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Abstract

NRF2 is a transcription factor that promotes antioxidant and drug-metabolizing gene expression. It 

also regulates the transcription of genes involved in carbohydrate and lipid metabolism, NADPH 

regeneration, heme and iron metabolism, as well as proteasome metabolism. Emerging research 

has identified NRF2 as a critical factor for promoting survival of mammalian cells subjected to 

ionizing radiation. At a mechanistic level, NRF2 promotes the repair of DNA damage and drives 

detoxification of superoxide that is generated hours to days after irradiation. This review 

summarizes research in these areas and discusses targeting of NRF2 in radiation resistant cancer 

and NRF2’s role in mitigating Acute Radiation Syndrome.
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Introduction

Electrophiles and reactive oxygen intermediates, as well as reactive nitrogen species, can 

contribute significantly to the etiology of many chronic human diseases. This knowledge has 

driven a major research effort that focused on providing mechanistic insight and guidance 

for the development of redox-based therapeutic strategies. The effort, however, was 

hampered by the structural diversity of electrophilic and oxidative compounds. It took the 

pioneering work of Talalay and colleagues [1-3] and Pickett and associates [4, 5], as well as 

research from Violet Daniel’s laboratory [6, 7], to provide a fundamental molecular 

framework that ultimately was used to explain how a thiol-based protein sensor 

distinguished between different types of chemistries and translated the information into 

physiological responses. The sensor is kelch-like ECH-associated protein 1 (Keap1), 

originally characterized by Itoh et al. [8]. The murine protein contains 25 and the human 

contains 27 cysteine residues that function as redox sensors capable of integrating diverse 

chemistries [9], including radiolytically-generated hydroxyl radical (•OH) and hydrogen 
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peroxide [10], into a common signal: activation of nuclear factor erythroid 2-like 2, or NRF2 

(reviewed in [11].

NRF2 (HGNC:7782), encoded by NFE2L2, is a member of the cap ‘n’ collar (CnC) family 

of basic leucine zipper transcription factors [12] that are conserved in mammals [13], birds 

[8], fish [14], insects [15], and worms [16], but not expressed in plants and fungi [13]. The 

family is composed of the transcription factors SKN-1, NRF1, NRF2, NFE2, NRF3, CncC, 

BACH1 and BACH2 [13]. These proteins are characterized by a leucine zipper protein-

protein dimerization domain as well as CnC and abasic domains that confer DNA binding 

activity [17]. An NMR solution structure of the DNA binding domain may be found at 

http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?uid=105542.

Nrf2 was originally identified as a key regulator of canonical antioxidant and drug-

metabolizing gene expression [18, 19]. Nrf2 heterodimerization with MAF-G [20] or the 

JUN CnC-bZIP factor [21] licenses binding to cis antioxidant response elements (AREs) 

located in proximal promoters of Nrf2 target genes that now number over 500 [20], 

including those involved in carbohydrate and lipid metabolism, NADPH regeneration, heme 

and iron metabolism, as well as proteasome metabolism [19, 22]. The functional ARE has 

recently been defined as TMANNRTGACTCAGCRWWWW, where M = A or C, R= A or 

G, and W = A or T [20]. Emerging research now shows that Nrf2-mediated transcription can 

protect cells and tissues from the pathogenic consequences of hydroxyl radicals that are 

directly generated by ionizing radiation as well as the hydrogen peroxide and superoxide 

that are generated as a secondary consequence of irradiation.

