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Abstract

The Penn Ovarian Aging Study tracked a population-based sample of 436 women aged 35-47 

years to determine associations between reproductive hormone levels and menopausal symptoms. 

We develop a joint modeling method that uses the individual-level longitudinal measurements of 

follicle stimulating hormone (FSH) to predict the risk of severe hot flashes in a manner that 

distinguishes long-term trends of the mean trajectory, cumulative changes captured by the 

derivative of mean trajectory, and short-term residual variability. Our method allows the potential 

effects of longitudinal trajectories on the health risks to vary and accumulate over time. We further 

utilize the proposed methods to narrow the critical time windows of increased health risks. We 

find that high residual variation of FSH is a strong predictor of hot flash risk, and that the high 

cumulative changes of the FSH mean trajectories in the 52.5-55 year age range also provides 

evidence of increased risk above and beyond that of short-term FSH residual variation by itself.
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1 Introduction

The Penn Ovarian Aging Study (Freeman et al., 2011) is a longitudinal study of a 

population-based sample of 436 women aged 35-47 years selected via random digit dialing 

in Philadelphia County, PA during 1996-97, and followed biannually through 2010. The 

study goal is to explore the associations between reproductive hormone levels and 

symptoms in the transition to menopause. Changes in hormone levels alter menstrual 

bleeding patterns, culminating in the cessation of menstruation, which marks the end of a 
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woman's reproductive years. This course of events, termed perimenopause, can last for 5 or 

more years, and coincides for a majority of women with the development of hot flashes, 

night sweats, and other symptoms. The extent to which these symptoms are associated with 

reproductive hormone levels, trends over time, or fluctuations is not well understood. This 

lack of understanding is due in part to limited prospectively collected data, and is also due to 

limitations in our ability to model various aspects of this dynamic process.

In this paper, we focus on the relationship between follicle stimulating hormone (FSH) and 

presence and severity of hot flashes. FSH stimulates folliculogenesis, an important factor in 

ovarian aging; thus there has been interest in using longitudinal FSH information to define 

menopause transition stages as discussed by Sowers et al. (2008). While elevated FSH is an 

indicator of ovarian aging, Sowers et al. (2008) found both acceleration and deceleration 

periods in FSH levels were predictive of time to final menstrual period, suggesting that 

features other than just the level of FSH may give rise to menopausal symptoms. 

Exploratory analysis of the FSH data in the Penn Ovarian Aging Study shows both acute and 

gradual increase periods of FSH levels in the population level, and have given rise to clinical 

questions about whether it is the rate of increase in FSH that signal risks of severe 

menopausal symptoms. Moreover, identifying critical ages when women are at increased 

risk for symptoms would be helpful for making treatment decisions. To better understand 

the association between trajectories of FSH and risk of severe menopausal symptoms in 

perimenopausal women, we develop a joint modeling method that 1) makes efficient use of 

the available information in the longitudinal FSH trajectories, by including long-term trends 

captured by the mean trajectories or the time varying change rates in the long-term trends 

captured by the derivatives of the mean trajectories as potential predictors in the primary 

outcome submodel while also adjusting for the previously identified effect of the short term 

variation captured by the variance of the residuals (Jiang et al., 2014); and 2) allows 

selection of the longitudinal FSH features within certain clinically relevant time windows to 

predict the risk of hot flash severities in the primary outcome submodel, where the effects 

outside this particular time window are assumed to be negligible.

Joint models of longitudinal and health outcome data have been extensively developed in the 

literature. The early developments of such joint models were mainly motivated by HIV/

AIDS clinical trials and cancer research and often focused on summarizing mean 

longitudinal trends as time-varying predictors in survival outcome models (Tsiatis et al.,

1995; Muthén and Shedden, 1999; Wang and Taylor, 2001; Law et al., 2002; Song et al. 

2002; Brown and Ibrahim, 2003a, 2003b; Ibrahim et al., 2004; Yu et al., 2008; among many 

others). In our work, we extend the existing joint modeling approaches and shift the focus to 

relating scalar response and functional predictors in a functional data analysis (FDA) 

paradigm. Our modeling strategies are motivated by the need to properly account for three 

key features of the FSH trajectories in the longitudinal submodel: nonlinear trajectories 

observed at unequally spaced time points, short-term elevated variation, which is shown by 

the residual variance, and the heterogeneity nature among individuals, which is shown by 

the mixture components in both the mean trajectory and the residual variance. Briefly, our 

work brings together advanced statistical ideas including FDA, robust and semi-parametric 

inference, and joint longitudinal and outcome modeling in novel ways.
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Unlike the typical FDA practice to smooth each individual trajectory independently of one 

and another, we formulate a robust semi-parametric mixed effect model for all trajectories, 

where we simultaneously model both the underlying mean and residual variance of the 

longitudinal FSH trajectories. We consider the Bayesian penalized spline approach by Lang 

and Brezger (2004), a Bayesian version of the penalized splines proposed by Eilers and 

Marx (1996), to estimate the underlying mean FSH trajectories. In contrast to fully 

parametric splines, penalized splines are not as sensitive to the exact number and location of 

the knots as long as enough knots are being used, since “unnecessary” knots will be 

smoothed away by shrinking random effects toward 0. This feature enhances the flexibility 

to accommodate individual curve fitting of FSH values when these subject-level fitted 

curves may differ from each other. Examples of applications of penalized B splines for 

longitudinal data include Durban et al. (2005), who modeled the individual heights of 

children suffering from acute lymphoblastic leukemia from a clinical trial conducted at Dana 

Farber Cancer Institute, and Chen and Wang (2011), who considered modeling longitudinal 

systolic blood pressure data from Framingham Heart Study. For the residual variance, 

instead of treating it as a nuisance parameter as many others did, we follow Elliott et al. 

