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Abstract

Increasing oxidative stress, a major characteristic of aging, has been implicated in variety of age-

related pathologies. In aging, oxidant production from several sources is increased while 

antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the 

proteasomal degradation of damaged proteins also declines. Importantly, the adaptive response to 

oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible 

expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at 

several levels including transcription, post-translation, and interaction with other proteins. This 

review summarizes current studies on age-related impairment of Nrf2/EpRE function and 

discusses the change of Nrf2 regulatory mechanisms with aging.
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Introduction

Aerobic creatures, from unicellular organisms to human beings, are constantly exposed to 

oxidants and electrophiles, either from endogenous enzymatic processes or exogenous 

environmental pollutants. To avoid the harmful effects of these oxidative toxicants, a robust 

antioxidant system has evolved to maintain redox homeostasis. Oxidative stress occurs when 

the equilibrium of the oxidant/antioxidant balance is disrupted and tilts toward an oxidative 

status, which is usually accompanied by harmful effects to cell survival including lipid 

peroxidation and oxidative modification of proteins and nucleic acids. Indeed, oxidative 

stress has been implicated in various pathologies including cardiovascular and 
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neurodegenerative diseases, cancers, diabetes, and cataract, most of which are age-related 

[1–4].

Disruption of the antioxidant/oxidant equilibrium is not a rare phenomenon in cells, due to 

the fact that the production of oxidants and the antioxidant buffering capacity always vary 

with metabolic, pathophysiologic changes, and environmental stress exposure. How does the 

organism adapt to these frequent fluctuations of redox status? Studies have found that the 

equilibrium of oxidant/antioxidant is maintained in a dynamic way through regulating the 

antioxidant levels in response to oxidative stress. Expression of antioxidant enzymes, 

glutamate cysteine ligase (GCL), which catalyzes the first step in glutathione (GSH) 

synthesis, NADPH:quinone oxidoreductase 1 (NQO-1), heme oxygenase-1 (HO-1), and 

many others including those that increase the reducing substrates for antioxidant enzymes, is 

induced in response to oxidative stimuli including both environmental toxicants and 

electrophiles derived from dietary antioxidants [5]. The increase in antioxidant capacity, 

which can be called nucleophilic tone enhances the removal of excessive oxidants and 

prevents further severe oxidative injury. The response of antioxidants to oxidative stress 

evolves as a critical defense mechanism to combat harmful effects of intrinsic and extrinsic 

oxidative insults, and is preserved in all organisms.

In recent decades, the most exciting discovery concerning the response to oxidative stress 

has been elucidation of the signaling pathway by which such responses are regulated. 

Central to our understanding of such regulation is the activation of nuclear factor erythroid 2 

-like 2 (NFE2L2; more commonly known as Nrf2) and its interaction with Kelch-like 

erythroid cell-derived protein with CNC homology-associated protein 1, Keap1. Nrf2 is a 

transcription factor that controls the basal and inducible expression of an array of 

antioxidant and detoxification enzymes including the proteasome. Along with partners, 

interacting proteins, and regulatory molecules, the Nrf2 signaling system has emerged as 

perhaps the most important cellular defense and survival pathway against oxidative stress 

and toxicants. Disruption of Nrf2 signaling is associated with an increased susceptibility to 

oxidative insults and other toxicants in humans and model organisms [6–10].

The tightly regulated nucleophilic tone becomes compromised with aging, and leads to a 

chronic oxidative state in old organisms [10, 11]. Studies have established that age-related 

oxidative damage involves an increase in oxidant production, decrease in antioxidant 

capacity, and less efficient activity of both the proteasome and the mitochondrial Lon 

protease; the net result being the accumulation of intracellular and intramitochondrial 

masses of oxidized and cross-linked protein aggregates [12–20]. Accumulating evidence 

suggest that the decline of the adaptive response of antioxidant to oxidative stimuli, 

especially the Nrf2/EpRE signaling system, also plays a key role in the accumulation of 

oxidative damage in aging [21–23].

Nrf2/EpRE signaling

As other reviews in this special issue deal with the fundamentals of Nrf2/EpRE signaling, 

here we provide only a very brief review of that area, in order to provide the context for our 

discussion of how aging affects Nrf2 activation. Moi et al. identified nuclear factor E2-

related factor 2 (Nrf2) as a regulator of β-globin expression in 1994 [24]. Its function as a 

Zhang et al. Page 2

Free Radic Biol Med. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transcription factor to regulate the expression of antioxidant and detoxification enzymes was 

first reported in 1996 as an activator of the so-called antioxidant response element (ARE) in 

the NQO-1 promoter region and regulate its induction by β-naphthoquinone and t-

butylhydroperoxide [25]. Before then, ARE had been characterized as the cis-element 

essential for the basal and inducible expression of many antioxidant and detoxification 

genes, including rat and mouse glutathione S-transferase Ya subunit (GST-Ya) [26], rat and 

human NQO-1 [27], and rat GST-P [28]. The cis-element was initially named as ARE 

because of its activation by phenolic antioxidants. Shortly thereafter it was found that most 

ARE inducers are actually electrophiles or function through generating H2O2 [26, 29]. 

Therefore, the name electrophile response element or EpRE is more accurate although the 

use of ARE persists.

Before exposure to electrophiles, Nrf2 interacts in the cytosol with a protein called Keap1. 

Keap1 interact with other proteins and plays the key role in regulating the localization of 

Nrf2, the degradation of Nrf2, and in sensing oxidative stimuli: 1) Through its Kelch 

domain, Keap1 binds to Nrf2 and sequesters it to the actin or myosin cytoskeleton; 2) Keap1 

can act as an adaptor for Cullin 3-based ubiquitin ligase E3 complex that leads to the 

proteasomal degradation of Nrf2 [30]; 3) Some cysteine residues in the cysteine-rich 

intervening region, especially cys 151, 273 and cys288, are required for Nrf2 binding. 

Meanwhile they are extremely sensitive to oxidative and electrophilic modification. When 

these cysteine residues are modified, Keap1 loses its Nrf2 binding ability and Nrf2 thereby 

escapes from degradation.

EpRE is the Nrf2 binding cis-element present in promoter regions of many genes. It has a 

core sequence of TGANNNNGC required for Nrf2 binding. This so-called consensus EpRE 

sequence can be found in many genes, but only some of them are functional in terms of 

transcriptional activation through Nrf2 binding. It seems that some flanking nucleotides and 

nucleotides within the “NNNN” sequence also play important roles in EpRE function [31, 

32]. Nrf2 binds to EpRE after forming a heterodimer with other basic leucine zipper proteins 

such as small Maf proteins MafG/F/K, or though other proteins, including c-Jun, Jun-B, Jun-

D, Fra1, and ATF4 are also found in Nrf2-EpRE binding complexes [25, 33–36].

Oxidative stress and aging

The oxidative stress (free radical) theory of aging proposed by Denham Harman in 1956 

[37] postulates that reactive oxidants generated endogenously causes cumulative oxidative 

damage to macromolecules resulting in the aging phenotype. This long standing theory has 

been challenged, modified, and expanded by many but two fundamental arguments remain: 

first, an imbalance of antioxidant/oxidant occurs with aging that results in the accumulation 

of oxidatively damaged macromolecules; and second, the accumulating oxidative damage 

causes a degenerative aging phenotype. Although the second point is disputed by some 

studies recently (see reviews [38–42]), the former point, i.e., that the antioxidant/oxidant 

equilibrium is disrupted and oxidatively damaged macromolecules accumulate in the 

elderly, is well established and accepted [38, 43].

There seems little doubt that the accumulated oxidative damage with aging is caused by 

either an increased production and/or decreased elimination of oxidants and electrophiles 
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[43]. Numerous studies have shown that there is an elevation of steady state oxidant 

concentrations in cells and tissues from aged organism. The main sources of endogenous 

oxidants include the electron transport system in the mitochondria, a number of 

oxidoreductases including xanthine oxidase, cytochrome p450, monoamine oxidase, and 

nitric oxide synthase, and enzymes involved in the inflammatory and infection response to 

xenobiotic stimulation including NADPH oxidases [44]. The production of oxidants from 

these sources varies with pathophysiological situations, and a tendency to increase with age 

is observed for many of them. Several excellent reviews on aging and oxidant generation are 

available [38, 45–47]. Nonetheless, as this review is part of a special issue on Nrf2 

signaling, we will focus on the changes in how aging affects cellular removal of oxidants 

and other electrophiles.

Adaptive responses of antioxidant enzymes to oxidative stress in aging

Another essential mechanism underlying how oxidative stress increases in age is the 

diminished antioxidant capacity, including lower basal antioxidant concentrations and 

impaired adaptive induction of antioxidants in response to oxidative stress. Here we will 

focus on the antioxidant enzymes for which a role of Nrf2 has been implicated in their 

regulation, although studies on the effect of aging on antioxidant enzymes predate the 

discovery of their regulation by Nrf2 by a decade or more. The Nrf2-associated antioxidant 

enzymes include the two subunits of glutamate-cysteine ligase (GCL) [48], which catalyze 

the first and committed step in de novo glutathione (GSH) biosynthesis, all three members of 

superoxide dismutase [49] family [50, 51], catalase [50], glucose-6-phosphate 

dehydrogenase (G6PDH) [51–54], some members of the peroxiredoxin (Prdx) [55, 56], 

glutathione peroxidase (GPx) [52], glutathione S-transferase [57] families [50–52], 

Sulfiredoxin [58, 59], and thioredoxin reductase [60, 61]. The regulation by Nrf2 at the 

transcriptional level has been shown for some of these enzymes, but in some cases the 

association with Nrf2 has only been demonstrated by the effect of knocking out or silencing 

Nrf2. Basal levels of the antioxidant enzymes are determined by genetics, diet, drugs, 

pathologies, and environmental stresses [62]. The reducing substrates for antioxidant 

enzymes, NADPH and GSH also can change with age as a result of the changes in the 

antioxidant enzymes, specifically G6PDH, isocitrate dehydrogenase, malic enzyme, 

nicotinamide nucleotide transhydrogenase (NNT), and GCL.