NRF2 promotes survival of irradiated cells

Preclinical cell culture models have been used to address the question of whether Nrf2 

impacts survival of irradiated cells. Keap1−/− mouse embryo fibroblasts (MEFs) 

constitutively overexpress Nrf2 and Nrf2 target genes and are characterized by low levels of 

intracellular reactive oxygen species (ROS) and a radiation-resistant phenotype compared to 

wild-type MEFs [23]. The generalized term ROS is used in this review when the initial 

oxidizing species were not identified in the cited papers [24] and has been defined by C 

Winterbourn as “those initial species generated by oxygen reduction (eg, superoxide) as well 

as all secondary reactive products. The definition includes overlapping reactive nitrogen 

species” [25]. Relative to wild type MEFs, Nrf2−/− MEFs express high levels of intracellular 

ROS and are intrinsically radiosensitive [23, 26]. Activation of Nrf2/NRF2 signaling due to 

electrophilic adduction of Keap1 or a deficiency in the expression/function of Keap1 has 

been shown to lower intracellular ROS and confer radioresistance in fibroblasts [27], 

bronchial and breast epithelial cells [28], DU145 prostate cells [29], squamous cell lung 

cancer [30], and glioblastoma cells [31]. RNA interference (RNAi) or pharmacological 

targeting of NRF2 in DU145 prostate cancer cells [29, 32], non-small cell lung cancer A549, 

H460, or H1299 cells [23, 33], or gliobastoma cells [31] elevates ROS and produces a 

corresponding radiosensitive phenotype. Taken all together, these investigations support a 

hypothesis that NRF2 promotes a pro-survival response in irradiated cells.

Sekhar and Freeman Page 2

Free Radic Biol Med. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?uid=105542


Molecular effects of ionizing radiation

Initial events

The term ionizing radiation describes a photon or particle with sufficient energy to displace 

orbital electrons from atoms, thereby yielding ions and ionized electrons [34]. Coulomb 

interactions occur between ionized charged particles (e.g., an electron) moving through a 

medium such as a cell and the orbital electrons of the constituent atoms. These interactions 

result in a transfer of kinetic energy from the ionized charged particles to the electrons in the 

medium [35] and are quantified as absorbed dose (D), which is defined as the absorption of 

energy in a medium of known mass by ionizing particles. [35]The units of D are Gy (the SI 

unit; 1 Gy = 1J/kg) or rad, which is equal to 0.01 Gy. In the case of X- or γ-irradiation, 70% 

of photons traversing a cell interact with water molecules that ultimately decompose into 

hydroxyl radicals (•OH), hydrogen radicals (•H), hydrogen peroxide, superoxide, and 

solvated electrons (eaq
−) [36]. The hydroxyl radical can react at diffusion controlled rates 

with all four purine and pyrimidine bases, as well as 2-deoxyribose. However, neither 

superoxide nor hydrogen peroxide reacts significantly with DNA bases or 2-deoxyribose 

[37] and as discussed below, radiation-induced damage to DNA is a critical event. Thus, the 

initial reactions relevant to this review can be described as follows [38-40].

(1)

(2)

(3)

(4)

The radical cation in eq 1 (H2O+•) can donate a proton to a nearby water molecule within 

10−14 seconds to yield H3O and the hydroxyl radical (•OH), eq 3 while H2O* (eq 2) can 

decompose into •OH + •H (eq 4). These reactions are complete on a time scale of 

milliseconds.

G-value is a term used to quantify the chemical effects of ionizing radiation. The term was 

originally defined as the number of molecules transformed, produced, destroyed, or changed 

per 100 eV of energy absorbed. In SI units the G-value is assigned a value of mol/J. G-

values are energy-dependent. For example, Cobalt 60 emits two monoenergetic photons of 

1.17 and 1.34 MeV. The G-value for the hydroxyl radical was calculated to be 2.74 

molecules formed per 100 eV absorbed [38-40]. The LD50/60 is a term to describe the mean 

lethal dose that will produce 50% mortality in a population over 60 days. For humans the 

LD50/60 is approximately 4 Gy [34]. The G-values discussed above allow one to calculate 

the concentration of hydroxyl radicals generated by a given dose of radiation. For example, 

4 Gy will generate approximately 20.4 μmol of hydroxyl radicals in a person who weighs 

190 pounds.
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Radiation-induced damage to DNA

While all cellular macromolecules are susceptible to attack by •OH, damage to DNA 

represents a critical injury with pluripotent consequences: cell death, tissue injury, and 

disease. Hydroxyl radicals can abstract a hydrogen atom from the methyl group of thymine 

and from each carbon atom of the 2-deoxyribose moiety [41]. [41][42]Hydroxyl radicals are 

able to add to the double bonds in DNA bases to generate hydroxyl DNA base radicals [41]. 