(2012) and Jiang et al. (2014) to model the within-subject residual variance in the FSH 

trajectories and study its prediction ability in the primary outcome submodel. Finally, 

considering the bimodal nature in the FSH trajectories as suggested in Jiang et al. (2014), 

also shown in Figures 3 and 7 in Sections 3 and 4, respectively, we allow for mixtures for 

both mean trajectories and residual variances to reflect early or late rising patterns in the 

FSH mean trajectories, crossed with high or low level of short-term variation patterns. The 

assumed structure nicely reflects the heterogeneity features in the FSH observations. Besides 

modeling individual trajectory via spline fitting, we extend the normal-error assumptions of 

Jiang et al. (2014) by allowing for heavier tailed t-distributions for residual errors to avoid 

the potential influence of outlying observations.

In the primary outcome submodel, while also adjusting for the effect of the residual 

variance, we treat the smooth mean trajectories estimated from the longitudinal submodel, or 

the corresponding derivatives as functional predictors linked to the risk of hot flash 

severities through a FDA regression model in the sense of Ramsay and Dalzell (1991) and 

James (2002) among many others. This modeling strategy implicitly allows the effects of 

FSH histories (i.e., FSH values up to a particular time point) or the time-varying change 

rates of FSH histories that are represented by functional coefficient curves to be time 

varying and accumulative over time. To estimate the functional coefficient curves, we also 

propose to use the Bayesian penalized spline approach by Lang and Brezger (2004). In 

addition to the desirable semi-parametric features mentioned above, the Bayesian penalized 

spline approach also allows for simultaneous evaluation of the uncertainty of the estimated 

functional coefficient curves by providing point-wise Bayesian credible intervals, which 

leads to identification of critical time windows of increased risk of health outcome of 

interest, while such intervals are typically obtained by bootstrap methods in frequentist FDA 

regression. To the best of our knowledge, such a modeling strategy has not been considered 

in the joint modeling literature. Instead, most of the joint modeling developments have 

focused on using 1) a summary of important features in the longitudinal trajectories, such as 

the random effects (RE) and the latent classes (LC); or 2) the last available “true” value as a 
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time dependent covariate, with the earlier values being considered irrelevant to the outcome 

of interest. In the context of joint modeling of continuous longitudinal data and and a binary 

outcome, Jiang et al. (2014) contrasted the use of RE and LC approaches and discussed how 

to utilize the information they jointly provide to fully take advantage of each approach. 

Thorough reviews of the joint modeling of continuous longitudinal data and and time-to-

event outcomes are given by Tsiatis and Davidian (2004), Ibrahim et al. (2010) and 

Rizopoulos (2012).

The rest of this paper is organized as follows. In Section 2, we provide the statistical 

modeling, inference and model-checking procedures that are needed to conduct the proposed 

analysis of Penn Ovarian Aging data. In Section 3, we present the key features in Penn 

Ovarian Aging data, which has motivated the modeling and methodology strategies given in 

Section 2, as well as how we use these strategies to reach new scientific findings and 

discoveries in linking severe hot flashes risk to FSH longitudinal features for the Penn 

Ovarian Aging Study. We conclude with a discussion in Section 4. Algorithms to implement 

the Gibbs sampler for our proposed models are available in the Web-based supporting 

materials.

2 The proposed model

In this section, we present our joint FDA regression models for the longitudinal FSH levels 

to predict severity of hot flashes modeled using ordinal multinomial probit models.

• Specifically, the longitudinal submodel for the FSH data is given by:

(1)

where Yij denotes the observed longitudinal FSH values for subject i, i = 1, …, n at 

time tij, j = 1, …, ni, μi(t) = μ(bi;t) denotes the mean of Yij at time t, and the vector 

μi = (μ(bi; ti1), …, μ(bi; tini))
T defines the mean trajectory or trajectory for subject i, 

where bi = (bi1, …, biL) is the vector of the random effects that reflects the subject-

level trajectory patterns, and ϕl(tij), l = 1, …, L are the B spline basis functions.

To flexibly model the mean trajectory μi, we use truncated power splines consisting 

of piecewise polynomials of certain order connected at pre-specified knot locations 

(Ruppert et al., 2003). Given the same order and knot locations, truncated power 

splines and B splines are equivalent in the sense that there exist unique one-to-one 

linear transformations between these two sets of spline basis functions (Ruppert et 

al., 2003), leading to the same fitted values from these two splines in the regression 

setup. However, the B spline is more numerically stable than the truncated power 

spline because the B spline basis functions are almost orthogonal while the 

truncated power spline basis functions are not. Therefore, we use B spline basis 
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functions ϕl(tij) ≡ ϕl,d(tij), l = 1, …, L of degree d = 3, where ϕl,3(tij) is obtained by 

the recursion relation:

for knots at points k1, …, kL−d−1, where ϕl,0(tij) = I(kl ≤ tij ≤ kl+1). The number of 

interior knots is denoted by Jμ(t), such that  with L = Jμ(t) + d + 1. We 

defer the discussion of the selection of knot points to Section 2.5.

To allow for “heterogeneity” in the mean trajectory in the sense of Growth Mixture 

Models (Verbeke and Lesaffre, 1996; Muthén and Shedden, 1999; Jiang et al., 

2014), we consider a finite mixture of normal distributions for the random effect bi,

(2)

where, Di defines the corresponding latent class membership for the mean 

trajectory class and βd = (βd1, …, βdL)T. Thus, the fixed effect coefficients βdl, l = 1, 

…, L determine the shape and also the smoothness of the mean trajectory for the dth 

latent class, defined as . Following Lang and 

Brezger (2004), we use Gaussian random walk priors on βd to penalize large 

differences among coefficients of the adjacent spline basis and therefore control the 

smoothness of the mean trajectory curve to avoid potential overfitting. The specific 

prior distributions are given in Section 2.3. The random coefficients bil, l = 1, …, L 

then capture the individual deviations from the class specific mean trajectory.