Dietary antioxidants, which except for vitamin E do not actually play a direct role in 

reducing intracellular oxidants [5], may change in aging if intake or absorption is altered. 

Many of these compounds or their metabolites are inducers of Nrf2 and their potential for 

altering the effect of aging on the Nrf2 signaling with age will be considered later.

Changes of antioxidant enzymes with aging

Antioxidant enzymes convert reactive and toxic oxidants and electrophiles into stable and 

less toxic or neutral molecules, and are the main first-line mechanism of maintaining redox 

homeostasis and defending against oxidative damage. The age-dependent change of 

antioxidant enzymes has been being extensively studied. Even though, great controversy 

exists in the literature as to whether or not these enzymes vary with aging, and increases, 

decreases, or no changes have been reported. Difference in results of these studies might be 
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related to variations in species, strain, tissue, sex, and experimental design. Here age-related 

change of SOD, catalase, GPXs, and Prdxs are briefly summarized.

SODs—SOD catalyzes the dismutation of two superoxide anion radicals (plus two protons) 

into O2 and H2O2, which can then be removed by catalase, GPxs, and Prdxs. Two types of 

SOD exist in cells, Cu, Zn-SOD (SOD1) in the cytosol, and Mn-SOD (SOD2) in 

mitochondria. A third form, also containing Cu and Zn (SOD3), is found extracellularly. 

There are many studies on the change of SOD activity with aging, but the results reported 

are inconsistent, or even contradictory. Decreases in SOD1 have been observed in various 

tissues or cells from old human subjects in comparison with that from young adults, 

including skin fibroblasts [63, 64], lymphocytes [65], skeletal muscles [66], serum [67], 

plasma and erythrocytes [68, 69]. Animal studies also showed an age-dependent decrease in 

SOD1 activity in liver [70, 71], and brain [72, 73] of old rats. In contrast, no age-related 

differences in SOD1 activity were reported in erythrocytes [74], plasma [75], lymphocytes 

[76], plasma [77], and muscles [78] from human subjects of different ages, or in rat liver (21 

mo vs. 6 w) [79]. In addition, some studies even showed that SOD1 activity was increased 

with aging in some tissues, such as mouse skeletal muscles, rat brain [80], and human 

plasma [81]. It remains elusive what causes the controversy on age-related change of SOD1 

activity. Tissue-related differences are observed in some studies, i.e., Ji and collaborators 

found that SOD1 level was increased in skeletal muscle but decreased in liver of old rat [70].

SOD2 plays a critical role in production of O2
·− and H2O2 in mitochondria as the leak to 

produce O2
·− is actually kinetically unfavorable and pulled forward by SOD2 [82]. With 

aging, SOD2 activity was found to be decreased in skeletal muscles of mouse [83], brains, 

hearts, livers, and kidneys of rats [84], and Drosophila melanogaster [85]. Lu et al. found 

that although SOD2 activity was increased with aging in skin fibroblasts from humans of 

under 60 years of age, it actually decreased in later years [63]. In contrast, SOD2 activity 

was reportedly increased in skeletal muscles of humans [66, 78] and rats [70, 86], or not 

changed [76, 87] with aging.

SOD3 dismutates extracellular O2
·− and, concomitantly, produces H2O2.; by so doing it is 

involved in regulating the availability of extracellular O2
·− and appears to play an important 

role in controlling oxidative stress and intercellular redox signaling. Increased SOD3 with 

aging has been observed in the prostatic lobes [88] and renal cortex of rats [89]. In contrast, 

SOD3 expression was decreased in retinal pigment epithelial cells from older donors (>60 y) 

compared with that from young donors [90]. There is evidence that SOD3 expression was 

not altered by aging in the lung of mice when its level was reduced by LPS injection in the 

old compared to the young mice [91]. Another study also shown that basal SOD3 was 

decreased in the kidney cortex of old rats and failed to be induced by exercise in comparison 

with younger counterparts, but aortic SOD3 showed no change with exercise or age [92]. 

These findings suggest that the basal expression of SOD3 might change with aging in a 

tissue specific manner and its induction seems impaired in the old.

Catalase, GPxs, and Prdxs—Catalase dismutates H2O2 to H2O and O2, while GPxs 

reduce H2O2 to H2O using GSH. GPx4 can also reduce lipid hydroperoxides to their 

corresponding alcohols. Reports on age-related changes of catalase and GPx are conflicting. 
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With aging, catalase activity was decreased in skin fibroblasts [63], erythrocytes [74], 

lymphocytes [65, 76], and skeletal muscles of human subjects [93]. Studies on animals also 

showed decreased catalase activity in kidneys [94] and livers of rat [95]. In contrast, 

increased catalase activity with aging is observed in glycolytic muscles of rat [96] and serum 

of elders [67]. In addition, no change of catalase activity with aging was reported in skeletal 

muscles [66], plasma [75] and erythrocytes of old human subjects [69]. Doria et al. proposed 

that the contradictory data could be due to the dynamics of catalase activity during aging 

[97], which showed two-phase trend in rats [70]. However, this dual-phase trend is 

inconsistent with evidence from a human study [65]. Age-related changes of catalase 

activity seem tissue dependent. For example, it was increased in the hippocampal and striate 

regions but decreased in the cortex and septal area in the brains of old rats [80]; and in 

another study, catalase activity was elevated in vestibular tissue but unchanged in vascular 

or sensory cochlear tissues in the ears of old rats [98].

The GPx family consists of 8 members in mammals, GPx1-4 and GPx6 containing selenium, 

while GPx5, GPx7, and GPx8 are non-selenium proteins [99]. The physiological localization 

and substrate specificity of each GPx varies, and collectively protect against a wide 

spectrum of oxidants, however the function of GPx6, GPx7, and GPx8 remains to be 

elucidated [99–101].

Age-related changes in GPx have been extensively studied, mostly by measuring the total 

GPx activity. An age-related decrease of GPx activity has been demonstrated in plasma [75, 

102], skin fibroblasts [63], erythrocytes [74], and lymphocytes [65, 76] of humans, and 

livers of rats [95]. However, no age-related change of total GPx activity was reported in 

human erythrocytes [69] and skeletal muscles [66] and rat liver (22 mo vs. 5 mo) [71] and 

skeletal muscles [96]. In contrast, an age-dependent increase of GPx activity was observed 

in erythrocyte of older people (older than 60 y) [103] and rats [104]. Collectively, current 

data suggest that age-associated changes in GPx activity appear related with the specific 

species, strain, sex and tissue studied [105, 106]. It should be noted though that GPx activity 

levels include the activities of several GPxs. Due to the different location, regulation, 

substrate specificity, and potential different functions of individual GPxs in aging, it would 

be worthwhile to elucidate the age-related change of each GPx member.

GPx1 expression showed no change in the brain of old mice [107] and endothelium of 

skeletal muscle arteries from old rats (22 mo vs 3 mo) [108]. But a recent study showed that 

GPx1 protein level and activity was significantly decreased in endothelial progenitor cells 

(EPCs) of older subjects (72 y) in comparison with that of young subjects (24 y) [109]. 

Decreasing GPx1 activity with aging was also reported in rat sperm [110]. In contrast, its 

expression was increased with aging in the ovaries of mice [111].

An age-related change in GPx3 has been the focus of some studies. GPx3 mRNA was 

increased significantly in retinal pigment epithelium from old mice (24 mo vs 2 mo) [112]. 

On the other hand, a study from Xu et al. demonstrated that GPx3 mRNA remained 

unchanged while its protein level decreased with aging in kidneys of rats [113], suggesting a 

possible posttranslational regulation of GPx3 with age. As Gpx3 is the only GPx secreted 

into plasma, the serum Gpx activity should generally represent Gpx3 activity although some 
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other isoenzymes may come from disrupted cells including GPx1 from hemolysis. There is 

some controversy at present concerning the change of plasma GPx activity with aging in 

humans, with both decreases [75] and increases [102] reported. Although the underlying 

reasons for these discrepancies remain unclear, differences appear to be influenced by age 

and sex [102, 114].

GPx4 plays a critical role in protecting membranes from oxidative damage. GPx4 activity in 

liver microsomal membrane of old rat was significantly higher than that of young [115]. In 

contrast, GPx4 activity and its protein level in the nucleus was decreased in sperm of aged 

rats [110]. However, an age-related change in GPx4 activity was not observed in the liver, 

kidney, lung, and brain of rats, compared to the total GPx activity (including GPx1, 2, and3), 

which was decreased in old compared with young adults [116].

Peroxiredoxin (Prdx)—Prdx is a family of peroxidases that reduce H2O2 and lipid 

hydroperoxides, to H2O and alcohols. To date, six mammalian isoenzymes of Prdx 

(Prdx1-6) have been identified. Prdxs 1 through 5 reduce H2O2 to H2O using thioredoxin, 

while Prdx6 can also reduce lipid hydroperoxides to corresponding alcohols using GSH 

[117, 118]. The oxidized forms of Prdxs are accumulated in cell or tissues with aging. In 

mitochondria oxidized Prdx3 increased in aged rat liver compared with that of young adults 

(28 mo vs 12 mo) while the reduced form remained unchanged [119]. The oxidized form of 

Prdx in hippocampus was lowest at 12 mo and started to increase thereafter [120, 121]. The 

age-related accumulation of hyperoxidized Prdx appears to be linked to the increase of 

oxidant production with aging; however, it may also suggest a less efficient Prdx repairing 

mechanism in senescent cells.

A change in total and/or active forms of Prdxs with aging has also been reported. A 

decreased Prdx2 protein level with aging was observed in interstitial fluid of bone marrow 

of rats [122] and plasma of mice [123]. A decrease in Prdx3 with aging was found in ovaries 

[111] and livers of rats [124]. A progressive decline in Prdx5 expression with advancing age 

was also identified in human nerves at different ages [125]. On the other hand, it is reported 

that expression levels of Prdx6 mRNA in whole lenses gradually increased in the lenses of 1 

to 6 mo mice and declined thereafter [126].