These and other reactions can result in apurinic/apyrimidinic (AP) sites, single strand breaks 

[42], double strand breaks (DSBs), and protein DNA crosslinks, as well as other types of 

DNA damage. It is estimated that 4 Gy will damage more than 2000 base pairs and generate 

2000 single strand breaks per cell nucleus, as well as approximately 80 DNA DSBs per 

nucleus. In addition to hydroxyl-mediated attack on chromatin, 30% of DNA damage is a 

consequence of direct interaction with ionizing particles.

NRF2 promotes repair of damaged DNA

Base excision repair

Damaged bases, abasic sites, and single strand breaks are repaired by the base excision 

repair pathway. This pathway can be briefly summarized as follows: a) base recognition and 

excision by lesion-specific DNA glycosylases, b) incision by endonucleases [43] is followed 

by formation of an abasic site, c) replacement of the excised base, and d) appropriate end-

terminal processing and ligation [44]. These steps are performed with the aid of enzymes 

such as DNA Polymerase β, poly(ADP-ribose) polymerase 1 (PARP1), and XRCC1/LIG3 

[42].

8—oxo-7,8-dihydroguanine (8-oxoGua) is a highly mutagenic DNA lesion that is detected 

in x-irradiated cells [45{Chen, 2001 #108][45, 46] . It can cause GC to TA transversion 

mutations [47]. 8-oxoGua lesions are repaired by the enzyme 8-oxoguanine DNA 

glycosylase (OGG1). Human OGG1 is located on chromosome 3p25 [48]. Alternative 

splicing of OGG1 results in expression of mitochondrial and nuclear proteins [48]. Dhenaut 

et al. [49] have shown that the human OGG1 promoter harbors an ARE 29 base pairs from 

the transcriptional start site. Analysis of 2 kb of the OGG1 promoter region using a 

luciferase fusion reporter provided evidence of a functional ARE [49]. Chromatin 

immunoprecipitation (ChIP) assays confirmed that Nrf2 binds to the OGG1 promoter[50] 

and RNAi experiments demonstrated that NRF2 deficiencies suppressed OGG1 expression 

[50]. The research of Hyun et al. [51] has shown that OGG1 deficiencies increase the 

radiation sensitivity of human cells, thus supporting a hypothesis that posits a mechanistic 

link between Nrf2, repair of DNA base damage, and radiation sensitivity.

Repair of DNA double strand breaks

Radiation-induced lethal damage is a consequence, in large part, to a DNA DSBs. The 

majority of DNA DSBs are generated by 2 independent hydroxyl radicals that interact in 

close proximity [34]. DSBs are repaired by either non-homologous end joining (NHEJ) or 

homologous recombination (HR). In brief, canonical NHEJ, which operates in all phases of 

the somatic mammalian cell cycle but represents the major pathway in G0/G1 cells [52-54], 

is activated by DNA DSBs which the Ku70/Ku80 complex binds to and stabilizes [55]. 
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DNA-dependent protein kinase is then recruited to the breaks, becomes activated, and 

phosphorylates target proteins, including the endonuclease Artemis that processes DNA 

ends with overhangs. Finally, the XRCC4-DNA ligase 4 (LIG4) complex is recruited and 

ligates the DNA strand with the help of the XRCC4-like factor (XLF). In addition to 

XRCC4-LIG4–dependent C-NHEJ, at least one alternative end-joining (A-EJ) pathway 

exists. This pathway involves microhomology and is mainly used in cells with defects in C-

NHEJ [52-54].