The residual εij denotes the deviation of Yij from the subject specific mean at tij and 

is assumed to follow a Student's t-distribution with v degrees of freedom, assuming 

mean 0 and scale . The value of v is assumed to be known. Thus the variance of 

Yij is equal to , which can be interpreted as a measurement of the short term 

variability around the mean trajectory μi. In the case of v = ∞, εij is normally 

distributed with mean 0, variance  and mij ≡ 1. To allow for over-dispersion and 

“heterogeneity” in the within-subject scale parameter , we assume a mixture of 

log normal distributions,

(3)

where Ci defines the corresponding latent class membership for the variance class 

and we assume Ci ╨ Di so that the common assumption that for subject i, the mean 

trajectory μi(t) and the residual εij are independent still holds.
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• The outcome submodel for hot flash severities is defined through an ordinal probit 

model that assumes there exists a latent continuous variable underlying the 

observed ordinal outcomes. Specifically, let Wi denote this underlying latent 

variable. We observe the ordinal outcome oi = s, s = 0, …, S, if this latent variable 

Wi falls between the cutoff γs and γs+1, that is,

where these cutoffs between categories is subject to the common constraint that 

−∞ = γ0 ≤ γ1 ≤ … < γS+1 = ∞ with one reference cutoff, usually γ1, fixed at value 

0. Then the distribution of this latent variable Wi is specified conditional on 

individual longitudinal mean trajectories and variances as follows:

(4)

where xi is a vector of baseline covariates with associated (constant) parameter λ0, 

and the functional coefficient function θ0(t) represents the effect of subject specific 

mean trend μi(t) at time t while adjusting for the mean trends at other time points 

within the time window T. The purpose of considering the integral over the chosen 

time domain T, i.e., ∫Tμi(t)θ0(t)dt is to identify critical time windows of elevated 

outcome risks, which have several advantages over simply summing up over the 

observed time points tij, j = 1, …, n. First, longitudinal observations often have 

missing values and can be measured at different time points (known as unbalanced 

data) and hence summation over the observed time points becomes problematic. 

Second, μi(t) is a smoothed functional representation of the underlying mean 

function with the individual level variability “captured” by . Third, since we have 

considered a mixed effect model to smooth all individual-level curves and hence 

borrow strength across individuals, we obtain more stable estimates of μi(t) in 

comparison to smoothing μi(t) individually. Fourth, an integral over a chosen time 

domain implicitly uses the information at infinite time points within time window T 

while summation only uses the information at finitely observed time points. As in 

the mean trajectories, we express  using cubic B spline basis 

 and the associated coefficient vector θ0̃ = (θ̃
01, …, 

θ̃0K0)T, with θ̃
0K following a random walk prior, given in Section 2.3, to avoid 

overfitting. Given that we express μi(t) by  and θ0(t) by ψ0(t)Tθ̃0, thus 

, where ϕ(t) is a vector of L basis 

functions chosen to express μi(t) in the longitudinal submodel and ψ0(t) is a vector 

of K0 basis functions; . We can calculate or evaluate 

numerically  for any given spline basis functions and the estimation of unknown 

parameters in the outcome primary model becomes fully parametric.
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Alternatively, one may postulate that the cumulative changes of the individual trajectories 

are potentially predictive of the outcome of interest. To accommodate such a possibility, we 

can consider the first derivative of μi(t) i.e.,  as a functional predictor by 

taking advantage of the nice properties of B spline of continuity and replace the 

specification (4) for the outcome model by the following alternative form,

(5)

where, as for θ0(t), the functional coefficient function θ1(t) can be interpreted as the effect of 

the derivative of mean trend  or the rate of change in  at time t while adjusting for 

the values of  at other time points within the time window T. To emphasize the fact that 

we can use different spline basis functions to express θ1(t), we express 

 using a different set of B spline basis 

and the associated coefficient vector θ1̃ = (θ̃
11, …, θ̃1K0)T. A penalized approach was used 

by requiring a random walk prior on θ̃
1, i.e., . Similarly, we 

have , where ϕ′(t) = ∂ϕ(t)/∂t given ϕ(t) is a 

vector of L basis functions chosen to express μi(t) in the longitudinal submodel and ψ1(t) is a 

vector of K1 basis functions; .

2.1 Likelihood specification

Let  where we 

assume each parameter in ϕ has an independent prior distribution, with the joint prior 

distribution denoted by π(ϕ), and z includes all unobserved latent variables, i.e., z = (b, σ, C, 

D)′. The observed data x consists of the longitudinal trajectories y1,…, yn and the observed 

outomes o1,…, on. Then the complete data likelihood of ϕ based on (x, z) is given by

(1)

where Φ(·) denotes the cumulative distribution function for standard normal distribution and
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2.2 Data augmentation step to impute missing data

Given the minimum number of available repeatedly measured FSH levels in our final 

sample (ranging between 6 and 26 per woman), we are limited as to the number of knots 

when choosing cubic B spline basis functions to express μi(t). To maximize the number of 

knots we can consider, we fill in those with fewer than 26 observations based on data 

augmentation within each iteration of Gibbs sampling (Chapter 10 in Little and Rubin, 

2002). When assuming missing at random (MAR) missing data mechanism, this data 

augmentation procedure proceeds as follows,

• draw  from p(Ymis | ϕ, Xobs)

• draw ϕ(t+1) from p(ϕ | Xobs, Ymis)

where ϕ denotes model parameters, Ymis denotes the missing longitudinal observations of 

FSH levels, and Xobs denotes all observed data including observed longitudinal observations 

and primary outcome of interest. The above simulation leads to draws from the joint 

distribution of (ϕ, ymis) given observed data Xobs. Therefore, this procedure leads to the 

same inference about ϕ as when we only focus on the marginal distribution of ϕ given 

observed data Xobs. This trick allows us to put in more knots to fully take advantage of the 

penalized spline approach that is free from knot location selection given a sufficient number 

of knots.

2.3 Prior specification

We propose a fully Bayesian approach to estimate model parameters. For the mixture 

normal distribution of the random effects, we assume a first-order Gaussian random walk 

prior as proposed by as Lang and Brezger (2004):  with 

diffuse prior βd1 ∼ N(0, 100) for the initial coefficient, and  to control the 

smoothness of the fitted curves. We do not impose restrictions on the structure of the 

variance-covariance matrix for the random effects Σd. To avoid problems with unbounded 

likelihoods in normal mixture models with unstructured variance-covariance matrices (Day 

1969), we use an empirical Bayes prior proposed by Kass and Natarajan (2006): Σd ∼ 

Inverse-Wishart(df = r, Λ), where , where b̃
i is given by OLS 

estimator of bi for subject i, and r is the dimension of bi.