GSTs—GST super family comprises multiple isoenzymes that locate differentially in 

cytosolic, membrane, and mitochondria [127]. The classic GSTs usually refers to the GSTs 

in the cytosol that are encoded by at least five distantly related gene families (alpha, mu, pi, 

sigma, and theta GST) [128]. GSTs transfer GSH to electrophiles and thereby play critical 

roles in oxidative defense and detoxification. Many studies have examined the change of 

GST expression and activity with aging. Table I listed the major findings from some of these 

studies. Age-related decrease of total GST activity was reported in lymphocytes [65], 

skeletal muscles [93], gastric mucosa [129] of human, and hepatic cells of rat [95, 130]. 

However, the age-dependent change of GST activity is not consistent and divergent results 

are also reported. For example, some of the GST isoenzymes, protein levels of GSTm and 

GSTp did not change with aging in lymphocytes [131], and total GST activity in rat liver 

was also unchanged with aging [71, 132]. Some studies even demonstrate an increase of 

GST with aging. For instance, GSTD2 was increased with aging in Drosophila [85]. Data 
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from Table x suggest that age-related change of GST exhibit specie and tissue specific 

manner. In most human tissues studied, GST activity is decreased, while results become 

conflicting in the animal studies. In rat liver, for example, increases, decreases, or 

unchanged levels of GST activity have all been reported. GST expression can be influenced 

by many factors such as specie, sex, food, growth condition, and adaptive induction, etc. 

Especially, the mRNA levels of individual GST isoenzymes in rat liver exhibit different 

patterns of change with aging and sex [133] and this makes it even harder to explain the 

controversial results. Nonetheless all available information suggests that GST activity might 

be decreased in senescent cells, while age-related changes of individual GST isoforms 

remains largely unclear

GSH—GSH is the most abundant antioxidant in cells and tissues, and plays a primary role 

in protection against oxidative stress. Age-associated variation of GSH has been extensively 

studied. Maher et al. summarized the studies on variation of GSH with aging in 2005 [136]. 

According to these studies, total and reduced GSH concentration are markedly diminished 

and the disulfide form of GSH, GSSG, increased in many tissues from aged experimental 

animals and human subjects in comparison with young adults [136]. In follow up studies, 

GSH concentration was found to decrease in liver (22 mo vs. 5 mo) [71], brain (20 mo vs. 2 

mo) [73] of rat, carotid artery of Rhesus macaques (20 y vs. 10 y) [137], and human 

lymphocytes (50–60 y vs. 20–30 y) [65]. This age-dependent decrease of GSH is also 

supported by several in vivo human studies with noninvasive methods. Using a noninvasive 

NMR method, Emir et al. found that GSH concentrations in the brains of older people (70 y 

old) decreased by 30% compared to young (20 y) [138]. A recent study using stable 

deuterium-labeled glycine found that both GSH concentration and its synthesis rate in RBC 

of elderly (60–75 y) were decreased by ~50% compared with that of adult (20–40 y) [139].

In contrast, there are also reports that GSH concentration may not be changed or may be 

increased with aging in some tissues or cells. For instance, GSH concentration was 

unchanged in in the plasma from old human subjects [129, 140] and in the liver of aged 

mice (24 mo vs. 6 mo) [141], and it was increased in muscles of aged rat (26 mo vs. 13 mo) 

[135].

Taken together, these data suggest that there is a general age-dependent decrease of GSH 

with exceptions in some tissues. In the short term, GSH homeostasis is well maintained in 

cells through a precisely regulated system involving induction of enzymes for GSH 

synthesis. Due to a shift to more oxidative status with aging, GSH consumption, including 

its reaction with H2O2, lipid hydroperoxides, electrophiles, and its binding to protein to form 

protein-mixed disulfides increases [142]. Meanwhile the degradation rate of GSH is also 

increased in the elderly due to increased γ-glutamyl transpeptidase activity. Besides the 

increased GSH consumption and degradation, another potential explanation for the age-

dependent decrease in GSH is that the adaptive response of GSH synthesis system to 

oxidative stress may be deficient or impaired in old organisms. It is well established that 

oxidative stress or disturbance of GSH homeostasis usually causes the induction of an 

adaptive response that increases GSH production [143].
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Accumulating evidence suggests that disruption of this homeostasis is the cause of the age-

related decline in GSH concentration. Gould reported that the adaptive response of GSH 

synthesis to cigarette smoke was significantly impaired in the lung of old mice. GSH in the 

extracellular lining fluid of the lung, which reflects intracellular synthesis [144] was 

increased 6 fold in response to cigarette smoke in the young (2 mo) but only 2 fold in the old 

mice (26 mo), and this made old mice more susceptible to oxidative damage. Sekhar et al. 

recently also shown that GSH synthesis rate in RBC of elderly (60–75 y) was decreased by 

50% compared with that of adult (20–40 y) [139]. The KM of GCL for its substrates, 

glutamate and cysteine, is significantly increased during aging due to age-related 

accumulation of homocysteine, which decreases the affinity between GCL and its substrates 

[145] [141]. This would adversely affect the ability for rapid GSH biosynthesis, especially 

under stressful conditions. The age-dependent decline of adaptive response of GSH to 

oxidative stressors is closely related with the decreased induction of GCL in response to 

oxidative stress with aging (see next section).

GCL—GCL plays a critical role in maintaining GSH homeostasis and its expression level is 

usually proportional to GSH concentration [146, 147]. GCL consists of a catalytic (GCLC) 

and a modifier (GCLM) subunit. Although they form a 1:1 complex, a higher ratio of 

GCLM to GCLC favors the formation of the higher activity heterodimer [148]. The oxidant-

induced expression of both subunits is finely regulated through a complex mechanism that 

has been being extensively studied and demonstrated that these genes are co-regulated 

through their TRE and EpRE elements [35, 149–152].

Considering the age-dependent variation of GSH level and the critical role of GCL in 

regulating GSH homeostasis, many studies have compared the expression of GCLC and 

GCLM in elderly to that of young animals. In 2000, Liu and Choi first reported that both the 

mRNA and protein levels of both GCLC and GCLM were decreased in the livers, lungs, and 

kidneys of aged rats along with the activity of GCL in erythrocytes (24 mo vs. 6 mo) [153]. 

The age-dependent decline of both GCLC and GCLM was also observed in the livers of old 

rat (24–28 mo vs. 2–5 mo) [147]. Recent evidence suggests however, that the changes from 

basal expression of GCLC and GCLM may diverge in aging. A decrease of GCLC but 

unchanged GCLM expression with aging was observed in the skeletal muscles of rat [135], 

on the other hand, a decrease in GCLM and unchanged GCLC expression was demonstrated 

in the brains of old rats [154]. Yuan et al. examined the change of GCL with aging in the 

kidneys of rats and found that although GCL activity was significantly decreased, the basal 

mRNA and protein levels of both GCLC and GCLM were not changed in the old (21 mo) 

compared with young (2 mo) rats [155]. Age-dependent change of GCLM was neither 

observed in mice lymphocytes [156]. We recently reported that the basal expression levels 

of both GCLC and GCLM were significantly higher in the lung, liver, and cerebellum of 

middle-aged mice (21 mo) in comparison with young adult (6 mo), along with a higher 

expression level of other phase II genes and nuclear Nrf2 level [157]. Sachedeva et al. also 

observed an increased GCLM expression in retinal pigment epithelium of middle-aged mice 

(15 mo vs. 2 mo) [158]. A study using Rhesus monkeys demonstrated that GCLC was 

decreased in carotid arteries and VSMC of old (20 y) compared to that of young (10 y) while 

GCLM expression was not changed [137]. In summary, the age-related variation of basal 
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level of GCLC and GCLM is not consistent. It remains unclear whether the divergence in 

GCL expression with aging is related with species, tissues, or frailty, or how this occurs in 

humans.

Induction of GCL is a critical mechanism of adaptive responses to oxidative stress and its 

variation with aging should have a significant impact on age-related susceptibility to 

oxidative insults. Suh et al. examined the induction of GCL in response to lipoic acid, and 

found that GCLC expression was induced by about 2 times in the liver of old rat (24–28 

mo), while GCLM was not induced [147]. Unfortunately GCL induction in the young was 

not reported and thus, an age-related comparison was not made. Yuan et al. evaluated the 

GCL induction in kidney in response to resveratrol, GCLM mRNA was induced in both 

young (2 mo) and old (21 mo) but not in middle aged (12 mo) rat, and the GCLC mRNA 

was only induced in the old [155]. When looking at the age-related susceptibility to 

nanoparticle toxicity, we compared the induction of GCL expression in response to 

nanoparticle [157]. In the lung, liver, and cerebellum of young mice (6 mo), the mRNA and 

protein levels of both GCLC and GCLM were induced significantly (1.5–2 fold), while in 

the tissues of old (21 mo), the induction of GCL was completely lost. The loss of GCL 

induction in response to nPM was associated with decline of Nrf2 expression. Ungvari et al. 

observed that basal GCLC mRNA level in aorta segment remained stable from 3 mo to 18 

mo and started to decrease from 24 mo, and it was induced in response to H2O2 in young (3 

mo) but not old (24 mo) rat [159]. A recent publication from Sachedeva et al. also found that 

the induction of GCLM in retinal pigment epithelium in response to sodium iodate declined 

in middle-aged mice (15 mo vs. 2 mo) [158].

HO-1—Heme oxygenase-1 (HO-1) catalyzes the oxidation of heme to biliverdin, free iron 

and carbon monoxide. Numerous studies have shown that HO-1 plays critical roles in 

antioxidant defense and various pathophysiologic processes, including age-related 

pathophysiologic changes. As a result, the effect of aging on HO-1 regulation has been a 

research focus for decades.

