 or 

F691 kinase domain point mutations (Baker et al., 2013). Crenolanib, a novel tyrosine 

kinase inhibitor, is active in sorafenib-resistant AML mouse models that contain these 

mutations, suggesting that this agent may extend clinical benefit (Zimmerman et al., 2013). 

Although TKIs represent a distinct approach to AML therapy, target validation remains slow 

and new therapeutic strategies are needed.

Antibody-based therapies

Multiple antigens, including CD33, CD123, and CD47, represent potential targets for 

antibody-based AML therapy. Most efforts have focused on CD33 (Gasiorowski et al., 

2014). The activity of gemtuzumab ozogamicin (GO), a humanized anti-CD33 antibody 

conjugated to calicheamicin, in patients with relapsed AML led to its approval in 2000 

(Bross et al., 2001). Randomized trials conducted in adults (Petersdorf et al., 2013; Burnett 

et al., 2011; Castaigne et al., 2012) and children (Gamis et al., 2014) with newly diagnosed 

AML suggest that the addition of GO to conventional chemotherapy reduces the risk of 

relapse, improves event-free survival, and may improve overall survival. Meta-analyses 

demonstrate that the benefit of GO is greatest among low-risk patients, with only modest 

benefits in intermediate-risk patients; patients with high-risk AML did not benefit from this 

agent (Hourigan and Karp, 2013).

Because of limitations related to toxicity and drug resistance, investigators have developed a 

novel anti-CD33 conjugate (SGN-CD33A) by replacing calicheamicin with a synthetic 

pyrrolobenzodiazepine (Kung Sutherland et al., 2013). SGN-CD33A, which is more potent 

than GO at inducing apoptosis in AML cell lines, primary samples, and mouse models, is 

now being evaluated in Phase I clinical trials (NCT02326584, NCT01902329). An 

alternative approach to enhancing the efficacy of CD33-directed therapy is the development 

of CD33/CD3-directed bispecific T-cell engager (BiTE) antibodies, such as AMG 330 

(Laszlo et al., 2014; Krupka et al., 2014). By bridging tumor antigens with T cell receptors 

(TCR), these can direct T cell effector functions, including cytoloysis, against tumor cells. In 

preclinical models, AMG 330 was able to recruit T cells, resulting in potent CD33-

dependent cytotoxicity. Analogous to BiTE antibodies, bispecific killer cell engagers 

(BiKE) target CD16 on NK cells and tumor-specific antigens, such as CD33. CD16xCD33 

BiTEs and CD16xCD33xCD123 trispecific engagers have been recently developed and 

shown to induce NK cell function and eliminate CD33+ AML cells in preclinical models 

(Singer et al., 2010; Kugler et al., 2010; Gleason et al., 2014). It is likely that BiTE and 

BiKE antibodies will soon be tested in clinical trials for patients with relapsed AML.
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Natural killer cell therapy

Natural killer (NK) cells can target and kill leukemia cells without prior exposure to those 

cells (Leung, 2014). The beneficial effects of killer inhibitory receptor (KIR)-mismatched 

donor NK cells in the setting of allogeneic HSCT for AML was first demonstrated in 2002 

(Ruggeri et al., 2002) and have subsequently been confirmed in many studies (Velardi et al., 

2012; Venstrom et al., 2012; Cooley et al., 2014). These observations led to interest in the 

use of allogeneic NK cells in the non-HSCT setting (Miller et al., 2005; Rubnitz et al., 

2010b). We performed a pilot study in which we demonstrated that infusions of 

haploidentical NK cells in patients with AML were well tolerated and associated with 

transient engraftment, expansion of donor NK cells, minimal toxicity, and no graft-versus-

host disease (Rubnitz et al., 2010b). Although these results suggest that treatment with 

haploidentical mismatched NK cells is a safe and potentially valuable approach to reduce the 

risk of relapse in patients with AML, clinical trials are required to investigate its benefits. In 

addition, it is likely that enhancement of NK cell activity will be required to provide optimal 

antileukemic effects. Potential methods to increase NK cell numbers and activity include the 

expansion of activated NK cells (Fujisaki et al., 2009) and the addition of RXRγ agonists or 

lineage-specific antibodies, such as anti-CD33 (Leung et al., 2013; Chan et al., 2012). 

Another method to enhance NK activity is the use of anti-KIR antibodies to block inhibitory 

KIRs; this approach was recently shown to be safe in patients with AML (Vey et al., 2012). 

