
The Affective Dimension of Pain as a Risk Factor for Drug and 
Alcohol Addiction

Dana M. LeBlanc1, M. Adrienne McGinn2, Christy A. Itoga2, and Scott Edwards2

1Department of Pediatrics, Division of Hematology and Oncology, Louisiana State University 
Health Sciences Center, New Orleans, LA

2Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State 
University Health Sciences Center, New Orleans, LA

Abstract

Addiction, or substance use disorder (SUD), is a devastating psychiatric disease composed of 

multiple elemental features. As a biobehavioral disorder, escalation of drug and/or alcohol intake 

is both a cause and consequence of molecular neuroadaptations in central brain reinforcement 

circuitry. Multiple mesolimbic areas mediate a host of negative affective and motivational 

symptoms that appear to be central to the addiction process. Brain stress- and reinforcement-

related regions such as the central amygdala (CeA), prefrontal cortex (PFC), and nucleus 

accumbens (NAc) also serve as central processors of ascending nociceptive input. We hypothesize 

that a sensitization of brain mechanisms underlying the processing of persistent and maladaptive 

pain contributes to a composite negative affective state to drive the enduring, relapsing nature of 

addiction, particularly in the case of alcohol and opioid use disorder. At the neurochemical level, 

pain activates central stress-related neuropeptide signaling, including the dynorphin and 

corticotropin-releasing factor (CRF) systems, and by this process may facilitate negative affect 

and escalated drug and alcohol use over time. Importantly, the widespread prevalence of 

unresolved pain and associated affective dysregulation in clinical populations highlights the need 

for more effective analgesic medications with reduced potential for tolerance and dependence. The 

burgeoning epidemic of prescription opioid abuse also demands a closer investigation into the 

neurobiological mechanisms of how pain treatment could potentially represent a significant risk 

factor for addiction in vulnerable populations. Finally, the continuing convergence of sensory and 

affective neuroscience fields is expected to generate insight into the critical balance between pain 

relief and addiction liability, as well as provide more effective therapeutic strategies for chronic 

pain and addiction.
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Introduction

Drug and alcohol addiction, also termed substance use disorders (SUDs; DSM-5, 2013) 

represent devastating diseases (Leshner, 1997). The interaction of abused substances with 

brain circuitry has long been a focus of intense research generously supported by national 

governments, private foundations, and individuals. A lack of truly effective treatments for 

addiction has driven neuroscientists to generate an abundance of data related to drug-

induced neuroadaptations as well as innovative conceptualizations of the transition from 

recreational drug use to addicted states. This transition is considered driven by a 

combination of tolerance and sensitization processes within specific neural circuitry 

following repeated or excessive drug exposure (Koob & Le Moal, 1997). For example, 

tolerance to the rewarding or otherwise intake-limiting effects of drugs coincides with a 

sensitization of incentive motivational processes to drive the pursuit and use of abused 

substances (Self, 1998). Consequently, individuals suffering from addiction will often report 

a phenomenon termed “chasing the dragon” where the seemingly maximal hedonic value of 

the initial drug experience is sought after but never recapitulated with subsequent use. 

Importantly, drug and alcohol exposure is also postulated to activate brain anti-reward 

systems that are considered vital for the adaptive process of reward homeostasis under 

normal conditions (Koob & Le Moal, 2008). However, repeated or heavy drug use 

potentiates negative affective conditions (e.g., anxiety, dysphoria) over time, representing a 

cumulative allostatic load challenging homeostasis and ultimately driving excessive intake 

and continued relapse via negative reinforcement mechanisms (Edwards & Koob, 2013). 

Historical investigations focused on negative motivational processes have delineated 

specific neuroanatomical and neurochemical substrates that promote a variety of addiction-

related behaviors (Edwards & Koob, 2010). More recently, conceptualizations of opioid 

(Shurman, Koob, & Gutstein, 2010) and alcohol (Egli, Koob, & Edwards, 2012) addiction as 

chronic pain disorders have emerged, highlighting the negative affective dimension of pain 

as a central component to facilitate and maintain these devastating conditions. Valuable 

insights into the biobehavioral mechanisms that determine the analgesic efficacy and abuse-

related properties of drugs and alcohol have provided a foundation for future investigations 

into the neurobiological intersection of pain and addiction.