Table III summarizes the major findings from past decades on the change of HO-1 

expression with aging, including its basal and inducible expression upon stimuli. Increased 

basal HO-1 levels, marked by its, mRNA or protein levels, or its enzymatic activity, is 

observed with aging in various tissues such as liver, lung, brain, kidney, spleen, 

hippocampus, and cerebellum in most of these studies. In contrast, some reported no change 

or a decrease. For example, HO-1 expression is not changed in the liver of Wistar rat (24 mo 

vs. 1.3 mo) [162], and the ear skin (20 mo vs. 2 mo) [163], cerebral cortex of mice (23–24 

mo vs. 5–6 mo) [164], cochlea (11 mo vs. 3 mo) [165], and macrophages from mice 

(3,6,18,21 mo) [166]. HO-1 is decreased in the hippocampus (20 mo vs. 2 mo) [167], spinal 

cord and astrocytes (13 mo vs. 1.5 mo), and aorta of rat (24 mo vs. 3 mo) [159]. It should be 

noted that most of studies used rodents as a model and study of human subjects was rare. 

Hirose and colleagues examined the HO-1 protein level in autopsied brain of 31 human 

subjects from 3–84 y old, and found that HO-1 increased with aging in the hippocampus and 

cerebellum [168]. In addition, the age-related increase in HO-1 expression could be 

abrogated. The study by Rechelhoff et al. showed that HO-1 level was increased in the 

kidney of old rats, but vitamin E treatment blocked the increase [169]. Another study also 
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found that dietary restriction reduced higher HO-1 expression in the brains of old rats [170]. 

Nonetheless reports on age-dependent changes in basal HO-1 expression have generated 

divergent results, and this may reflect a complex species- and tissue-dependent difference in 

HO-1 expression. For example, HO-1 level is increased in the liver but not changed in the 

spleen of old mice (24 mo vs. 6 mo) [171]. Variation in what age was considered as young 

and old is another possible explanation for the divergence of basal HO-1 level with aging, as 

activities may not change linearly with age or change direction from young to middle to old 

age.

It has been well documented that HO-1 is induced by various stressors including oxidative 

stress as a key component of the adaptive mechanism against oxidative and electrophilic 

toxicity. Given the involvement of oxidative stress and HO-1 in aging-related 

pathophysiological changes, there has been intensive interest in HO-1 induction change in 

old organisms (Table III). Impaired HO-1 induction has been frequently observed in various 

tissues of old rodents and by variety stimulators. Compared with that in young rodents, 

HO-1 induction declined in the liver of old rodents in response to iron [171], heat stress 

[172], and paraquat [173]; in hippocampus by hypoxia [167]; in aorta of old rats by H2O2 

and glucose [159]; in the carotid body [174], the gastrointestinal tract [175], and retinal 

pigment epithelium of old mice [158]. It should be noted that the age-related decline of 

HO-1 induction in rodents occurs independently of the basal HO-1 level. The age-related 

decline of HO-1 induction was further supported by a recent study on human senescent cells. 

Lima and colleagues found that HO-1 is induced by curcumin in primary young human skin 

fibroblast, but HO-1 in senescent cells, which was already relatively high, was not further 

induced by curcumin [176].

The extent of HO-1 induction may be related to age. For instance, Nath et al. showed that 

HO-1 induction was similar in the kidney of young (6 mo) and middle-aged (16 mo) mice 

[177]. Patriarca et al. found that HO-1 induction in response to ethanol began to decrease in 

the liver of 6-month-old and was lost in that of 24-month-old rats [178]. Ito et al. also 

showed that LPS-stimulated HO-1 induction was reduced in alveolar macrophages from 18 

mo mice, and was completely lost in macrophages from 21 mo mice [166]. In addition, the 

decline of age-related induction appears to be tissue-independent. HO-1 induction by iron 

was reduced in the liver but not changed in the spleen of old rats [171]. Another study also 

showed that HO-1 induction by sulforaphane was similar in the spleen lymphocytes from 

young and old mice (21 mo vs. 4 mo) [156]. Collectively these results indicate that HO-1 

induction in response to oxidative stressors is impaired in older organisms.

NQO-1—NAD(P)H:quinone oxidodreductase (NQO-1) is a flavoenzyme that catalyzes the 

two-electron reduction of various quinones and aromatic compounds by utilizing NAD(P)H 

as an electron donor. It is an important antioxidant enzyme in maintaining the cellular redox 

state. As a critical part of the cellular defense mechanism, NQO-1 expression level is 

induced in response to electrophilic and/or oxidative stress due to exposure to chemicals or 

endogenous quinones.

Many studies have investigated the change of NQO-1 expression in old animals in order to 

understand how it is involved in age-related oxidative damage, but results on the basal 
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expression of NQO-1 diverge. Fu and colleagues demonstrated that NQO-1 expression was 

increased in the liver of 24 mo mice compared with that of 3 mo [133]. We recently reported 

that NQO-1 mRNA level was significantly higher in the lung, liver, and cerebellum of 

middle-aged mice (21 mo) in comparison with young adults (6 mo) [157]. Inconsistent with 

these results, basal NQO-1 level was increased in memory T cells from old mice [156]. A 

very recent report also found it was increased in retinal pigment epithelium of middle-aged 

mice (15 mo vs. 3 mo) [158]. In contrast, Ungvari and collaborators reported that NQO-1 

expression was decreased in the aorta from 24 mo rats (vs. 3 mo) [159], though they did not 

see a change of NQO-1 expression in the carotid artery and vascular smooth muscle cells 

(VSMC) of old Rhesus macaques (20 y vs. 10 y) [137]. Another study also showed a 

decrease of NQO-1 expression in astrocytes of old mice [190]. Due to the limited data, it 

remains unclear whether the difference in the age-dependent change of the basal expression 

of NQO-1 is due to species, tissues, cell types, or aging phases.

Variation of induction of NQO-1 in response to stressors with aging may play a significant 

role in the antioxidant defense capacity in the elderly. Ungvari et al. studied NQO-1 

induction in the aorta in response to H2O2 and glucose, and found that NQO-1 induction 

declined in aorta from old rats (24 mo vs. 3 mo) [159]. The same group also demonstrated 

that although NQO-1 expression did not change, its induction in response to H2O2 was 

blunted in the carotid artery and VSMC from old (20 y) in comparison with young Rhesus 

macaques (10 y) [137]. We also found that compared with young adult mice, NQO-1 

induction in response to nanoparticles was abrogated in the liver, lung, and cerebellum of 

middle aged mice [157]. The decline of NQO-1 induction was also observed in the frontal 

cortex and cerebellum of rats (24 mo vs. 4 mo) [191] and retinal pigment epithelium of 

middle-aged mice (15 mo vs. 3 mo) [158]. An age-related decline of NQO-1 induction may 

occur in tissue specific manner. For example, NQO-1 was not induced by toluene in the 

frontal cortex and cerebellum of old mice, but induced in hippocampus [191]. NQO-1 was 

also induced similarly by sulforaphane in spleen lymphocytes from young and old mice (21 

mo vs. 4 mo) [156]. Nonetheless, current data support that NQO-1 induction is impaired in 

various tissues of aged organisms.

Nrf2-EpRE signaling in the decline of the antioxidant response in aging

Both the basal and inducible expression levels (in response to stressors) of the antioxidant 

enzymes described above are regulated, at least in part, through activation of Nrf2/EpRE 

signaling. It is been well established that Nrf2 is the master transcription factor that controls 

the basal and inducible expression of hundreds of antioxidant and detoxifying enzymes. 

While there is quite a bit of diversity in the effect of age on the basal expression of these 

enzymes, there is general consensus that the ability to induce these enzymes by electrophiles 

declines with age. Accumulating data suggest that this age-dependent decline in the 

antioxidant enzyme response is caused by declining efficiency of Nrf2/EpRE signaling 

(Table V).

Aging-related changes in Nrf2/EpRE activity—Many studies have studied the change 

of Nrf2/EpRE activity, including its nuclear level and the binding to EpRE motif in older 

organisms. In a pioneering study, Suh and colleagues showed that both the total and nuclear 
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Nrf2 protein levels were significantly lower, accompanied by a reduced level of GCL, in the 

liver of 24–28 mo in comparison with 2–5 mo rats [147]. Shih and Yen later confirmed this 

finding, showing that Nrf2 expression and its target genes exhibited an age-dependent 

decrease in rats [192]. Another study also found that nuclear Nrf2 was decreased in the aorta 

from old rats (24 mo vs. 3 mo) [159], along with reduced GCLC, NQO-1, and HO-1 levels. 

Additional work from the same group using carotid arteries and VSMC from aged Rhesus 

monkey (20 y vs. 10y) also saw decreased Nrf2 levels and decreased binding to EpRE [137]. 

In contrast, Kim et al. found that the expression level of Nrf2 and its target genes was 

significantly increased in spleen lymphocytes from old mice [156]. We also showed that 

total and nuclear Nrf2 was increased in the liver, lung, and cerebellum of 21 mo mice in 

comparison with that of 6 mo, simultaneously with increased expression of its target genes 

[157]. It is unclear if these discrepancies are caused by species difference. According to 

current data, age-related change of basal Nrf2/EpRE signaling exhibit a tissue or cell 

specific manner. For example, Nrf2/EpRE activity was increased in the head and abdomen 

of old Drosophila (30 d vs. 6 d) [85], but it was decreased in the intestinal stem cells from 

flies at the same age (30 d vs. 3 d) [193]. Another study showed that nuclear Nrf2 was not 

changed in the proximal renal tubule of 24m compared with that of 3 mo rats [194]. 

Collectively, current evidence suggests that basal Nrf2 levels and activity change with age, 

but the direction may be different dependent on species, tissues, and cell types. Obviously 

more systematic studies are required to explain these divergent findings.