The depletion of host regulatory T cells (Treg), which may inhibit the proliferation of donor 

NK cells, may also improve the efficacy of NK cell therapy. A recent clinical trial 

demonstrated that depletion of host regulatory T cells by an IL-2 diphtheria toxin fusion 

protein was associated with increased NK cell expansion and higher response rates in adults 

with relapsed AML (Bachanova et al., 2014). As mentioned above, bispecific killer cell 

engagers are alternatives to enhance the antileukemic effects of NK cells (Gleason et al., 

2014).

T cell recognition of AML

The normal role of myeloid cells in tolerizing the immune system to self antigens would be 

expected to constrain the immune repertoire’s capacity to recognize AML blasts. 

Nevertheless, tolerance to AML is incomplete, and elements of a specific adaptive T cell 

response are detectable against proteinase 3, WT1, TERT, mutated nucleophosmin, and 

other antigens expressed by AML cells (Greiner et al., 2012; Rezvani et al., 2012). Many 

documented responses are observed in the context of allogeneic HSCT, though anti-tumor 

responses have also been detected in patients only receiving conventional chemotherapy 

(Montagna et al., 2006; Norde et al., 2009). Further, some data indicates that the extent of T 

cell responses positively correlates with response to therapy (Montagna et al., 2006). Such 

findings must be interpreted cautiously and may reflect differences in the immunogenicity of 

tumors with otherwise different biologies or other confounding influences rather than a 

causal protective role of specific T cell responses in AML progression.

In the context of HSCT, where rapid expansion of pre-existing and newly formed allogeneic 

lymphocytes in the setting of lymphopenia promotes T cell reactivity, donor-derived T cells 

protect against relapse, establishing their anti-leukemic activity (Kolb, 2008; Rezvani et al., 
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2012). Little is known about whether and how the immune system normally shapes the 

development and evolution of AML. A clearer understanding of this will be important to 

optimize disease-specific immunotherapies.

Targeting AML with adoptive T cell immunotherapy

Efforts to enhance AML-specific T cell responses through tumor antigen vaccination using a 

variety of formats have met with mixed successes (Van Tendeloo et al., 2010; Uttenthal et 

al., 2014; Schmitt et al., 2009; Kuball et al., 2011). An alternative approach to T cell 

immunotherapy is to expand tumor specific T cells ex-vivo, and transfer these into the host 

(Ma et al., 2010; Distler et al., 2008; Stromnes et al., 2014). The infusion of activated 

antigen-specific T cells obviates the need for in situ immune stimulation. To ensure the 

availability of large numbers of T cells of desired specificity, these lymphocytes can be 

genetically modified to enforce the expression of pre-selected TCR (Spranger et al., 2012; 

Udyavar and Geiger, 2010). Identification of such receptors has been time consuming in the 

past, though new approaches that expedite the isolation of patient and tumor-specific TCR 

are being refined (Kobayashi et al., 2014). Expanded re-directed T cells have already shown 

clinical promise in melanoma and other cancers (Blankenstein et al., 2015; Robbins et al., 

2011; Johnson et al., 2009). Data is more limited in AML (Spranger et al., 2012; Stauss et 

al., 2008). The potential here is appealing, particularly considering the normal concentration 

of T cells within the bone marrow and other hematologic organs where AML resides.

Due to developmental tolerance in the thymus, many native AML-specific TCR may be of 

low affinity and poorly capable of targeting AML blasts. However, TCR may be developed 

or modified to possess enhanced TCR reactivity (Schmitt et al., 2013; Stone and Kranz, 

2013). Xenogeneic TCR formed by immunizing HLA-transgenic mice or other species may 

allow the production of higher affinity TCR, though these have the potential to themselves 

induce specific immunity due to their non-human origins. Alternatively, we have identified 

using structural analyses and molecular dynamics the presence of an amino acid hot spot, 

mutation of which, by stabilizing hypervariable TCR CDR3 loops, increases TCR binding 

free energy and affinity (Alli et al., 2011). Others have similarly used computational design 

or in vitro evolution techniques to generate high affinity TCR (Pierce et al., 2014; Weber et 

al., 2005; Holler et al., 2003; Li et al., 2005). Caution is necessary when using modified 

TCR (Morgan et al., 2013; Parkhurst et al., 2011). TCR mutations can confer new self 

reactivities, increasing the potential for undesirable responses (Zhong et al., 2013; Holler et 

al., 2003; Udyavar et al., 2009). Indeed, the majority of the free energy of binding of TCR to 

peptide-MHC complexes is directed at the MHC rather than specific antigen, and any 

generic increase in MHC affinity would be expected to shift the recognition profile of TCR, 

converting subthreshold interactions into effective ligand engagements. Thorough analysis 

of the safety profile of modified receptors prior to human application is therefore essential.