HR, which is restricted to late S and G2 cells, begins with resection of the 5’-strands within 

the DNA DSB, yielding 3’-single stranded DNA overhands that are coated with replication 

protein A (RPA) [55, 56]. RAD51 then displaces RPA, forming a nucleoprotein filament 

(one RAD51 monomer for every 3 nucleotides). The filament aligns with homologous DNA 

sequences on a sister chromatid, forming a structure termed a D-loop. Strand invasion, 

followed by the capture of a second 3’-single strand DNA overhang that was created by the 

resection process, forms a Holliday junction. Finally, the junction is dissolved (the major 

pathway) or cleaved to generate double strand DNA. Cleavage can produce non-crossover 

and crossover products. Experimental evidence acquired to date indicates that non-crossover 

products predominate. In addition, there is an alternative HR pathway termed synthesis-

dependent strand annealing that is independent of Holliday junction formation.

The choice of repair pathway is impacted by whether or not the broken DNA ends undergo 

extensive 5’ to 3’ nucleolytic resection that generates 3’ DNA overhangs [57]. Resection 

promotes initiation of the HR pathway. The question of whether resection will be regulated 

by the interactions of 53BP1 and breast cancer type 1 susceptibility protein (BRCA1) was 

reviewed in [58]. A model has been proposed in which 53BP1 is phosphorylated in G1 cells 

by ataxia telangiectasia mutated (ATM), localizes to sites of DNA breaks, and attenuates 

HR. In S and G2 cells the protein CtIP is phosphorylated by CDK, inducing the formation of 

a complex with BRCA1 and Mre11/Rad50/Nbs1. This complex displaces 53BP1 and 

initiates resection [58].

Emerging research has shown that transcriptional regulation of 53BP1 is regulated in part by 

Nrf2. Kim et al. [59] examined 53BP1’s proximal promoter region for cis regulatory 

elements and found 3 putative AREs in normal human colonic epithelial cells. ChIP assays 

confirmed Nrf2 binding to all 3 cis acting AREs. RNAi-mediated suppression of Nrf2 

prevented the electrophilic triterpenoid bardoxolone methyl from protecting human colonic 

epithelial cells from radiation-induced cytotoxicity [59]. These results are consistent with 

the work of others who have shown that 53BP1 deficiencies increase radiation sensitivity 

[60-62].

BRCA1 has several significant roles in the DNA DSB repair process, including regulation of 

CtIP-mediated DNA end resection [55]. BRCA1 deficiencies result in elevation of ROS and 

a corresponding radiation hypersensitivity phenotype [63]. Thus, BRCA1 promotes high 

fidelity DNA repair while suppressing genotoxic ROS. The mechanism involves BRCA1’s 

ability to bind to Nrf2’s proximal promoter and positively regulate Nrf2 mRNA expression 

[64, 65]. In addition, BRCA1 physically interacts with and stabilizes Nrf2, thereby 
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promoting Nrf2-mediated promoter transactivation [65]. These concepts are summarized in 

Figure 1.

Loss of BRCA1 increases the risk of breast, ovary, and fallopian tube cancers (see reference 

[66] for review). Loss of BRCA1 (or BRCA2) in cancer can be exploited by targeting 

PARP1, a facilitator of DNA repair [67]. Recently, Wu et al. [68] found that PARP1 

interacts directly with small Maf proteins, NRF2’s heterodimeric partners, and that this 

complex augments Nrf2’s ARE-specific DNA binding, thereby enhancing Nrf2-dependent 

gene transcription. Thus, one may hypothesize that the therapeutic efficacy obtained by 

molecular targeting of PARP1 in cancer could be due in part to suppression of Nrf2-

mediated DNA repair.