We studied Nrf2/EpRE activation in response to nanoparticles and found that although the 

basal Nrf2 level was increased in 21 mo vs. 6 mo mice, Nrf2/EpRE activation and the 

induction of Nrf2-target genes were lost in the liver, lung, and cerebellum in the middle-

aged mice (21 mo), compared with that of young adults (6 mo) [157]. Ungvari and 

collaborators also showed that Nrf2 activation and the induction of its targeted genes 

declined in response to H2O2 and glucose in the aorta of old rats [159], and in the carotid 

arteries and VSMC from old Rhesus monkeys [137]. It is worthwhile to note that the decline 

of Nrf2/EpRE induction with aging is independent of the age-related change of basal Nrf2/

EpRE activity. In contrast, Suh et al. reported that age-dependent decrease of Nrf2/EpRE 

activity could be restored. They showed that lipoic acid activated Nrf2 in the liver of old rat 

and induced GCLC expression [147]. Another study on Nrf2 activation by exercise also 

demonstrated that nuclear Nrf2 was increased in the proximal renal tubules of old rats (24 

mo vs. 3 mo) [194]. Gounder et al. also showed that Nrf2 content was reduced in the 

myocardium of old mice (23 mo vs. 2 mo), but moderate exercise could recover aging-

impaired Nrf2 signaling [23]. On the other hand, a recent study showed that Keap1 knockout 

partially restored the induction of NQO-1, whose induction was impaired in the retinal 

pigment epithelium of middle-aged mice (15 mo), while the induction of HO-1 and GCLM 

was not recovered [158]. Unfortunately change of total and nuclear Nrf2 protein after Keap1 

knockout was not reported so it is impossible to know if the Nrf2 stability or nuclear 

translocation is affected by aging. Nonetheless these controversial results suggest the 

necessity of further studies concerning impairment of Nrf2/EpRE function with aging.

In addition, proteins other than Nrf2 itself might also cause age-related loss of Nrf2/EpRE 

function. Rahman et al. [195] found no change of basal mRNA expression of Nrf2 and its 

Zhang et al. Page 13

Free Radic Biol Med. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



target genes in flies with aging, but the induction in response to oxidative stress was lost in 

the old flies. Overexpression of the small Maf protein, Maf-S, restored the age-related 

decline of induction of Nrf2 target genes (GSTD1, GCLC, GCLM) in response to oxidants; 

however, as the basal expression level of the MafS did not decline with age, the decline of 

Nrf2 signaling function may involve activation of MafS rather than its expression or the 

activation of Nrf2, the change of which with aging was not determined.

Aging phenotypes of Nrf2 and Keap1 knockout/knockdown mice—Nrf2 and/or 

Keap1 knockout mice provide good in vivo models to examine the roles of Nrf2 and its 

regulated genes in aging. Nrf2 knockout mice exhibit higher sensitivity to oxidants and 

electrophiles [196–198], more susceptible to carcinogenesis [199–201], and other 

pathologies caused by environmental insults [202]. Fewer studies however, have focused on 

aging. The hearing ability of Nrf2 null mice was significantly more impaired than that of 

age-matched wild-type mice at 6 and 11 mo, and that the numbers of hair cells and spiral 

ganglion cells were remarkably reduced in Nrf2-knockout mice [203]. Serum testosterone 

level and its production in Leydig cells in Nrf2−/− mice was reduced significantly as early 

as 8 mo, while this only occurs by old age (21–24 mo) in wild-type mice [204]. In addition, 

Nrf2 knock out mice are more susceptible to skin aging caused by ultraviolet B. [205]. This 

limited evidence suggests that Nrf2 deficiency may result in at least some phenotypes of 

aging.

Keap1 knockout is lethal to mice by weaning age and therefore conditional Keap1-null mice 

that allow partial disruption of Keap1 expression later in life were created. Keap1 null mice 

show higher levels of antioxidant enzymes and are more resistant to acute toxicity; however, 

an increased mortality in 2-yr-old mice is observed when Keap1 level is decreased to less 

than 50% of normal [206]. This evidence suggests that although transient induction of Nrf2 

signaling and its regulated genes is beneficial, constitutive high level Nrf2 activation may be 

disadvantageous to long-term survival. Alternatively, other functions of Keap1 may play a 

vital role. Obviously further study is required to resolve these issues.

The Nrf2 regulatory network and its change in aging—Nrf2/EpRE signaling 

system is regulated at several levels. The main line of regulation is formed by the core 

components Keap1, Nrf2, and Nrf2 partner proteins that bind to the EpRE cis-element. The 

complex formed by transcription factors Nrf2 and its partner (small Mafs, c-Jun, ATF4, etc.) 

forms the positive regulation arm, leading to enhanced expression of antioxidants genes, and 

also the expression of Nrf2 repressors such as Keap1, Bach1, and β-CrTP that form the 

negative arm of the main feedback loop of Nrf2/EpRE signaling. These negative regulators 

either interact with Nrf2 cause its degradation or compete with Nrf2 for EpRE binding, or 

repress its transactivation. The next level of Nrf2 regulation is provided by post-translational 

modification such as phosphorylation and sumoylation, which regulate the intracellular 

distribution, activity, and degradation of Nrf2 or its partners. The third level of Nrf2 

signaling regulation occurs as a result of various associations of Nrf2 with other proteins.

Activation of Nrf2-EpRE signaling—Under resting conditions, most Nrf2 is rapidly 

degraded with a half-life of less than 30 min through its interaction with Keap1. Upon 

exposure to oxidative and electrophilic stressors, the redox sensitive cysteine residues in 
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Keap1 are modified, allowing Nrf2 to dissociate from Nrf2-Keap1 complex and escape 

degradation. Dissociated Nrf2 is then translocated into the nucleus, forms heterodimers with 

other transcription factors, binds to EpRE, and enhances gene transcription. Dissociation of 

the 19S regulator from the 26S proteasomal complex during stress (e.g. oxidative stress) also 

appears to transiently increase ‘free’ Nrf2 levels because Nrf2 degradation by the ATP/

Ubiquitin-26S proteasomal system is temporarily lost [207]. This process, catalyzed by 

Ecm29 and HSP70, appears to increase Nrf2 translocation to the nucleus, binding to EpRE, 

and transcription of target genes.

In the past two decades, there has been extensive investigation concerning the role of Nrf2 

in pathologies, and protection against oxidative insults. It is now well known that Nrf2 plays 

an essential role in maintaining redox homeostasis and protecting against oxidative insults 

(see other reviews in this issue), and that Nrf2 dysregulation is implicated in various 

oxidative stress-related diseases including cardiovascular diseases [208], neurodegenerative 

diseases [209], pulmonary diseases [210], cancers [211], and other pathologies [212].

Nrf2 phosphorylation—Studies have reported that phosphorylation is required for Nrf2 

activation and target gene induction [213]. The involvement of protein kinases PKCδ [214–

216], PI3K [215, 217–219] in Nrf2 dissociation and nuclear transportation in response to 

diverse oxidative stressors has been observed in many systems. While reports on roles of 

MAPKs (ERK1/2, JNK, p38MAPK) in Nrf2 activity regulation are controversial (see review 

[220]), accumulating evidence suggest that ERK1/2 increases Nrf2 stability and activity 

[221–226], while others found that inhibition of ERK1/2 did not abolish Nrf2 signaling 

[215, 227–229]. The controversy might be due to difference in species, cell types, and 

stressors [230]. P38MAPK is implicated in the induction of Nrf2/EpRE-regulated genes [215, 

228, 230–238], but its direct role in Nrf2 activation is less clear. Keum et al. reported that 

p38MAPK negatively regulated Nrf2 activation [239], but this was not supported by others 

who found that activation of p38MAPK was required for Nrf2 nuclear transportation and 

activation [223, 225, 228]. In addition, many studies have also shown the involvement of 

JNK in Nrf2 nuclear translocation [240–243].

There is evidence suggesting that Nrf2 phosphorylation on tyrosine may play a role in the 

export of Nrf2 from the nucleus and its degradation [244–251]. This “post induction 

response” of Nrf2 signaling is apparently controlled by the PI3K/AKT-GSK-3β-Fyn axis.

Age-related change of PI3K and PKC activity—The possible involvement of PI3K in 

both the nuclear translocation and export of Nrf2 protein makes it an interesting target for 

studies of aging in relation to Nrf2 signaling. Most studies on Nrf2 phosphorylation have 

been made of in cell lines and direct evidence of whether these findings hold true in 

senescent cells and aging process is limited although Shih and Yen found that the age-

dependent decrease of Nrf2 protein and its target genes was associated with reduced 

activation of mitogen-activated protein kinase cascade in liver of old rat (18 and 24 mo vs. 2 

and 12 mo) [192].

An age-related change of PI3K protein and activity has been reported in many studies. 

Decreased PI3K/AKT signaling was observed in skeletal muscle of old mice [252] and in 
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hepatocytes of old rat [253]. It is appeared that the age-related decrease in PI3K signaling 

could be due to a decrease of its p85α subunit, as reported in cardiac muscles of old mice 

[254] and rats [255]. This was confirmed in both mice and human pancreatic tissues, and in 

liver, lung, and kidney of mice [256]. In addition, PI3K/AKT signaling was also decreased 

in brains (24 mo vs. 6 mo) [257] and hippocampus of old mice [258], and in macrophages 

from elderly individuals [259].

In contrast, an age-related increase in PI3K signaling was reported in some studies. 

Increased PI3K signaling has been reported in the peripheral blood mononuclear cells [260] 

and CD4+ lymphocytes [261] from old human donors. Animal studies also showed that 

PI3K signaling was increased in skeletal muscle (26 mo vs. 6 mo) [262] and heart of old rats 

[263], and macrophages of old mice [264]. Majumdar et al. showed an increased 

phosphorylation of p85α and Akt in the colonic mucosa of old compared with that of young 

rats [265]. A recent study by Tomobe et al. evaluated age-related change of Nrf2 signaling 

in a mouse model of accelerated aging (SAMP8) [266] and found that total and nuclear Nrf2 

protein in liver of 10-month-old SAMP8 mice were decreased compared to that of normal 

age-matched SAMR1 mice, associated with a decreased AKT phosphorylation.

These results suggest that age-associated alterations in PI3K/Akt signaling may be tissue 

specific, and this may imply a different effect on the regulation of Nrf2/EpRE activity with 

aging. In addition, change of p85α protein level with aging appears to be an important 

underlying mechanism associated with age-related variation of PI3K signaling. Nonetheless, 

whether and how age-related change of PI3K signaling affects Nrf2/EpRE function with 

aging is unclear and should be elucidated with further studies.

PKC has many isoenzymes that differ significantly in regulation, specificity and location. 

PKCδ has been implicated in Nrf2 translocation [214, 215], but few, if any, of the several 

studies that have determined the effect of aging on PKC have looked specifically at PKCδ.