Pain in clinical populations: risk for affective disorder and addiction

Chronic pain is a leading cause of long-term disability and affects over 100 million 

Americans (Institute of Medicine, 2011), more than diabetes, heart disease, and cancer 

combined. Treatment options largely rely on prescription analgesic drugs, primarily opioid-

based, with incomplete success. Healthcare professionals must also balance the vital need to 

administer opioid analgesics with the risk for diversion, misuse, and addiction (Fields, 2011; 

Volkow & McLellan, 2011). It is important to note that addiction to prescription opioids in 

the context of proper analgesic use is rare (Fishbain, Cole, Lewis, Rosomoff, & Rosomoff, 
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2008) although addiction liability is increased in individuals with a history of illicit alcohol 

or drug misuse. Additionally, chronic pain patients can still exhibit substantial craving for 

prescription opioids even in the absence of addiction, with affective state playing an 

important role in this relationship (Wasan et al., 2012). Finally, in addition to prior drug 

abuse, a history of mood disorder may place individuals at risk for prescription opioid 

misuse (Wasan et al., 2007).

Unfortunately, chronic pain is intimately associated with the manifestation of affective 

disorders such as major depression and generalized anxiety disorder (Demyttenaere et al., 

2007; Elman, Borsook, & Volkow, 2013; Yalcin & Barrot, 2014). Increasing recognition of 

this troubling relationship has led some to label this interaction as the depression-pain 

syndrome (Chopra & Arora, 2014; Lindsay & Wyckoff, 1981), with the incidence of 

depression among chronic pain patients found to range from 30–85%, depending on the 

study setting (Bair, Robinson, Katon, & Kroenke, 2003; Dworkin & Gitlin, 1991; Maletic & 

Raison, 2009; Ruoff, 1996). Furthermore, depressed patients report more pain symptoms 

than the general population, with an average of 65% of patients experiencing one or more 

pain complaints (Bair et al., 2003). Another crucial dimension of this relationship is the 

extent of pain and depression severity, with reciprocal correlations increasing as the severity 

of either condition grows (Currie & Wang, 2004; Gerrits et al., 2012; Haley, Turner, & 

Romano, 1985; McWilliams, Cox, & Enns, 2003). While there does not appear to be 

differences in the overall incidence of chronic pain or depression based on age or sex, men 

and women differ in the relationships among depression, general activity, and chronic pain. 

For example, in female patients, depression most closely relates to their self-reported pain 

severity, whereas depression correlates more closely to decreased activity levels in males 

(Haley et al., 1985). Such distinctions warrant more preclinical investigation into sex 

differences that moderate nociceptive signaling (Mogil & Bailey, 2010) and pain-induced 

affective dysregulation. This is particularly important given the considerable differences in 

analgesic responsiveness between men and women (Loyd & Murphy, 2014).

Although the most common manifestation of chronic pain-related affective disorder is 

depression, anxiety and fear are also commonly experienced and may result in even greater 

psychiatric morbidity (Dersh, Polatin, & Gatchel, 2002). In a population-based study, the 

prevalence of anxiety disorders was 35% in persons with chronic pain compared with 17% 

in a healthy control population (McWilliams et al., 2003). The associations between chronic 

pain and anxiety disorders (e.g., panic disorder, agoraphobia, and PTSD) also appear to be 

even stronger than associations between pain and depression. Contrary to pain-related 

depression, most anxiety disorders are present prior to the onset of pain, and such anxiety-

prone patients may develop significant distress and functional disability as the result of pain-

related fear and catastrophizing (Dersh et al., 2002; Knaster, Karlsson, Estlander, & Kalso, 

2012).

Pathologies associated with intermittent pain episodes are also linked with devastating and 

costly affective complications. For example, patients suffering from sickle cell disease 

(SCD), a condition characterized by severe acute pain crises on top of chronic somatic and 

neuropathic pain beginning in childhood and persisting throughout life, tend to have 

elevated rates of depression and anxiety disorders (Cepeda, Yang, Price, & Shah, 1997; 
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Hasan, Hashmi, Alhassen, Lawson, & Castro, 2003; Levenson et al., 2008). Affective 

dysregulation in SCD patients is similar to other medical conditions associated with chronic 

pain (Bennett, 1994; Ericsson et al., 2002; Kato, Sullivan, Evengård, & Pedersen, 2006; 

Widmer & Cadoret, 1978), and these patients subsequently have longer lengths of 

hospitalization for treatment of pain (Myrvik, Burks, Hoffman, Dasgupta, & Panepinto, 

2013) as well as higher overall healthcare usage and medical costs as compared to similar 

patients without psychiatric diagnoses. Data from the Pain in Sickle Cell Epidemiology 

Study (PiSCES) indicated that approximately one-third of SCD patients surveyed met 

criteria for alcohol abuse (Levenson et al., 2007). Interestingly, alcohol abusers reported 

greater pain relief from opioids compared to those who did not use alcohol.