For the mixture log normal distribution for the residual variances, we used diffuse priors: μc 

∼ N(0, v), τ2 ∼ IG(a, b) with v = 1000 and a = b = .001. For the class membership 

probabilities, we assume conjugate Dirichlet(4,…, 4) on both  and 

 (Frühwirth-Schnatter 2006); this is equivalent to assuming a priori 4 

observations in each class, avoiding the existence of empty classes.

Lastly, in the probit submodel we assign independent priors N(0, 9/4) for the α0 and every 

element of λ0; for the coefficients associated with functional coefficient function θ0(t), θ̂0 = 

(θ0̂1,…, θ̂
0K0)T, similarly we use a first-order Gaussian random walk prior, i.e., 
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 with θ̂01 ∼ N(0, 9/4) and , where the 

prior variance 9/4 is chosen to bound the probabilities of oi = s, s = 0,…, S to be away from 

0 and 1 (Garrett and Zeger, 2000; Elliott et al., 2007 and Neelon et al., 2011). We put flat 

uniform priors on γs for s ∉ [0, 1, S + 1], that is, γs ∼ Uniform(−∞, ∞).

2.4 Posterior computation

Gibbs sampling is used to obtain draws from the corresponding posterior distributions. For 

(α0, λ0, θ˜ | b, σ, o) we use the Albert and Chib (1993) data augmentation method for probit 

regression models. The draws of ( , μc, γ, bi, oi, Wi, {yij}j) for i = 1, …, n are obtained 

by the inverse cumulative distribution method. The exact specification of all priors and 

MCMC sampling procedures are provided in the Web-based supporting materials.

For each model, we ran three chains of 100,000 iterations from diverse starting points, 

discarding the first 50,000 as burn-in and retaining every 10th draw to reduce 

autocorrelation. Gelman-Rubin statistic √R̂ (Gelman et al., 2003) (square root of total 

variance to within-chain variance ratio) were used to assess the convergence of the MCMC 

chains. For the population level parameters, the maximum √R̂ = 1.030 for models assuming 

less than 3 classes; and when assuming 3 classes for either mean trajectory or the variance 

class, the maximum √R̂ = 1.184. For the well-documented issue of “label switching” in finite 

mixture modeling (Redner and Walker 1984), various solutions have been proposed, 

including the relabeling algorithms by Stephens (2000), Jasra et al. (2005) and Rodríguez 

and Walker (2012). We applied the post-processing relabeling algorithm by Stephens 

(2000), which considers all possible permutations of class assignments at each iteration of 

the Gibbs sampler and chooses the one which minimizes Kullback-Leibler (KL) divergence 

of the estimated vs. true probabilities of class membership, thus maximizing the posterior 

probability so that the labeling of classes was consistent with the previous assignments. We 

post-process the MCMC chains using Stephen's algorithm to “untangle” the draws for model 

parameters.

All the calculations were performed by calling stand alone C++ codes in R, developed using 

an open source C++ library for statistical computation, the Scythe statistical library 

(Pemstein et al., 2007), which is available for free download at http://scythe.wustl.edu.

2.5 The choice of the number of classes and number of knots in penalized splines

We consider the deviance information criterion (DIC), proposed by Spiegelhalter et al. 

(2002), to select both the number of components for the latent classes and to choose the 

number of knots in the penalized splines. DIC uses the discrepancy between the posterior 

mean of the deviance  and the deviance evaluated at the 

posterior mean D(ϕ̄) = −2 log f {x|E(ϕ|x)} to estimate the effective number of degrees of 

freedom in the model pD. DIC is then given by the analog of the Akaike Information 

Criterion (AIC):
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In our setting, f(x | ϕ) where x = (yobs, o)′ consisting of the fully-observed data is not 

available in closed form; instead we use the approach outlined in Celeux et al. (2006) to 

obtain

where integration over the latent variables z = (b, σ, C, D, ymis)′ is obtained via numerical 

methods.

2.6 Goodness of fit evaluation

We assessed the model goodness of fit to the data in two ways: pivotal discrepancy 

measures (PDMs) (Johnson, 2007; Yuan and Johnson, 2012), which yields an overall 

goodness-of-fit measure for the longitudinal predictor component, and area under the 

receiver-operator characteristic (ROC) curve (AUC), a goodness-of-fit measure focusing on 

prediction of the ordinal outcome of interest.

In contrast to more general posterior predictive distribution measure of fit (Gelman et al., 

1996), PDMs are defined to depend only on the data and the model parameters with a known 

distribution. If the model is correctly specified, the PDMs evaluated at the true parameter 

value and the draws from the posterior distribution should have the same sampling 

distribution. Therefore, model adequacy can be tested by treating the PDMs as a test statistic 

to obtain a uniformly distributed p value. However, the posterior samples of PDMs are not 

independent as they are all derived from the observed data (Johnson, 2004), thus p-value 

calculation is difficult. Instead, Johnson (2007) and Yuan and Johnson (2012) focus on the 

upper bound of p values and hence the upper bound of a p value being less than 0.05 

definitely provided strong evidence of model inadequacy.

To examine the fit of the longitudinal trajectories, we consider subject level PDMs, where 

for subject i, we let . When the assumed longitudinal 

submodel defined in (1) is correct, the PDM Di is  distributed. We use repeated 

posterior draws to obtain the sampling distribution of PDMs and compute the upper bounds 

of the p values based on the ordered statistics of PDMs using the approach by Yuan and 

Johnson (2012).

Second, we assessed the prediction of the outcome using receiver-operator characteristic 

(ROC) curves, in particular the area under the ROC curve (AUC). ROC curves plot true 

positive rate (TP) versus false positive rate (FP) for all possible cutoffs based on predicted 

 obtained from (4) for s = 0,…, S. The ROC curve and AUC were 

computed at each MCMC iteration using the ROCR package in R (Sing et al. 2005). The 

ROC is computed by ordering the observations (i) = 1, …, n so that P̂(o(i) = 1) ≥ P̂(o(i+1) = 

1), computing changepoints c = 2, …, nc, nc ≤ n where the observations change from 

positive to negative (i.e., o(c−1) = 1, o(c) = 0), and plotting 

 on the horizontal axis versus  on 
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the vertical axis. Area under the ROC is then computed using a trapezoidal approximation. 