Nrf2 sumoylation and the age-related change of sumoylation—Protein 

sumoylation occurs when proteins are covalently bound to the small ubiquitin-related 

modifier (SUMO) family proteins (SUMO-1, -2/3). Sumoylation-mediated protein 

modification is involved in various cellular processes through modulation of protein 

localization, regulation of transcription, and protein-protein interactions. Ramani et al. first 

reported that two potential SUMO binding sites existed in the b-ZIP domain of Nrf2 and 

Nrf2 sumoylation by SUMO-1 was required for Nrf2/MafG interaction and the EpRE 

activation in rat hepatic stellate cells, evidenced by the abrogation of Nrf2/EpRE activity 

with the mutation of Nrf2 sumoylation sites or the knockout of SUMO-1 [267]. Nrf2 

sumoylation and its role in promoting Nrf2-MafG interaction and Nrf2/EpRE activation was 

further confirmed in hepatocytes and macrophages derived from mice treated with endotoxin 

[268]. Nrf2 sumoylation by SUMO2/3 was also detected but does not seem to be involved in 

the regulation of Nrf2 activity. Malloy et al. investigated the sumoylation of Nrf2 and found 

that Nrf2 was a target for SUMO-1 and SUMO-2/3 [269], As2O3, an inducer of Nrf2, 

increased SUMO-2-conjugated Nrf2 in 1–4 h after exposure. Interestingly, they found that 

polysumoylated Nrf2 was simultaneously ubiquinated by poly-SUMO-specific E3 ubiquitin 

ligase RNF4, resulting in proteasomal Nrf2 degradation and decreased steady state Nrf2 
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level in the nucleus. However, this sumoylation-mediated Nrf2 degradation only contributes 

about 30% of the basal and inducible Nrf2/EpRE activity. Based on this study, 

polysumoylation of Nrf2 by SUMO-2/3 seems to cause Nrf2 degradation. It is unclear 

whether Nrf2 sumoylated by SUMO-1 and that by SUMO-2/3 have a different fate or 

function.

Interestingly, sumoylation is redox regulated and the SUMO conjugation activity is reduced 

under oxidative stress [270]. SUMO conjugating enzymes, such as SUMO E1 subunit Uba2 

and the E2-conjugating enzyme Ubc9, could be inhibited by direct and reversible oxidative 

modification through the formation of (a) disulfide bond (s) involving the catalytic cysteines 

[270]. SUMO protease SENP1 is also redox regulated and its desumoylation activity 

increases under oxidative stress condition [271]. In addition, SUMO-3 is negatively 

regulated under oxidative stress [272]. However, there are studies suggest a controversy 

result that sumoylation of some proteins is increased upon oxidative stress [273, 274]. Given 

these controversies about the potential role of sumoylation in Nrf2 regulation, and about the 

redox regulation of sumoylation, further study on its role in the Nrf2/EpRE system in 

response to oxidative stress is guaranteed.

Protein sumoylation is implicated in cell senescence, demonstrated by the findings that 

sumoylation overexpression increases while its deficiency reduces senescence [275]; 

however age-dependent variation of protein sumoylation is less well characterized. An 

increase in protein sumoylation with aging has been observed in the spleens [276] and hearts 

[277] of rats (25 mo vs. 3 mo). Yang reported that protein sumoylation and SUMO-3 were 

increased in the hypothalamus of aged mice (25 mo vs. 7 mo) [278]. A recent study from 

Sapir et al. showed that the sumoylation of HMG-CoA synthase in C. elegans increased 

with aging, and this might be due to an age-related decrease of the activity of ULP-4 small 

ubiquitin-like modifier protease [279]. This evidence suggests that protein sumoylation may 

be increased with age. Unfortunately, the effect of sumoylation on age-related change of 

Nrf2/EpRE signaling pathway, including on Nrf2 itself, is unclear. Considering the 

controversy effect of oxidative stress on sumoylation system and the pro-oxidative status of 

aging, this issue needs to be elucidated.

Other proteins regulating Nrf2/EpRE signaling and their potential role in aging
—Besides the aforementioned regulatory mechanisms, evidence shows that many other 

proteins regulate Nrf2/EpRE signaling. These proteins either associate with Nrf2 to regulate 

its stability, or compete with Nrf2 for EpRE binding. Here we briefly summarized these 

proteins based on their positive or negative effects on Nrf2/EpRE activity.

Proteins positively regulating Nrf2/EpRE signaling

P21 WAF1/Cip1) protein: Cyclin-dependent kinase inhibitor p21 mediates multiple 

cellular processes including cell cycle arrest, senescence, apoptosis, and protection against 

oxidative stress [280]. The expression of p21 is up regulated in response to oxidative stress. 

Chen et al. found that p21 deficiency reduced the basal and inducible Nrf2 level and its 

target genes. Further state-of the art experiments demonstrate that p21 could directly interact 

with Nrf2 through its KRR motif. Since p21 competitively bind to the DLG and ETCG 
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motifs in Nrf2, the same motifs bound by KEAP1, Nrf2- KEAP1 interaction is reduced, so 

as KEAP1-mediated Nrf2 degradation, in other words, Nrf2 level and Nrf2/EpRE signaling 

is increased [281]. Up-regulation of Nrf2 by p21 might be a feedback mechanism since Nrf2 

activation could reduce p21 and revert p21-mediated growth inhibition [282]. Buitrago-

Molina reported that p21 knockout induced Nrf2 and its target genes via Sestrin 2, which is 

increased and activates Nrf2 through p65-mediated KEAP1 degradation [283].

P21 is a direct participant in regulating genes involved in cell senescence and aging [284–

288]. Enomoto et al. demonstrated that there was an age-related increase of p21 protein 

level in human corneal endothelial cells [289]. On the other hand, Simon et al. found that 

total p21 expression was unchanged while p21 in the nucleus declines in liver of aged rat 

compared with that of young [290]. In agreement, Song et al. showed no significant 

difference in the expression level of p21 in corneal tissues from donors with different ages 

[291]. These limited data indicate that p21 expression level might not change with aging, but 

that its translocation to the nucleus may decline. Currently little is known on whether Nrf2/

EpRE signaling is differently influenced by p21 in old organisms.

Breast cancer susceptibility gene 1 (BRCA1): BRCA1 is a well-established tumor 

suppressor that is implicated in maintaining genome integrity through DNA repair 

processes. Recent evidence suggests that BRCA1 is also involved in defense against 

oxidative stress [292]. Bae et al. first reported that BRCA1 overexpression up-regulated the 

expression of antioxidant enzymes including NQO-1 and increased defense against 

oxidative stress while BRCA1 deficiency conferred sensitivity to oxidant damage [293]. 

They also demonstrated that BRCA1 stimulated Nrf2/EpRE signaling. Later Gorrini et al. 

found that BRCA1 could regulate Nrf2-EpRE signaling by physically interacting with Nrf2 

and promoting its stability and activation. BRCA1-deficiency resulted in down regulation of 

Nrf2-regulated antioxidant enzymes in mouse primary mammary epithelial cells [294]. In 

addition to its direct interaction with Nrf2, BRCA1 might also regulate Nrf2/EpRE signaling 

via interacting with other proteins. For example, BRCA1 induces p21 protein [295] [296], 

interacts with CBP/p300 [297], c-Myc [298], which are involved in Nrf2 regulation (see 

corresponding parts of current review). Taken together, BRCA1 appears to positively 

regulate Nrf2/EpRE signaling and participate in antioxidant defense. The emerging role of 

BRCA1 as a regulator of Nrf2/EpRE signaling, especially how it interacts with other Nrf2 

regulators, however, needs to be further elucidated.

Although BRCA1 mutation has been extensively studied, due to its implication in breast 

cancer, less is known about BRCA1 expression level in aging. Pan et al. demonstrated that 

BRCA1 expression was reduced in oocytes obtained from middle-aged mice (18 mo vs. 3 

mo) [299]. Another study also found that the mRNA and phosphorylated BRCA1 were 

decreased in the primordial follicles of aged rats (15 mo vs. 1 mo) [300]. Titus et al. 

measured the BRCA1 protein in oocytes from mice and women at different ages and found 

its level declined with age [301]. In contrast, higher level of BRCA1 was found in 

Alzheimer’s disease [302].

CREB binding protein (CBP): CBP is a transcription co-activator with intrinsic histone 

acetyltransferase activity that is involved in chromatin opening [303, 304]. CBP is involved 
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in the regulation of the activity of a large number of general and cell-specific transcription 

factors. CBP can interact with numerous transcription factors of different classes [305, 306]. 

The promiscuous binding characteristics together with reports of requirement of CBP 

binding for sufficient function of many transcription factors, have led to the suggestion that 

competing for limited amounts of CBP and related molecules would provide a coordinating 

mechanism whereby various intracellular signaling pathways integrate to accomplish the 

appropriate transcriptional activity [306]. This model has been supported by results from the 

recently reported CBP/p300 gene-deleted mice [57]. CBP is recruited to Nrf2/EpRE 

complex through association with Nrf2 via its NEH4 and NEh5 domain, and regulates 

transcription [303, 307]. Sun et al. demonstrated that CBP could directly bind and acetylates 

the lysines of Nrf2 in response to arsenite-induced oxidative stress [308]. Acetylation was 

partially involved in Nrf2 activity. Further studies found that acetylation enhanced Nrf2 

binding ability to EpRE instead of affecting Nrf2 stability [308].

Decreased histone acetylase activity of CBP/P300 is observed in liver, muscle, and testes of 

aged mice [309], motor-neurons [310], cerebral cortex and hippocampus of aged rats [311]. 

However, some studies suggest that CBP level remains relatively stable in the brain, lung, 

spleen, and heart of old mice compared to young [309], and in hippocampus of aged rats 

(26–28 mo vs. 6 mo) [312]. Radak et al. also did not find the change of CBP in skeletal 

muscle of elderly human (62 y vs. 26–30 y) [313]. It remains unclear whether this 

inconsistency is due to differences in species, tissues or aging phase. Nonetheless, a decline 

of CBP activity may cause dysregulation of Nrf2 signaling and its target genes in aging. 