In the absence of physician awareness and vigilance, chronic pain-associated affective 

disorders may remain unrecognized or misdiagnosed and subsequently may be 

inappropriately or inadequately treated. Although somatic symptoms of pain are a common 

marker of depression that are often initially addressed with a primary care physician, studies 

suggest that depressed patients presenting with pain symptoms are unlikely to receive an 

accurate diagnosis (Bridges & Goldberg, 1985; Kirmayer, Robbins, Dworkind, & Yaffe, 

1993). Misdiagnosis of pain-related affective disorders carries significant implications for 

acute and long-term management and treatment outcomes. For example, patients with 

depressive symptoms who also report pain are often treated with opioid analgesics rather 

than antidepressants (Doan & Wadden, 1989), potentially increasing the risk of opioid 

addiction without adequately treating the underlying issue. Alternatively, patients who 

receive concomitant treatment for both pain and depression, either through antidepressant 

medications or psychotherapy, have better outcomes compared to those treated for pain 

alone (Teh, Zaslavsky, Reynolds, & Cleary, 2010), displaying an alleviation of depression as 

well as decreased pain symptoms (Kroenke et al., 2009).

Pain, affective dysregulation, and addiction in preclinical animal models

Given the overwhelming evidence connecting chronic pain and emotional disruption in 

humans, nociceptive physiology is now routinely investigated beyond the sensory dimension 

at the preclinical level (Yalcin, Barthas, & Barrot, 2014). Unresolved pain can be considered 

a form of chronic, inescapable stress (Blackburn-Munro & Blackburn-Munro, 2001), and a 

significant effort has been put forth to understand the underlying neurobiological 

mechanisms that represent the link between persistent pain states and the gradual 

enhancement of negative affective-like behaviors in rodents (Fig. 1; Yalcin et al., 2011). 

Anxiogenesis in the context of chronic pain has been modeled in several laboratories. In a 

seminal study by Narita and colleagues, male C57BL/6J mice underwent either sciatic nerve 

ligation (SNL) to produce neuropathic pain, or hindpaw injection of Complete Freund’s 

Adjuvant to generate a state of chronic inflammatory pain (Narita et al., 2006). Anxiogenic-

like effects were observed 4 weeks post-surgery (and not sooner) in both pain models, as 

indicated by a significant decrease in time spent in the lighted compartment of the light-dark 

box, and a significant decrease in time spent in the open arms of the elevated plus maze. 

Importantly, this study also linked pain-induced magnification of negative affective-like 

behavior with changes in opioid signaling in the amygdala. For example, persistent 

inflammatory pain produced reductions in mu- and delta-opioid receptor function while 
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increasing kappa-opioid receptor (KOR) function. This latter neuroadaptation is in 

accordance with the effects of dynorphin/KOR signaling in anxiety- and depression-like 

behavior (Van’t Veer & Carlezon, 2013).

Interestingly, pain can also activate mesolimbic dynorphin/KOR systems to reduce 

dopamine levels (Narita et al., 2005), and this effect can blunt morphine reward. Moreover, 

pain reduces the ability of opioids to potentiate brain reward as measured by intracranial 

self-stimulation of the ventral tegmental area (Ewan & Martin, 2011). These effects are 

consistent with the role of acute dopamine tone in opioid reward and reinforcement (Nestler, 

1996), and also in agreement with the abundance of clinical data indicating that the majority 

of pain patients prescribed opioids (i.e., those without a history of drug abuse) do not appear 

to be at increased risk of addiction (Fishbain et al., 2008). As described above, an imbalance 

of opioid signaling in the amygdala during chronic pain (i.e., enhanced KOR activity) was 

hypothesized to protect the majority of pain patients from the transition to addiction (Narita 

et al., 2006). However, it remains unknown how repeated or tonic activation of KOR (or 

other stress systems) over an extended history of pain and in combination with regular drug 

use would influence addiction processes. Interestingly, animals in a state of chronic pain 

following SNL exhibited a rightward-shift in heroin self-administration, with low doses 

failing to support self-administration in favor of higher doses associated with anti-

hyperalgesic efficacy (Martin, Kim, Buechler, Porreca, & Eisenach, 2007). Such a 

preference for higher opioid doses is consistent with tolerance, a central DSM-5 criterion for 