TCRs are generally dependent on CD4 or CD8 co-receptors to recognize antigen-MHC 

complexes. As affinity increases, the TCR may become co-receptor independent (Stone et 

al., 2009). One advantage to the affinity maturation of therapeutic TCR is that this can allow 

the adaptation of a TCR for both CD4 and CD8 T cells. Although most work on T cell 

immunotherapy has focused on CD8 effector cells, CD4 T cells have in cases been found to 
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be potent against individual tumors, and are able to support CD8 persistence (Gattinoni et 

al., 2006; Frankel et al., 2010). Co-transfer of both cell types will likely prove advantageous.

AML inhibition of T cell responses

The utility of TCR-retargeted T cells for immunotherapy may be limited by the 

immunodulatory properties of AML cells themselves. Many cases of AML are PD-L1 

positive, and this is upregulated by T cell cytokines, particularly IFN-γ. PD-L1 binds to 

PD-1 on T cells, and downregulates signaling through the recruitment of the SHP-2 

phosphatase (Berthon et al., 2010; Kronig et al., 2014). AML may express IDO, another 

IFN-γ induced gene, which through the depletion of tryptophan and generation of 

degradation byproducts suppresses cellular immunity and can promote regulatory T cell 

(Treg) formation (Curti et al., 2007). Large numbers of Treg may be present in the bone 

marrow microenvironment, these may be increased in the context of AML and serve as an 

additional source for the immunosuppression of therapeutically administered T cells through 

the expression of CTLA-4, production of pericellular adenosine, and other mechanisms 

(Cohen et al., 2005; Ustun et al., 2011; Lichtenegger et al., 2014). Considering the multiple 

inhibitory signals suppressing adoptively transferred T cells, combination immunotherapy 

will likely be important. PD-1 blockade with nivolumumab is now being tested in AML 

(clinical trials.gov; NCT02275533). Any effectiveness will likely to be magnified in the 

setting of adoptive immunotherapy where large numbers of tumor–specific T cells are being 

transferred. Likewise, blockade of CTLA-4 with ipilimumab and the administration of 

adenosine antagonists and IDO inhibitors under development may further create a tumor 

environment that enhances the effectiveness of cellular immunotherapy (Ohta and 

Sitkovsky, 2014)(clinical trials.gov; NCT01757639).

Successful cellular therapies have the potential to generate prolonged T cell engraftment. 

The kinetics of therapeutic T cell expansion, tumor cytolysis, and clinical effect may 

therefore differ substantially from that of conventional pharmacologics or biologics, whose 

activities follow more readily defined pharmacokinetic and pharmacodynamic parameters. 

As most current T cell epitopes observed in AML are not tumor specific, the risk of 

prolonged myelosuppression accompanies any successful cellular immunotherapeutic 

intervention. Approaches to eliminate these cells should they prove toxic are essential, and 

may include the incorporation of ‘suicide genes’, such as HSV-TK and dimerizable caspase 

9 in therapeutic constructs or therapeutic treatment prior to immunoablative therapy, as may 

occur pre-HSCT (Jones et al., 2014).

Retargeting T lymphocytes with chimeric antigen receptors

As an alternative to re-targeting T cells through TCR gene transfer, these cells can be 

redirected using chimeric antigen receptors (CARs). CARs are engineered cell surface 

molecules that link a target cell ligand-recognition domain to signaling regions from the 

TCR. For targeting tumors, the most common ligand recognition domain is a single chain 

antibody Fv (scFv) that recognizes a tumor or lineage-specific cell surface molecule (Eshhar 

et al., 1993). This is linked to a stalk extending the scFv from the cell surface, 

transmembrane domain, and intracytoplasmic signaling domains. First generation CARs 
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typically incorporated the TCRζ cytoplasmic domain, which includes 3 ITAM motifs, or 

other ITAM-bearing CD3 signaling regions for transducing a signal mimicking that of the 

TCR (Geiger et al., 1999). We and others demonstrated that tandem signaling domains 

incorporating TCR along with costimulatory or co-receptor signals provide more robust 

stimulation. This can enhance receptor-modified T cell survival, expansion, and activity 

(Geiger et al., 2001; Finney et al., 1998). A variety of supplemental signaling domains have 

now been successfully tested in these second and third generation CARs (Sadelain et al., 

2013). No single optimal design, though, has been identified.

The clinical effectiveness of CAR-modified T cells was first established in B cell 

malignancies. A CD19-41BB–ζ CAR, originally developed by Imai and Campana and 

clinically applied by June and colleagues, and a CD19-CD28-ζ CAR developed by Brentjens 

and Sadelain have found particular utility in refractory acute lymphoblastic leukemia and 

more mature B cell leukemias/lymphomas (Gill and June, 2015; Imai et al., 2004; Brentjens 

et al., 2013). This has raised the possibility that myeloid leukemias may also be effectively 

targeted with CAR-modified T cells.