Shenvi et al. found that the typical EpRE activity in GCLC was diminished during aging 

because of the absence of CBP and less deacetylation in livers of old rats [314], this caused 

the binding of Nrf2 to an alternative EpRE site located −2.2 kb downstream from the 

normally active EpRE binding site. However, the transcription activity of this alternative 

EpRE-Nrf2 complex was not sufficient for GCLC transcription [314]. A recent report 

showed that there might be a competition for CBP binding between Nrf2 and NF-κB [315]. 

Considering the increase of NF-κB level with aging [316], CBP binding with Nrf2 would be 

decreased.

Sequestosome-1 (SQSTM1, p62): P62 was initially discovered as an atypical protein 

kinase C (PKC)-interacting protein. Now it has been recognized that p62 interacts with 

several signaling pathways and is a crucial molecule in a myriad of cellular functions [317]. 

P62 was identified as a positive regulator of Nrf2/EpRE signaling when Liu et al. screened 

for Nrf2-associated genes [318]. Overexpression of p62 increased nuclear Nrf2 and Nrf2/

EpRE activity and NQO-1 induction, Nrf2 transcription and total Nrf2 seems not affected 

[318]. P62 is an ubiquitin binding protein acting as a cargo receptor for autophagic 

degradation of ubiquitinated proteins. It is increased in response to various stimuli and 

interacts with Keap1, and causes Keap1 accumulation and subsequent autophagic 

degradation, resulting in the inhibition of the binding of Keap1 and Nrf2, and inhibition of 

Keap1-mediated Nrf2 degradation [319]. Jain et al. further showed that p62 interacted with 

the Kelch-repeat domain of Keap1, which disrupted the interaction of Keap1 with Nrf2. 

Because p62 is polymeric, the interaction between KEAP1 and p62 leads to KEAP1 

aggregation with p62 bodies and its subsequent autophagic degradation. Interestingly p62 is 
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a target of Nrf2/EpRE signaling and its expression is increased along with Nrf2 activation in 

response to oxidative stress, this forms a positive feedback loop of Nrf2 regulation [320]. 

Recently it is reported that arsenic activates Nrf2 through a non-canonical pathway in which 

it causes accumulation of p62 while tert-butylhydroquinone and sulforaphane activate Nrf2 

through the canonical pathway [321]. Indeed accumulating evidence suggests this autophagy 

deficiency/p62 accumulation dependent pathway is important in maintaining the integrity of 

Nrf2-Keap1 system [322–324].

In contrast with other Nrf2/Keap1 interacting proteins, the age-dependent changes in p62 

have been extensively studied. With aging, p62 protein level is increased in various cells and 

tissues such as cardiomyocytes (24–26 mo vs. 3–4 mo) [325] and hippocampus of mice 

[326], kidney (24 mo vs. 3 mo) [327], islet (24 mo vs. 4 mo) [328], and osteocytes of rats 

(24 mo vs. 3 mo) [329]. An aged-related increase of p62 could be reduced by calorie 

restriction [330] or exercise [331]. Bartlett et al. found that increase of p62 protein with 

aging in neural tissues of flies was not due to increased transcription, as its mRNA level was 

decreased [332]. The age-dependent increase of p62 protein occurs as an accumulation 

within inclusions, which form from aggregation of p62 and ubiquitinated proteins, due to 

declining autophagic activity [332]. The degradation of p62 is mainly through autophagy 

[333]. Impaired autophagy has been observed in various tissues and cells from senescent 

organisms [334], including islet cells (24 mo vs. 4 mo) [328], extraocular muscles [335], and 

osteocytes (24 mo vs. 3 mo) of rats [329]. Therefore, it would seem reasonable to expect an 

increase of p62 accumulation with aging; however, p62 is markedly more aggregated with 

aging [332]. In other words, although total p62 protein is increased in senescent cells, its 

activity is likely to be decreased. Thus, the subsequent p62-mediated Nrf2-EpRE regulatory 

pathway could be down-regulated with aging.

Transcriptional regulator activating transcription factor 4 (ATF4): ATF4 is a member 

of the ATF/cAMP-response element-binding (CREB) group of the bZIP transcription factor 

family, it has been involved in the regulation of genes involved in amino acid transport, 

GSH homeostasis, and oxidative defense [336]. A role for AFT4 in Nrf2-EpRE activation 

has been suggested [337]. Using the yeast two-hybrid system, He and collaborators 

identified ATF4 as a heterodimerization partner of Nrf2 that was involved in the activation 

of EpRE signaling of HO-1 [338]. ATF4 expression is induced by diverse stressors, 

including oxidative stressors [338–340], through Nrf2/EpRE signaling [341]. In addition, 

ATF4 expression is also regulated at the translational level through the change of 

phosphorylation of eIF2α, which binds to the 5′- untranslated region of the ATF4 mRNA 

[342, 343].

Elevation of ATF4 is related to longevity in several aging models [344]. ATF4 expression is 

reduced in various tissues of old mice (18 mo vs. 1 mo) due to the decline of eIF2α 

phosphorylation, which is associated with a higher level of GADD34, a subunit of eIF2α 

phosphatase [345]. Similarly a decline of eIF2α phosphorylation was observed in aged 

mouse cerebral cortex (22–24 mo vs. 10w) [346], suggesting a reduced ATF4 expression. 

Drummond et al. showed that eIF2α phosphorylation and the nuclear ATF4 level in skeletal 

muscles were increased in the young but not old subjects (68 y vs. 28 y) following resistant 

exercise [347].
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Proteins negatively regulating Nrf2/EpRE signaling

Keap1: KEAP1 was identified as an Nrf2 repressor in 1999 when Itoh et al. screened Nrf2 

associated proteins using a yeast two-hybrid assay [348]. Keap1 acts both as an anchor for 

cytosolic Nrf2 by binding to cytoplasmic actin or myosin VIIa through its DGR domain 

[349] and as an adaptor of Cul3-based E3 ligase that causes Nrf2 polyubiquitination and 

proteasomal degradation [30]. Two Keap1 proteins form a dimer via BTB domains and then 

bind Nrf2, through interactions between DGR domain of Keap1 and the Neh2 domain of 

Nrf2 [30, 350]. Importantly some cysteine residues in the cysteine-rich intervening region 

[351], especially cys 151, 273 and cys 288, are required for Nrf2 binding.

A very recent study from Palsamy and collaborators demonstrated that the unfolded protein 

response, stimulated with endoplasmic reticulum stressors and oxidants, caused loss of 

methylation of the KEAP1 promoter and up-regulated Keap1 expression thereby decreasing 

Nrf2 and Nrf2-target gene expression in human lens epithelial cells [352]. Interestingly they 

found that Keap1 promoter methylation was decreased in lenses in aging reaching the lowest 

level around 75 y. As oxidative stress triggers changes in DNA methylation pattern [353, 

354] and accumulation of unfolded protein is increased in with age [355, 356], it is 

reasonable to hypothesize that Keap1 expression increases with age. Nonetheless, in a 

mouse model of accelerated aging (SAMP8), Tombe et al. observed a significant decrease in 

Nrf2 mRNA and its total and nuclear protein in the liver of 10 mo mice compared with age-

matched normal SAMR1 mice, but did not observe an age-related change of Keap1 mRNA 

and protein levels [266]. Rahman et al. also did not observe an age-related change of Keap1 

mRNA using 10–50 d flies [195].

Bach1: Bach proteins (Bach1 and Bach2) belong to B-Zip protein family. Through their 

BTB domain Bach proteins form dimers with small Maf proteins and bind to EpRE. Bach1 

is universally expressed while Bach2 is mainly expressed in neural and monocytes [357]. 

Igarashi et al. first reported Bach1 as a transcription repressor evidenced by results that 

Bach1 could interact with MafK and bind to EpRE, but lacked a transactivation domain 

[358]. Bach2 was also identified as a repressor of EpRE activity [359]. Later the same group 

showed that Bach1 abrogated Nrf2/EpRE-mediated HO-1 induction [360]. Additional study 

from Suzuki and collaborators showed that the Nrf2/EpRE inducers cadmium could induce 

the nuclear export of Bach1 and Bach2, mediated by a C-terminal conserved domain with 

involvement of ERK1/2 signaling [361]. The competitive effect of Bach1 with Nrf2 was 

confirmed by later studies [362, 363], which demonstrated that Bach1 repressed tert-

butylhydroquione-induced Nrf2/EpRE activation. Most Bach1 and Nrf2 locate in the 

cytoplasm under resting conditions, and both translocate into nucleus upon oxidative stress, 

with a delay of Bach1 nuclear translocation compared with Nrf2 [362, 363]. Using diamide, 

Ishikawa et al. showed that Bach1 activity was redox regulated [364] as modification of 

cysteine residues in Bach1’s DNA binding domain abrogated its DNA binding ability. Meng 

et al. showed that cysteine residues 557 and 574 were involved in Bach1 dissociation from 

EpRE complex of HO-1 confirming the redox-dependence of Bach1 activity [365]. In 

addition, Bach1 phosphorylation at tyrosine 486, which is induced by oxidants, is 

responsible for the nuclear export of Bach1 [366]. Interestingly, expression of Bach1 is 

regulated by Nrf2/EpRE signaling [367].
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Due to the repressing effect of Bach1 on Nrf2/EpRE signaling, studies have examined the 

potential role of Bach1 in age-dependent decline of Nrf2 signaling. Bach1 forms a complex 

with p53, inhibiting p53 activity and thereby inhibiting senescence [368]. Using 

immunoprecipitation assays, Shenvi et al. showed that Bach1 binding to the functional 

EpRE in rat GCLC promoter was increased in cells from old mice, with a simultaneous 

decrease of Nrf2 binding [314]. We recently reported that the Bach1 protein levels in the 

lung, liver and cerebellum of middle-aged mice was significantly higher than those of young 

adults, and the increase of Bach1 was associated with a decline of Nrf2-targeted gene 

induction in response to nanoparticles [157]. As mentioned above, oxidative stress causes 

nuclear translocation of Bach1. Therefore we hypothesize that oxidative stress could cause 

an age-related nuclear accumulation of Bach1 and play a significant role in the age-related 

decline in Nrf2 signaling.