The posterior mean AUC is calculated as the average AUC's across MCMC iterations. To 

obtain the posterior mean and the pointwise 95% credible interval of ROC curve, we choose 

250 points equally spaced along the FP axis and take the vertical average or 95% quantiles 

of TP's at the 250 chosen points. This approach is referred to as vertical averaging of ROC 

curves at fixed FP rates by Fawcett (2006).

3 Predicting risks of hot flash severities from longitudinal follicle 

stimulating hormone data

In the Penn Ovarian Aging Study, participating women had their hormone measures taken 

annually during the early follicular phase of a menstrual cycle for 2 sequential menstrual 

cycles, with up to 13 years of follow-up available at the time of our analysis. We focus our 

analysis on the 234 women who 1) had not experienced hot flash symptoms at baseline, 2) 

had baseline measurements of BMI and smoking status (0 or 1) that are to be included as 

baseline covariates in the outcome submodel, and 3) had at least 6 measurements of FSH 

levels. Among this restricted sample, 144 (62%) women had fully participated in the study. 

Among the remaining 90 (38%) women, 42 of them dropped out after at least 6 assessment 

periods, while 48 of them had either sporadically skipped the assessments or dropped out of 

the study in the very beginning but came back to the study later on when increased 

incentives were offered. Nelson et al. (2004) examined the factors that may predict the 

participation after six assessment periods and concluded that dropping out was likely 

random; for those who came back to the study because of increased incentives, their initial 

dropout was likely due to personal reasons that were not symptom related. FSH values could 

be missing due to lab errors or missing blood samples (7.1%), which is likely to be missing 

at random. Further, FSH values were censored if a woman was 1) pregnant and/or breast 

feeding (0.3%) 2) hysterectomy with or without oophorectomy (3.0%) 3) taking exogenous 

hormone replacement therapy (1.4%) 4) taking oral contraceptives (2.5%) 5) taking cancer 

treatment medications (0.6%) 6) taking other estrogen (0.2%) during the follow-up. The 

average number of available FSH levels per woman is 18.7 (range: 6-26) in our final sample.

We let yij denote the natural log transformed FSH levels i.e., log(FSH) and oi denote the 

ordinal outcome of interest, severity of hot flashes (0, 1, and 2), defined as oi = 0 if never 

had severe hot flashes (that is, severity score < 2 throughout the follow up period); oi = 1 if 

had severe but not more severe hot flashes (that is, severity score at least once =2 or once =3 

that occurred before 40 yrs. old) and oi = 2 if had more severe hot flashes (that is, severity 

score at least once =3 after 40 yrs old). In our final sample, 117 (50%) never experienced 

any severe hot flashes during follow-up (severity score=0), 80 (34%) had a severity score of 

1, and 37 (16%) had a severity score of 2. Since most women start to experience menopausal 

related symptoms between the age of 45 and 50 and reach menopause by the age 55, we 

consider T = [45, 55] as a potential risk time window in our analysis for the impact of 

changes in FSH levels on risk of severe hot flashes.

We use the longitudinal submodel defined in (1) to describe longitudinal measured FSH and 

the outcome model defined in (4) to relate long- and short-term FSH characteristics to the 

risk of severe hot flashes. Preliminary analysis suggested using cubic B spline basis 
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functions with 1 to 3 inner knots to express μi(tij) and cubic B spline basis functions with 1 

to 5 inner knots to express the functional coefficient function θ0(t). Thus we consider models 

with 1, 3 or 5 knots, putting these knots at the equally spaced quantiles of the distinctly 

observed ages of these women (Ruppert et al. 2003). This is equivalent to assuming 

piecewise cubic orthogonal polynomials connected at those chosen knot locations. Next, we 

consider the number of components for both mean trajectory and variance classes. Previous 

analysis of fitting mixture distributions for both the random effects and variances (Jiang et 

al. 2014) successfully identified 1 mean trajectory class and 2 variance classes under 

normality assumption for εij. However, our current approach assumes a t–distribution for εij 

that will potentially impact the effect of any outliers on estimation of the mean trajectories, 

which may alter the optimal numbers of components for the mean trajectory and variance 

classes. With all these considerations, we consider KD = 1, 2 and 3 and KC = 1, 2 and 3 in 

our analysis. We attempted to estimate the degrees of freedom ν of the tν distribution by 

treating it as a true parameter in our model, but found its estimation unstable without use of 

a strongly informative prior. Hence we perform a sensitivity analysis, comparing results 

from a normal model with a submodel with t4 and t7 assumptions, respectively, based on 

Jeffreys' (1973, p.65) suggestion to replace the normality assumption with a t–distribution 

with degrees of freedom in the range of 4 to 15. We chose these three scenarios as 

representative settings to reflect the assumptions of presence of extreme outliers, mild 

outliers or absence of outliers relative to a normal distribution in the FSH data.

Table 1 presents the DIC statistics for all models considered: 1,2, or 3 latent classes for the 

mean trajectories and variances; normal, t7 and t4 assumptions for the errors in longitudinal 

submodel; and 1,3 or 5 knots for the longitudinal trajectories or functional varying 

coefficient function respectively. In general, DIC suggests that joint models with t4 

assumption for the longitudinal submodel fits the data better than t7 and much better than the 

normal model. KD = KC = 2 is selected for both t4 and t7. Given these selected number of 

components for both the mean trajectory and variance classes for each model, DIC further 

suggests that 1 knot (i.e., Jμ(t) = 1) at 46.6 years of age for the longitudinal trajectories and 3 

knots (i.e., Jθ0(t) = 3) at 41.6, 46.6 and 51.5 years of age for the functional varying 

coefficient function offers the best balance between goodness of fit and smoothness under 

all these three longitudinal submodel assumptions. Thus we will focus on these three best 

fitting models:

• best fitting normal model: KD = 1, KC = 2 with Jμ(t) = 1 at 46.6 years of age and 

Jθ0(t) = 3 at 41.6, 46.6 and 51.5 years of age

• best fitting t7 and t4 models: KD = KC = 2 with Jμ(t) = 1 at 46.6 years of age and 