At a biochemical level, acquisition of DNA damage in mitotically active mammalian cells 

activates the Mre11/Rad50/NBS1 sensor complex whose binding and processing of DNA 

damage initiates ATM and/or ATR activation, which are followed by transduction of signals 

to downstream effector pathways [69]. One of these effector proteins, TP53 (p53), is an 

important regulator of radiation-induced cell cycle checkpoint signaling and apoptosis [70]. 

ATM-mediated activation of p53 has been shown to suppress Nrf2-mediated target gene 

expression and contribute to an enhanced apoptotic response [71].

Nrf2 and induction of apoptosis following X-irradiation

Although it is well established that hydroxyl radical-induced nuclear DNA damage is 

responsible for a significant proportion of cell death following exposure to ionizing 

radiation, it appears that superoxide generated hours to days after irradiation can also impact 

radiation sensitivity. Gao et al [72]found that radiation resistance was increased in human 

glioma cells over expressing SOD1. Similarly, Petkau [73] found that SOD1 activity 

increased the recovery of hematopoietic myeloid progenitor cell recovery in X-irradiated 

mice. The mechanisms appears to be a consequence of suppression of superoxide-mediated 

induction of apoptosis [72]. Although radiation-induced apoptosis is not considered to play a 

large role in cell death sub-routine execution, computerized video analysis of cell death by 

Dewey and colleagues demonstrated that apoptosis during interphase was the primary mode 

of cell death initiated by mitotic catastrophe [74, 75]. SOD1 is a Nrf2 target gene [76]. Thus, 

one may hypothesize that elevated levels of Nrf2 would lead to increased SOD1 expression 

and radioprotection.

In total, these studies show that NRF2 contributes to a pro-survival response due to an 

enhanced detoxification of pathogenic superoxide and promotion of •OH-mediated DNA 

damage repair. As many human cancers are characterized by elevated NRF2 and NRF2-

mediated gene expression [23, 77, 78], the question of targeting NRF2 for treatment of 

radioresistant disease gains importance. However, this question needs to be addressed in the 

context of the radiation response of normal tissue.

The radiation response of normal tissue is NRF2-dependent

Stem and progenitor cells are defined by their self-renewal capacity and ability to 

differentiate. The intrinsic radiosensitivity of mammalian hematopoietic stem and progenitor 
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cells (defined as LIN− SCA1+ c-KIT+) dictates the LD50 dose. Irradiated stem cells can 

undergo apoptosis, cell cycle arrest, or senescence, all initiated by DNA damage [79, 80], 

and these responses can negatively impact cell survival and homeostasis, which are critical 

for prevention/mitigation of the life-threatening Acute Radiation Syndrome (ARS). Recently 

it has been shown that the Nrf2−/− mouse exhibits a greater radiation sensitivity compared to 

the wild-type mouse and that the severity of ARS can be partially mitigated by 

pharmacological activation of NRF2 [59, 79].

Life-threatening radiation-induced pulmonary fibrosis, characterized by the loss of 

parenchyma, the progressive accumulation of myofibroblast progenitors, the development of 

fibrosis, and the subsequent remodeling of lung interstitium, presents 6 to 24 months after 

absorption of ionizing energy ([81] and references therein, Figure 2). Transforming growth 

factor (TGF)-β and ROS contribute significantly to the pathogenesis of radiation-induced 

pulmonary fibrosis [82, 83]. Travis et al. [81] found that Nrf2 binds to CAGA elements in 

the proximal promoter of the TGF-β1 target gene plasminogen activator inhibitor (PAI)-1 

and suppresses its expression. Others have found that transduction of TGF-β1/Smad2/3 

target genes collagen 1A1, fibronectin-1, tissue inhibitor of matrix metalloproteinase 1, and 

PAI-1 were suppressed by elevated levels of Nrf2, a consequence of genetic targeting of 

Keap1 or electrophilic isothiocyanate inactivation of Keap1 [84, 85]. Consistent with these 

molecular studies, Travis et al. [81] found that PAI-1 expression in lung was elevated in 

thoracic irradiated Nrf2−/− C57BL mice compared to irradiated wild-type mice. Irradiated 

Nrf2−/− mice had fewer alveoli compared to their wild-type counterparts and these were 

more distended. Most importantly, the life span of Nrf2−/− mice was shortened by thoracic 

irradiation [81].