The challenges to extending the success with B cell specific CARs to AML are significant. 

Except for the initial success of CD19 CARs, other CAR types that have been clinically 

tested have yet to show utility. Indeed, reports of significant adverse reactions to some 

CARs, potentially secondary to lineage infidelity, anti-CAR antibody development, and 

cytokine release syndrome prompt caution and indicate the essential role of CAR design and 

pre-clinical testing in generating effective receptor structures (Magee and Snook, 2014).

Of foremost importance in CAR design is the recognition domain. AML comprises a diverse 

array of myeloid cancers, and it is unlikely that a single target will be effective for all 

subtypes. Moreover, AML is believed to be comprised of a less mature population of cancer 

stem cells embedded within a more mature leukemic population. Effective therapy will 

require eradication of these transformed stem cells as well as their more mature descendants.

We and others have focused on CD33 as a CAR target in AML (O’Hear et al., 2015; 

Pizzitola et al., 2014; Kenderian et al., 2015). Pre-clinical analyses in vitro and in NOD-

SCID models support the utility of CD33 CAR-modified T cells. CD33’s widespread 

expression on leukemic cells and absence of downmodulation after GO treatment indicates 

that it is a robust target. In a pilot study, a single patient was treated with a CD33-specific 

CAR (Wang et al., 2015). Suggestions of a beneficial effect were present. Whether leukemic 

stem cells uniformly express CD33 remains to be established. CD33’s absence from some 

multipotent myeloid progenitors may limit its effectiveness in some cases of AML (Walter 

et al., 2012). However, AML stem cell populations remain poorly characterized, and may be 

fixed at different stages of maturity even within a single subtype of AML. It appears that 

leukemic stem populations are CD33 positive in some tumors. Several additional AML 

antigens have been proposed and/or studied as alternatives to CD33, including CD44v6, 

CD123, and LeY (Ritchie et al., 2013; Gill et al., 2014; Casucci et al., 2013; Pizzitola et al., 

2014). Comparative analyses will be necessary to establish the relative utilities of these 

different targets.
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Beyond identifying an optimal target antigen, many of the same obstacles relevant to T cell 

immunotherapy, will be expected with CAR-modified T cells. This includes the effects of 

PD-L1, IDO, or other inhibitory molecules in disabling the therapeutic response, and 

localization and persistence of adoptively transferred therapeutic T cells with AML blasts. In 

addition, the biology of different chimeric signaling domains remains poorly resolved. 

Optimal signaling may depend on the tumor environment, coordinate positive and negative 

signals from tumor cells, and the differentiation status of the infused T cells. In this regards, 

studies have varied in their identification of optimal therapeutic cell type, though modified 

naïve or central memory cells may prove more efficacious than effector T cells (Klebanoff 

et al., 2012; Chan et al., 2015; Terakura et al., 2012).

Conclusions

Fundamental approaches to the treatment of AML have remained largely unchanged over 

the past several decades. Whereas some improvements in survival have been observed with 

advances in ancillary care and intensification, a shift in how this often refractory class of 

tumors is approached is required. Immunotherapy, by attacking the tumor based on its 

antigenic structure, has the potential to complement current therapies that take advantage of 

altered tumor biochemistry. Of particular interest are newly developed cellular therapies. 

Significant progress has been made in the application and redirection of T and NK cells 

against AML that will be increasingly vetted in patients in upcoming years. These therapies 

show substantial potential in model systems. Fully realizing their capabilities will entail 

optimizing their function, minimizing their toxicity, and establishing how conventional and 

immunologic therapies can be combined in patients with AML.
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Figure 1. Adoptive immunotherapy of AML
Depiction of methods to target AML, including: (A) Infusion of AML-antigen-specific 

cytolytic T lymphocytes. These can be generated through the in vitro expansion of tumor 

antigen-specific lines or transduction of T cells with tumor-specific TCR; (B) Infusion of 

tumor antigen-specific CD4+ T cells. These may promote direct tumor lysis or act through 

their ability to support CD8+ T cell expansion and memory; (C) transfer of CAR-modified 

CD8+ T cells re-directed through a scFv-TCR hybrid specific for lineage or tumor antigens 

expressed by AML blasts; (D) infusion of AML-specific antibodies modified to enhance 

their cytolytic potential through conjugated therapeutics; (E) transfer of NK cells that are 

activated and target AML in response to FcR binding, AML-specific antibodies or other 

activating receptors. NK cells can be infused fresh after collection or activated and expanded 

in vitro; (F) transfer of NK cells modified to express activating CAR. Blue arrows indicate 

direction of helper activities, red arrows indicate cytotoxic activities.
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