Jθ0(t) = 3 at 41.6, 46.6 and 51.5 years of age

For these best fitting models, PDMs also confirmed our previous finding based on model 

selection criterion DIC that the t4 model fits the longitudinal FSH trajectories better than the 

t7 and normal distribution. Figure 1 shows the upper bounds of the p values based on PDMs 

for longitudinal trajectories fitted by all three final models. If the upper bound of a p value is 

less than 0.05, there is strong evidence of inadequate fit. We see that the normal model fits 

the large majority of subjects well, with 7 individual trajectories being considered to have 

inadequate fit by PDMs. Out of these 7 individual trajectories, assuming a t–distribution 
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with 7 degrees of freedom improved the fits of 4 individual trajectories, leaving 3 individual 

trajectories with inadequate fit; among the 3 individual trajectories, assuming a t–

distribution with 4 degrees of freedom resulted in only 2 individual trajectories with 

inadequate fit. Figure 2(a) shows the 2 trajectories that are considered to have inadequate fits 

by all three best fitting models based on PDMs. Figure 2(b) shows the 4 trajectories that 

have upper bounds of p values less than 0.05 by our best fitting normal model but upper 

bounds of p values greater than 0.05 by both our best fitting t7 and t4 models. Clearly, these 

plots suggest that t models with 4 and 7 degrees of freedom show considerably less 

influence by outlying observations than the normal model and they both have almost 

identical fits visually. Finally, Figure 2(c) shows random selected 4 trajectories that have 

upper bounds of p values greater than 0.05 by all three of our best fitting models: the normal 

and t7 and t4 show very similar fits. Therefore, the inadequate fit of longitudinal FSH 

trajectories identified by PDMs is likely due to these varying degrees of extreme outliers. 

Although we could consider even smaller degrees of freedom of t–distribution or more 

heavily tailed distribution for the longitudinal submodel to accommodate these extreme 

outlying observations, the t model with either 4 or 7 degrees of freedom already shows 

almost identical robustness to them and seems to provide reasonably good fit to more than 

99% of the FSH data.

Next, we contrast the estimation results from these models to demonstrate the influence of 

not appropriately accommodating outlying observations. Figure 3 presents the mean 

trajectory components and two variance components identified by the three best fitting 

models. Consistent with the finding reported in Jiang et al. (2014), under the normal model 

assumption, a single-component mean trajectory is favored by DIC. In contrast, under both 

the t7 and t4 model assumptions, a two-component mean trajectory is favored by DIC: the 

major mean class (86% of women) whose FSH levels begin increasing in their late 40s and 

the minor mean class (14% of women) with increasing FSH levels starting around age 40 

capturing a proportion of women who might transition into menopause at an earlier age. The 

variance class has different meanings under t and normal assumptions but in both scenarios 

measure the short term variations in FSH levels: according to their magnitudes, both t and 

normal models would classify them to either “low” or “high” variance classes. Based on the 

posterior estimates of these component-specific parameters given in Table 1 in the Web-

based supporting material, we can see more subtle differences in these estimated mixture 

components under varying assumptions.

Table 2 shows that all three models reach the same broad conclusions: high short term 

variability (its effect is represented by θ3) in the FSH levels is strongly associated with 

increased risks of more severe hot flashes; smoking (its effect is represented by θ2) is 

marginally associated with more severe hot flashes, and there was no association with BMI 

(its effect is represented by θ1) or the individual mean trajectories between age 45 and 55 

(its cumulative time varying effect is represented by θ0(t)). The most dramatic difference 

between the different df models occurs for the estimated functional coefficient θ0(t) that 

captures the cumulative time varying effect of the mean trajectory μi(t). Figure 4 (a), (b) and 

(c) show the estimated functional coefficient θ0(t) by our best fitting normal, t7 and t4 

models, respectively. The estimated θ0(t) under our best fitting normal model tends to have 
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larger effect size (larger magnitude in θ0(t)) before age 53 and an overall wider pointwise 

95% credible interval than the estimated θ0(t)'s under our best fitting t4 and t7 models. All 

three coefficient curves suggest that, when adjusting for the whole history of mean FSH 

levels over the age range of age 45 to age 55, higher mean FSH levels before age 53 reduce 

risk of severe hot flashes, while higher mean FSH levels between age 53 and age 55 increase 

this risk, but there is no conclusive evidence of a true association between the FSH 

trajectory histories and the risk of more severe hot flashes.

Finally, to consider the effect of the derivative of the mean trajectory , or the rate of 

change in the mean trajectory μi(t), we focus on the best-fitting t4 model. Figure 5(a) 

considers the effect of cumulative changes in the mean trajectories across the age range T = 

[45, 55], while Figure 5(b) considers the equivalent effect across the age range T = [50, 55], 

potentially a more clinically relevant age range since the median age of menopause is 51 and 

therefore the hormone dynamics in this time window are more likely to play a role in the 

menopause-related symptoms. When fit over the wider age range, higher values of 

decrease risk slightly before age 50 and increase it over age 50, although the 95% credible 

intervals include 0 by a wide margin. In contrast, a more narrowly-focused age range of T = 

[50, 55] suggested significantly increased risk of severe hot flash associated with higher 

values of  in the age range of 52.5-55, with θ̂1(52.5) = 0.408 (95% CI=0.019, 0.843) 

and θ1̂(55) = 0.514 (95% CI=0.003, 1.290).

Figure 6 shows the receiver-operator characteristic (ROC) curves for the best-fitting t4 

model, comparing the use of the μi(t) and  between age 45 and 55 to discriminate each 

of the hot flash severities (0, 1 and 2), along with the other predictors (residual variance, 

BMI, and smoking status). These ROCs and their associated area under the curve (AUCs) 

suggest that using either functional predictors led to moderately accurate classifications of 

different hot flash severities. Visually, there is not much differences in these ROC curves; a 

further comparison of AUCs also suggests that the predictive performances by using both 

μi(t) and  have negligible differences (ΔAUCs for severity 0, 1, and 2 are -0.012 

(-0.097, 0.070), -0.002 (-0.073, 0.071) and -0.020 (-0.131, 0.091) respectively).