Rana et al. [86] found that Nrf2 deficiency was associated with a drastic overall decrease in 

bone volume after irradiation, as quantified by microCT analysis. Loss of bone volume in 

Nrf2−/− mice was associated with a decrease in osteoblast mineralization and an increase in 

osteoclasts. RT-PCR analysis of calvarial osteoblasts revealed that in the absence of Nrf2, 

expression of RANKL was increased after irradiation but could be suppressed by treatment 

with N-acetyl cysteine, implicating a role for ROS in radiation-induced bone injury.

Inflammatory cytokines are critical to the radiation response of normal tissue (reviewed in 

[87]) and Nrf2’s role in regulating cytokine expression in inflammatory disease is well 

characterized ([88] and references therein). Although not well studied, one may hypothesize 

that part of Nrf2’s role in promoting cell survival following irradiation is linked to 

modulation of the cytokine response.

Summary

Nrf2 promotes cell survival in irradiated cells and tissues through ROS detoxification, 

supporting DNA repair and potentially modulating cytokine responses. Although 

overexpression of NRF2 in human cancer cells may produce a radioresistance phenotype, 

there is a strong possibility that targeting NRF2 will result in significant normal tissue 

toxicity. However, administration of NRF2 activators has the potential for ARS mitigation 

following deployment of a radiological dispersal device.
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Abbreviations

ARE antioxidant response element

ARS Acute radiation syndrome

ATM Ataxia telangiectasia mutated

BRCA1 Breast cancer type 1 susceptibility protein

ChIP Chromatin immunoprecipitation

CnC Cap ‘n’ collar family of basic leucine zipper transcription factors

DSB Double strand break

HR Homologous recombination

Keap1 Kelch-like ECH-associated protein 1

LD50 Lethal dose for 50% of a population

MEF Mouse embryo fibroblast

NADPH Nicotinamide adenine dinucleotide phosphate

NHEJ Non-homologous end joining

NRF2 Human nuclear factor (erythroid-derived 2)-like 2 protein

Nrf2 Mouse nuclear factor (erythroid-derived 2)-like 2 protein

OGG1 8-Oxoguanine DNA glycosylase

•OH Hydroxyl radical

PARP1 Poly(ADP-ribose) polymerase 1

RNAi RNA interference

ROS Reactive oxygen species

RPA Replication protein A
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Figure 1. 
Role of Nrf2 in repair of DNA damage. BRCA1 can promote Nrf2 expression by both 

increasing transcription and inhibiting Nrf2 degradation. Nrf2 has been shown to bind to 

AREs located in the proximal promoters of the OGG1 gene and 53PB1, thereby increasing 

expression of these DNA repair proteins.
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Figure 2. 
Brief overview of the development of radiation-induced pulmonary fibrosis, summarized 

from refs [89, 90]. Low linear energy transfer ionizing radiation injures epithelial and stroma 

cells. One to 3 months later pneumonitis can develop, which can either resolve, convert to 

chronic inflammation or convert to fibrosis. The relationship, if any, between pneumonitis 

and fibrosis is not well characterized. Irradiation results in cytokine production, exemplified 

by IL-1, IL-6 and TGF-β. Additionally, chromic superoxide generation is observed. 

Cytokines and superoxide contribute to myofibroblast generation, which promotes collagen 

deposition and the development of fibrosis. Nrf2 can inhibit fibrosis due to its anti-

inflammatory activity, it ability to induce antioxidant enzymes and its suppression of R-

Smad-dependent expression of pro-fibrotic gene expression.
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