SUD. Thus, while pain-mediated aversion and compromised dopamine signaling may 

antagonize acute drug reward in the near term, significant evidence suggests that enhanced 

dynorphin/KOR signaling (Bruchas, Land, & Chavkin, 2010) and a repeatedly compromised 

dopamine system (George, Le Moal, & Koob, 2012) facilitate the development of addiction 

in the long term. In this regard, Kreek and colleagues have constructed an intriguing 

conceptualization of the evolution of dynorphin/KOR processes and potential treatment 

strategies at various stages of the addiction process (Butelman, Yuferov, & Kreek, 2012). 

Interestingly, KOR antagonism via nor-BNI prevents the escalation of alcohol drinking 

(Walker & Koob, 2008) and heroin self-administration (via actions in the nucleus 

accumbens, Schlosburg et al., 2013) in rats. KOR antagonism also reduces anxiety-like 

behavior associated with drug withdrawal (Chartoff et al., 2012; Kallupi et al., 2013), but 

unfortunately does not reduce hyperalgesia in heroin-dependent animals, and even produces 

hyperalgesia in non-dependent animals (Schlosburg et al., 2013). This latter effect is 

consistent with the analgesic effects of endogenous dynorphin signaling and should be 

considered when evaluating the balance of therapeutic benefits and side effects of KOR 

antagonism in humans.

In addition to heroin dependence, several other animal models of addiction have consistently 

demonstrated a gradual development of hyperalgesia following excessive exposure to 

alcohol, morphine, and nicotine (McGinn & Edwards, in press). Notably, escalated intake of 

psychostimulants such as cocaine does not produce hyperalgesia (Edwards et al., 2012). An 

interaction of nociceptive signaling with multiple neurochemical stress systems appears to 

play a critical role in the manifestation of drug-induced hyperalgesia, including a 

contributory role for glucocorticoids (Dina et al., 2008) and corticotropin-releasing factor 
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(CRF; Apkarian et al., 2013). CRF is a key regulator of the endocrine hypothalamic-

pituitary-adrenal (HPA) axis and a central neuropeptide that mediates both adaptive and 

maladaptive stress responses (de Kloet, 2013; Zorrilla, Logrip, & Koob, 2014). Importantly, 

antagonism of CRF1 receptors (CRF1Rs) alleviates hyperalgesia associated with 

dependence on morphine (McNally & Akil, 2002), heroin (Edwards et al., 2012), nicotine 

(Baiamonte et al., 2014; Cohen et al., 2013), and alcohol (Edwards et al., 2012). Consistent 

with these findings, several lines of preclinical pain research have found chronic pain-

induced increases in forebrain CRF levels. For example, Herman and colleagues discovered 

that rats experiencing chronic neuropathic pain induced by chronic constriction injury of the 

sciatic nerve displayed increased CRF and glucocorticoid receptor (GR) mRNA expression 

in the central amygdala (CeA) at approximately 3 weeks post-surgery (Ulrich-Lai et al., 

2006). Another group with a similar experimental design confirmed this neuroadaptation by 

finding increases in CRF immunoreactivity in the CeA (Rouwette et al., 2011). Importantly, 

these neuroadaptations were not present in the paraventricular nucleus of the hypothalamus, 

indicating a sensitization of central GR/CRF-related stress signaling (dissociated from HPA-

axis activity) in chronic pain states. CRF has been implicated in a number of psychiatric 

disorders (Aubry, 2013; Koob, 2009), suggesting that this system may act as a critical 

mediator between pain and maladaptive negative affect in association with drug addiction. 

These effects could occur via CRF’s downstream regulation of the dynorphin/KOR system 

described above (Bruchas et al., 2010; Land et al., 2008). However, in contrast to chronic 

KOR antagonism, chronic CRF1R blockade was shown to both reduce escalation of heroin 

intake and concomitantly alleviate heroin-induced hyperalgesia (Park et al., 2013). These 

results suggest that opioid exposure produces a sensitization of CRF function that may drive 

both opioid-induced hyperalgesia and escalation of opioid use, and that hyperalgesia 

represents a unique reinforcer with a distinct neurochemical signature that stands apart from 

other negative affective dimensions.