4 Conclusions and Discussion

In this paper we develop a novel joint modeling approach to answer the scientifically 

important research question of how long-term history of FSH values or their rate of change 

affects the risk of hot flash severity, a symptom almost every woman experiences during the 

menopausal transition. While many joint models have been developed in the context of 

cancer research and HIV/AIDS clinical trials in the past decade, most methods focus on the 

features in the “true” underlying longitudinal process (i.e., mean trajectory) that take the 

forms of random effects or latent classes; or alternatively the last available “true” underlying 

value as a time-dependent covariate. Following Elliott et al. (2012) and Jiang et al. (2014), 

we seek the useful longitudinal features in both the mean trajectories and the short-term 

variability. Further we allow the mean of the longitudinal process and the corresponding 

derivatives to be time varying, and their effects on the response to be accumulative over 

time. To summarize, we propose a broadly applicable joint modeling approach that
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1. extends conventional functional data analysis to the framework of joint modeling of 

both the longitudinal (functional predictor) and outcome data, which allows us to 

study different aspects of the features in the dynamics of longitudinal process as 

functional predictors. In particular, we focus on the values and derivatives of the 

mean trajectories at certain time windows as potential functional predictors. This 

will allow us to identify ages of vulnerability and test hypotheses about the 

association between the functional predictors (FSH level, rate of change) and our 

outcome, severe hot flashes, while also adjusting for the previously identified effect 

of short term variability captured by the variance of the residuals (Jiang et al., 

2014).

2. uses flexible mixed effects models with Bayesian penalized B spline basis and 

latent classes in the longitudinal submodel, which relaxes assumptions about the 

specific form of the trajectories and allows uneven spacing and unequal length that 

are densely or sparsely measured to be used as functional predictors.

3. allows the effects of FSH histories (the mean value or derivative) to be time 

varying and to accumulate over time. Statistical tests of these functional coefficient 

functions in the primary outcome submodel for hot flashes can then be used to 

identify critical time windows where the association exists. Using a Bayesian 

approach allows easy calculation of pointwise credible intervals for the functional 

coefficient functions in comparison to frequentist approaches.

4. uses a robust model to decrease the influence of outlying observations in the FSH 

data.

To realize these modeling goals, we use a penalized spline approach to allow the flexible 

modeling of longitudinal features and the functional coefficient curve representing the time 

varying effect of the longitudinal features. Since the ultimate goal is to simultaneously 

model both the mean trajectories and the residual variability but distinguish between their 

effects in the outcome submodel, we choose a t–distribution to properly model residual 

variability to avoid the impact of outlying FSH values. In particular, we demonstrate the 

importance of assuming this robust distribution assumption instead of the typical normal 

assumption used in most of the joint modeling literature. However, due to the limited 

number of longitudinal observations for some women (i.e., ranging from 6 to 26), there is 

insufficient information in the data to assume individually varying degrees of freedom in the 

t–distribution; thus we are limited to assume a global degrees of freedom common to all 

trajectories. In addition, our attempts to use the data to estimate even the global degrees of 

freedom parameter using the informative exponential distribution proposed by Geweke 

(1993), the truncated uniform prior on the inverse of the degrees of freedom suggested in 

Lange et al. (1989) and Gelman and Hill (2007) and the Jefferys prior derived by Fonseca et 

al. (2008) all failed: the estimated global degrees of freedom were always close to a prior 

cutoff value, implying the existence of extreme outliers in the FSH data that tend to drive the 

degrees of freedom in t–distribution to low values. Given that the fitted values are only 

modestly affected by different values of degrees of freedom in t–distribution (Lange et al., 

1989), we chose to fix the degrees of freedom parameter at a small number of fixed values 

and conduct a sensitivity analysis using DIC to choose among the models.
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The proposed model also allows latent heterogeneities in both the individual level mean 

trajectories and the residual variability as in Jiang et al. (2014). Under our best fitting t4 

model, as shown in Figure 3 (e), the mean FSH trajectories can be separated into two 

classes, one minor class with 14% of trajectories and the other major one with 86% of 

trajectories. Both classes are reflective of three typical FSH change patterns for women in 

the transition to menopause (Burger et al., 1999) in that FSH is relatively flat prior to the 

menopause transition, has an increasing period during the menopause transition, and 

eventually plateauing once women are 2 years post menopause; but women in the minor 

class tend to have an earlier increases in FSH along with higher FSH values than the women 

in the major class. Figure 7 plots the fitted mean FSH curves for the 28 women assigned to 

the minor class and a random sample of 20 women assigned to the major class based on the 

posterior mode. This once again shows the heterogeneous nature in the mean FSH 

trajectories that is supported by our model selection criterion DIC and implies that the 

women in the minor class tend to reach menopause at a much earlier age. Also, as shown in 

Figure 3, even with the use of the t–distribution to account for extreme outlying 

observations, it seemed that there still exists a true mixture in residual variability, with a 

low-variance class consisting of one in three to one in five women, with the remainder in a 

high variance class.

In summary, the proposed model gives added insights about hormone changes in the 

menopausal transition and their associations with severe hot flashes. First, whether the 

robust or normal models were used, we identified a strong association between residual 

variability in FSH and hot flashes as in Jiang et al. (2014), and similarly to what has been 

reported for depressive symptoms (Freeman et al., 2006). In addition, we identified latent 

heterogeneities in both the individual level mean trajectories. Under our best fitting t4 

model, as shown in Figure 3 (e), the mean FSH trajectories can be separated into two 

classes, one minor class with 14% of trajectories and the other major one with 86% of 

trajectories. Both classes are reflective of three typical FSH change patterns for women in 

the transition to menopause (Burger et al., 1999) in that FSH is relatively flat prior to the 

menopause transition, has an increasing period during the menopause transition, and will 

eventually plateau once women get about 2 years post menopause; but women in the minor 

class tend to have an earlier increase in their FSH trajectories along with higher FSH values 

than the women in the major class. As shown in Figure 7, the fitted mean FSH curves for the 

total 28 women assigned to the minor class and a random sample of 20 women assigned to 

the major class based on the posterior mode were plotted. This once again shows the 

heterogeneous nature in the mean FSH trajectories that is supported by our model selection 

criterion DIC and implies that the women in the minor class tend to reach menopause at a 

much earlier age. Also, as shown in Figure 3, even with the use of the t–distribution to 

account for extreme outlying observations, it seemed that there still exists a true mixture in 

residual variability. Another interesting finding is illustrated in Figure 5(b) depicting the 

association between increases in hot flashes and the functional coefficient which describes 

the rate of change in FSH between the ages 50-5. This age window corresponds precisely to 

when hot flashes are reported to be most likely (Harlow et al., 2012). These findings have 

important ramifications for treatment of hot flashes with hormone replacement therapy. 