c-Myc: c-Myc is a proto-oncogene and also a transcription factor that regulates genes 

involved in cell growth, proliferation and apoptosis. Several lines of evidence suggest that c-

Myc is a negative regulator of Nrf2 signaling. Our lab first demonstrated that silencing c-

Myc increased expression of four Nrf2-regulated genes through both association with Nrf2-

EpRE complexes in the nucleus and shortened Nrf2 half-life [369]. A very recent report 

from Yang and colleagues showed that Nrf2 signaling was down-regulated through a c-

Myc-miR27a/b-PHB1 circuit. Lithocholic acid (LCA) induced c-Myc and reduced 

expression of Nrf2 and GCL in mice [370]. c-Myc promoted induction of microRNA 27a/b 

that targeted both PHB1 and Nrf2 to reduce their expression. Knockdown of c-Myc or 

miR27a/b attenuated LCA-mediated suppression of Nrf2 and GCL expression. Furthermore, 

c-Myc directly interacted with Nrf2 and lowered Nrf2 binding to EpRE [370]. Indeed, c-

Myc was negatively associated with expression of Nrf2-target genes in various tissues of 

mice [157, 371]. Consistently, Burdo et al. showed that c-Myc phosphorylation reduced 

nuclear Nrf2 in rat neurons and down-regulated GCLC expression while inhibition of c-Myc 

phosphorylation reversed such changes [372]. In contrast, Nagy reported that c-Myc 

overexpression induced p62 and Nrf2 signaling in Drosophila [373] and in primary murine 

cells [374]. In all, c-Myc is an important participant, probably a negative regulator, of the 

regulatory network of Nrf2/EpRE signaling.

c-Myc mRNA was increased significantly in the liver of rats with aging (6, 12, 18, 24 mo) 

[375]. Semsei et al. determined the steady-state mRNA levels of c-Myc in various normal 

tissues throughout the life span of the C57BL/6J male mouse strain [376]. c-Myc expression 

was highest in prenatal and newborn ages and decreased to its lowest level at about 6 mo. 

With further increase of age, a progressive increase of c-Myc mRNA was found in brain, 

liver, skin, and small intestine. However, c-Myc mRNA level was not changed in the 

kidney, spleen and heart with aging [376]. A recent study from our lab also found c-Myc 

protein level was significantly higher in the lung, liver, and cerebellum of middle aged (21 

mo) in comparison with young mice (6 mo) [157]. An earlier study showed that there was a 

retarded rate of c-Myc mRNA degradation in T-cells from older than young human subjects 

[377]. In contrast, Novikov et al. showed that c-Myc and c-Fos expression level was not 

changed in rat livers with aging [378]. Taken together, the available data suggest age-

dependent change of c-Myc expression varies with species and tissues, and its expression is 
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increased in some tissues. Recent data from our lab suggest that age-related increase of c-

Myc is associated with the decline of Nrf2 signaling and induction of its target genes [157]. 

Obviously more studies are needed to elucidate the expression pattern of c-Myc in various 

tissues from different models, and also the potential role of c-Myc in age-dependent decline 

of Nrf2 signaling.

MicroRNAs in the regulation of Nrf2 signaling—MicroRNA (miRNA) are small 

non-coding RNA sequences containing about 22 nucleotides. The miRNA bind to the 3′ 

UTR of their target mRNA through complimentary base pairing, causing the degradation 

(high complementary) or blocking the translation (lower levels of complementarity) of the 

target mRNA. Therefore one gene may be targeted by many miRNA. MiRNA play key roles 

in regulating gene expression post-transcriptionally. MiRNA themselves are regulated at the 

transcriptional level through vartious transcription factors. For example, both Nrf2 and NF-

κB regulate miRNA expression [379].

Accumulating evidence suggests that many miRNA may regulate Nrf2/EpRE activity 

through targeting the expression of proteins involved in Nrf2/EpRE pathway. Some miRNA 

regulate the Nrf2/EpRE pathway through directly targeting Nrf2. For example, miR-101-2 

(Kim, Lee et al. 2014), miR-93 [380], miR-28 [381], miR-507, miR-634, miR-450a, 

miR-129-5p (Yamamoto, Inoue et al. 2014), and miR153 [382] can target Nrf2 mRNA and 

down regulate Nrf2 protein expression. In addition, many Nrf2 regulatory proteins and 

partners are also regulated by miRNA, and these miRNA could regulate Nrf2/EpRE 

signaling. Bach1, a negative regulator of Nrf2/EpRE activity, has been shown to be target of 

miR-196b [383], miR-155 [384], let-7b miRNA, let-7c miRNA, miR98 [385], and miR-122 

[386]. Another negative regulator of Nrf2, c-Myc, was also regulated by miRNA, including 

miR-520d-3p [387], miRNA-135b [388], miR-34b/c [389], miR-744 [390], miR-184 [391], 

microRNA-135a [392], miR-145 [393] [394], miR-126 [395], miR-449c [396], miR-196b 

[397], miR-34a [398], miR-33b [399], miR-98 [400], miR-let-7 [400] [401] and miR-185-3p 

[402]. The Nrf2 partner, c-Jun is also targeted by miRNA miR-125b [403] and miR-155 

[404]. Keap1, the Nrf2 inhibitor, is the target of miRNA miR-200a [405, 406] and miR-141 

[407] [408]. With more studies, it is expected that additional miRNAs will be found to be 

involved in regulating Nrf2/EpRE signaling, by targeting Nrf2 or its associated proteins 

[409].

Some studies have examined the effect of aging on miRNA expression [410]. Regarding 

age-dependent changes of miRNA that target Nrf2 signaling, less information is available. 

Li and colleagues studied the expression level of miR-34a and miR-93 and its target gene 

Nrf2 in livers of rats and found that both miRNAs were increased significantly with aging 

(18, 24, 28 mo vs 4 mo), with a corresponding decrease of Nrf2 protein [411]. An increased 

expression of miR-34a was also observed in the retina and RPE of old mice (24, 28, 32 mo 

vs 4 mo) [412]. Csiszar et al recently reported that miR-144 was elevated in the 

cerebromicrovascular endothelial cells (CMVECs) from aged rats (24 mo vs 3 mo), and the 

level of Nrf2, its target gene, was decreased [413]. As more miRNA involved in Nrf2 

regulation are identified, their roles in the impaired Nrf2 function with age should be 

determined. It is unclear if tissue or species differences exist in the age-dependent change of 

these miRNAs, and how these changes may contribute to the impaired Nrf2 function with 
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aging. As one miRNA can target multiple genes, and one gene can be targeted by multiple 

miRNAs, an extremely complex situation is likely to represent a significant challenge to 

determining the interrelationships of miRNAs, Nrf2/EpRE and aging.

Conclusions and perspective

Advancing age is accompanied by an increase in oxidant production from various sources 

and a simultaneous dysfunction of the antioxidant defenses, leading to accumulated 

oxidative damage to proteins, nucleotides and lipids in aging cells. With advancing age, 

particularly as organisms become frail, susceptibility to oxidants and other toxicants 

increases [163, 175, 414]. In addition, redox signaling, which plays a key role in the 

adaptive response to oxidative stimuli, changes during aging [38]. Here we reviewed the 

age-related variation of several antioxidant enzymes, Nrf2/EpRE function, and some 

components of the Nrf2/EpRE regulatory system (Figure 1). Controversy remains about the 

direction of change in antioxidant enzymes especially Nrf2-regulated antioxidant genes, by 

aging itself. It is unclear if the controversy over the baseline changes with age is due to 

differences in the species, tissues, or cells actually studied, or to differences in aging status.

In contrast, accumulating evidence points to an age-related decline in the ability to respond 

to oxidative stress with activation of Nrf2/EpRE signaling and expression of its target 

antioxidant genes. Nonetheless, the complexity of the regulatory mechanisms for each 

antioxidant gene makes it difficult to clarify divergent findings. For example, HO-1 

expression is regulated by multiple transcription factors including Nrf2/EpRE, NF-κB, and 

HIF-1α signaling. Although Nrf2/EpRE function declines with aging, both NF-κB signaling 

[415] and HIF-1α signaling are activated [184], which would lead to increased HO-1 

expression in the old. Whether or not there is a tissue specific difference in the Nrf2/EpRE 

function represents another challenge for future study.

In reality, there are several big questions remaining to be answered. What mechanisms 

underlie the loss in response to oxidative stress of the Nrf2/EpRE signaling in old animals? 

To what degree can this decline in signaling competence be reversed? How does this loss in 

adaptability contribute to the senescent phenotype? Finally, how many of these effects of 

aging, largely studied, so far, only in animals, will also be important components of the 

aging phenotype in humans?
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BRCA1 Breast cancer susceptibility gene 1

CBP CREB binding protein

EpRE electrophile response element

G6PDH glucose-6-phosphate dehydrogenase
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GCL glutamate cysteine ligase

GCLC glutamate cysteine ligase catalytic subunit

GCLM glutamate cysteine ligase modifier subunit

GSH glutathione

NQO-1, NADPH quinone oxidoreductase 1

HO-1 heme oxygenase-1

GPx glutathione peroxidase

GST glutathione transferase

Nrf2 nuclear factor erythroid 2 -related factor 2

Prdx peroxiredoxin

p62 sequestosome-1

SUMO small ubiquitin-related modifier

SOD superoxide dismutase

nPM nanoparticle

mo months
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Highlights

• Induction of many antioxidant genes by oxidative stress declines with age

• Nrf2 activation is impaired in aging with a loss of the electrophilic response

• The Nrf2 positive regulators, PI3K, P62, CBP, and BRCA1, decrease with age

• The Nrf2 negative regulators, Keap1, Bach1, and c-Myc, increase with age

• MicroRNAs regulate Nrf2 signaling and may be involved in aging
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Figure 1. 
Age-related change Nrf2 regulatory system. Green arrow shows positive and red arrow 

shows negative effect on target to which the arrow points
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