Sensitization of pain-related negative affect in addiction

Nevertheless, chronic pain is highly comorbid with anxiety and depressive disorders, and it 

is becoming more evident that a bidirectional relationship exists whereby a chronic pain 

state can influence the development of mood disorders, while the severity of a mood 

disorder such as major depression can influence the reported intensity of pain. This close 

interaction indicates a sensitization between and within negative affective states to 

exacerbate psychiatric disorders. Interestingly, a popular working model of addiction posits 

a sensitization of processes related to incentive salience and motivation (Self & Nestler, 

1995; Steketee & Kalivas, 2011; Wolf, 1998), and suggests that drug-induced sensitization 

of brain mesocorticolimbic systems that attribute incentive salience to drugs and drug-

associated stimuli are the primary cause of addiction (Robinson & Berridge, 1993). These 

systems can generate excessive incentive motivation (“wanting”) for drugs in susceptible 

individuals in what may be described as a pathological positive reinforcement process. In a 

somewhat similar fashion, opioid drugs are hypothesized to generate a pro-nociceptive 

sensitization (Célèrier, Laulin, Corcuff, Le Moal, & Simonnet, 2001) that may enhance 

negative reinforcement processes to foster addiction (Park et al., 2013).
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Moreover, cross-sensitizing interactions of stress and mesolimbic dopamine system circuits 

(regulated by glucocorticoid and CRF systems) have been hypothesized to promote 

addiction liability (Bonci & Borgland, 2009; Burke & Miczek, 2014; Edwards & Koob, 

2010; Marinelli & Piazza, 2002). Incentive sensitization effects are extremely long lasting, 

which is one of the key factors in addicts being vulnerable to relapse even after years of 

abstinence. In a similar fashion, stress and related negative affective conditions can generate 

considerable craving to promote relapse well into abstinence (Goeders, 2003; Mason, 

Shaham, Weiss, & Le, 2009; Sinha, 2007). Importantly, hyperalgesia remains present in 

formerly opioid-dependent individuals for up to several years, and negative affective stimuli 

further exacerbate hyperalgesia in this population (Carcoba, Contreras, Cepeda-Benito, & 

Meagher, 2011). In turn, individual pain sensitivity would appear to predict opioid misuse 

(Edwards et al., 2011). Ren, Shi, Epstein, Wang, & Lu (2009) specifically investigated 

whether pain sensitivity could act as a factor driving opioid craving after protracted 

abstinence. Former opioid-dependent individuals exhibited reduced pain tolerance even after 

several months of abstinence. Interestingly, opioid cue-induced craving was indeed 

predicted by individual pain sensitivity. Moreover, this sensitivity was based not on pain 

perception but on pain-induced distress, suggesting the critical role of the negative 

emotional translation of pain in relapse compared to the sensory dimension of nociception 

per se.

Chronic pain and nociceptive hypersensitivity may promote drug craving and relapse via 

alterations in synaptic plasticity within brain reinforcement circuitry, essentially via an 

extension of the “central sensitization” theory of pain originally proposed by Woolf (Woolf, 

1983, 2011). In accordance with neuroadaptations described in the previous section, 

converging lines of evidence suggest that pain-induced levels of CRF modify the 

electrophysiological properties of nociceptive CeA neurons (Bernard, Huang, & Besson, 

1990) to promote pain sensitization (Neugebauer, Li, Bird, & Han, 2004). Rats placed in a 

state of arthritic inflammatory pain exhibit increased CeA excitability that is alleviated by 

CRF1R antagonism (Ji & Neugebauer, 2007). Moreover, the emergence of anxiety-like 

behavior in this arthritis model is also reduced following either systemic or intra-CeA 

CRF1R blockade (Ji, Fu, Ruppert, & Neugebauer, 2007), indicating that CRF signaling may 

underlie the transformation of pain into negative affect within the nociceptive CeA (Egli et 

al., 2012; Shurman et al., 2010). At the same time, non-pain-related activation of CeA 

CRF1R signaling also augments nociceptive responsiveness (Ji, Fu, Adwanikar, & 

Neugebauer, 2013), potentially providing an interactive mechanism for stress and anxiety to 

influence pain severity. Downstream of CRF1R activation, extracellular signal-regulated 

kinase (ERK) signaling in the CeA has also been demonstrated to promote pain sensitization 