These medications impact the levels of FSH and Estradiol, and reduce variability. The 
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current recommendation is for women to take these medications for no more than 3 to 5 

years, however, the optimal timeframe and duration for treatment is unknown.

Generally, the functional coefficient curves θ0(t) and θ1(t) can be fit by any spline basis with 

or without penalty parameters. In particular, if the shape of θ0(t) or θ1(t) is known – for 

example, θ0(t) is a linear function – then we can let ψ0(t) = (1, t) and assume a regular 

normal prior on the coefficients associated with basis function 1 and t. When the true shape 

of θ0(t) or θ1(t) is unknown, we recommend starting the analysis using a more flexible 

penalized approach to get some idea of the shape of θ0(t) or θ1(t), which may be further 

reduced to simple parametric form to stabilize estimation of model parameters and reduce 

the length of pointwise credible or confidence intervals for θ0(t) or θ1(t).

The methods presented for data augmentation of unobserved FSH values assumes MAR. For 

the FSH values missing due to age at enrollment or reasons such as a subject did not deliver 

a blood sample at a certain visit, we can reasonably assume MAR. One known non-random 

source of missingness would be when women went on hormone replacement therapy (HRT) 

for relief of menopausal symptoms. These hormone values during HRT were censored. In 

this subset who were symptom free at baseline, 31/234 = 13% reported any hormone therapy 

use over the 13 years of follow-up, and the majority, 26/31=84%, reported use at only 1 or 2 

visits. Among the remaining 5 women, 3 women reported HRT use at 6 visits, 1 woman 

reported use at 4 visits, and 1 at 3 visits. However, women with skipped visits or dropout 

during the first 5 years (i.e., 10 visits) were less likely to be due to menopausal symptoms 

(Nelson et al., 2004). Furthermore, when fitting the individual's FSH trajectory assuming 

MAR, we did not observe noticeable irregular residual patterns from the FSH values 

collected before and after skipped visits; therefore the impact from assuming MAR for the 

sporadic missingness should be minimal. We may under-estimate the short-term variation if 

the missingness is associated with a high level of FSH fluctuation and this could be a worthy 

future research topic. For dropout, we may expect an impact if those that dropped out had 

different profiles after they left than those that stayed. There are a total of 26 women who 

dropped out after being in the program for more than 5 years. Among them, 10 women 

contribute 20 or more observations prior to the dropout and 5 women dropped out at age 54 

or older. A preliminary study that examined FSH patterns and values in the visits prior to the 

dropout did not reveal a reason behind the dropout. Nor could we find an explanation behind 

their dropouts based on factors such as their history of hot flash severity, menopausal stage 

or HRT use. Future work will develop methods to thoroughly examine the sensitivity to 

different missing data mechanisms through pattern mixture models or selection models 

within our modeling framework, although the sensitivity of our results to failures of the 

MAR assumption as anticipated would be relatively minor given the limited amount of 

missing data.

Another direction for future work is to make use of the fact that longitudinal studies often 

measure several variables repeatedly, for example, in the Penn Ovarian Study several other 

hormone trajectories are available. Developing methods to model these potentially 

correlated longitudinal trajectories simultaneously while also using this information 

effectively to predict or relate to the outcome of interest is a key area for future research.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Upper bounds of p values based on PDMs for individual trajectories fit by our best fitting 

models with μi(t) i = 1, …, n within the time window T = [45, 55] as a functional predictor 

in primary outcome submodel: (a) best fitting normal model; (b) best fitting t7 model; (c) 

best fitting t4 model.
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Figure 2. 
Selected individual FSH trajectories from the Penn Ovarian Aging Study fitted by our best-

fitting joint models with μi(t) i = 1, …, n within the time window T = [45, 55] as a functional 

predictor in primary outcome submodel.
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Figure 3. 
Longitudinal mean trajectories for the Penn Ovarian Aging Study from our final models 

with Jμ = 1 and KD = KC = 2 in longitudinal submodel; μi(t) as functional predictor with 

time window T = [45, 55] and Jθ0 = 3 in primary outcome submodel with different 

assumptions for longitudinal submodel: a) and b) under normal assumption; c) and d) under 

t7 assumption; e) and f) under t4 assumption.
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Figure 4. Functional coefficient function
θ0(t) for the Penn Ovarian Aging Study from our best fitting t4, t7 and normal models with 

μi(t), i = 1, …, n within the time window T = [45, 55] as a functional predictor in primary 

outcome submodel.
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Figure 5. Functional coefficient function
θ1(t) for the Penn Ovarian Aging Study from our best-fitting model with Jμ = 1 and KD = KC 

= 2 in longitudinal submodel with t4 assumption; and Jθ1 = 3 in primary outcome submodel: 

a)  as functional predictor with T = [45, 55] and b)  as functional predictor with T = 

[50, 55].
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Figure 6. ROC curves
for the Penn Ovarian Aging Study from our final t model: AUC0 is obtained by using μi(t) 

with Jθ0(t) = 3 within the time window T = [45, 55] as a functional predictor in outcome 

submodel and AUC1 is obtained by using  with Jθ1(t) = 3 within the time window T = 

[45, 55] as a functional predictor with in outcome submodel.
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Figure 7. 
Individual FSH trajectories from the Penn Ovarian Aging Study that are assigned to the 

minor and major mean trajectory classes by our best fitting t4 model with μi(t) i = 1, …, n 

within the time window T = [45, 55] as a functional predictor in primary outcome submodel.
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