(Fu et al., 2008), and activation of this pathway in the CeA is intimately involved in various 

addiction-related behaviors such as excessive drug and alcohol intake, withdrawal, and 

relapse (Edwards, Graham, Whisler, & Self, 2009; Lu, Koya, Zhai, Hope, & Shaham, 2006; 

Sanna, Simpson, Lutjens, & Koob, 2002; Zamora-Martinez & Edwards, 2014). Finally, in 

addition to the CeA, preclinical models have revealed sensitizing pain-induced plasticity 

within the anterior cingulate cortex (ACC; Fuchs, Peng, Boyette-Davis, & Uhelski, 2014), a 

subregion of the prefrontal cortex (PFC). Chronic pain states enhance multiple markers of 

excitatory glutamatergic neurotransmission within the ACC (Wu et al., 2005, 2008; Zhao et 
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al., 2006). Interestingly, Cao and colleagues (2009) discovered a role for ACC ERK activity 

in the induction and expression of negative affective-like behavior in the context of 

inflammatory pain. Overall, an abundance of preclinical evidence suggests that reducing 

ERK signaling in the CeA and ACC represents an attractive therapeutic strategy to reduce 

the risk of unresolved pain developing into affective disorders and addiction. Provided the 

limited safety profile of systemic kinase inhibition, this effect might be more readily 

achieved via antagonism of central pro-nociceptive systems that couple to the ERK pathway. 

In addition to CRF1Rs, the nociceptin receptor represents another possible target in this 

regard (Chen, Huang, & Yu, 2008). However, nociceptin appears to promote both 

supraspinal pro-nociceptive as well as (putatively beneficial) anxiolytic processes (Witkin et 

al., 2014), potentially confounding its therapeutic utility at the interface of pain and 

addiction.

Conclusions and future directions

Given the almost inseparable nature of pain and stress, future preclinical modeling of the 

interaction of chronic pain and addiction should incorporate strategies and lessons learned 

from combined stress and addiction models (Hopf, Sparta, & Bonci, 2011; Logrip, Zorrilla, 

& Koob, 2012), including the contribution of individual differences and conditioning 

factors. For example, animals exposed to a single traumatic stressor exhibit hyperalgesia 

over subsequent days (Roltsch et al., 2014), while an enhanced and stable avoidance of a 

traumatic stress-paired environment in only a subset of these animals (representing a model 

of post-traumatic stress disorder; Whitaker, Gilpin, & Edwards, 2014) predicts post-stress 

escalation of alcohol drinking (Edwards et al., 2013). These results suggest that specific 

combinations of negative affective symptoms may interact in vulnerable individuals to 

promote excessive drug and alcohol intake.

Like traumatic stress, various pain conditions also produce a conditioned place aversion 

(CPA) to formerly pain-paired environments (Johansen & Fields, 2004; Minami, 2009). The 

CPA procedure represents a valuable extension of evoked, reflexive methods commonly 

used to measure nociceptive hypersensitivity. Porreca and colleagues successfully used the 

CPA procedure to reveal tonic pain conditions and assay the efficacy of treatments that 

alleviate the aversive quality of pain and thereby act as rewards (King et al., 2009) via 

elevated dopamine signaling in the NAc (Xie et al., 2014). The emergence and utilization of 

operant measures that gauge the reinforcing dimensions of pain and analgesia are expected 

to bridge the fields of sensory and affective neuroscience (Navratilova & Porreca, 2014). 

This methodology will likely be instrumental in fostering a greater understanding of the 

delicate balance between pain relief and addiction liability, and will hopefully lead to the 

development of more effective therapeutic strategies for chronic pain and addiction.
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Fig. 1. 
Persistent pain conditions (e.g., neuropathy, arthritic inflammation) originate peripherally 

but interact with ascending nociceptive circuitry in the spinal cord and brain via central 

sensitization mechanisms. Translation of chronic pain into negative affect occurs as a 

consequence of increased nociception-driven activity within central brain stress and reward/

reinforcement circuitry, including the central amygdala. Importantly, pain-induced affective 

dysregulation may contribute to the transition to addiction in vulnerable individuals with a 

history of drug abuse. Medications targeting neuroadaptations associated with chronic pain- 

and drug-induced hyperalgesia may represent effective therapeutic strategies for drug and 

alcohol addiction.
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