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Abstract

The main objective of the multi-site Pediatric Imaging, Neurocognition, and Genetics (PING) 

study was to create a large repository of standardized measurements of behavioral and imaging 

phenotypes accompanied by whole genome genotyping acquired from typically-developing 

children varying widely in age (3 to 20 years). This cross-sectional study produced sharable data 

from 1493 children, and these data have been described in several publications focusing on brain 

and cognitive development. Researchers may gain access to these data by applying for an account 

on the PING Portal and filing a Data Use Agreement. Here we describe the recruiting and 

screening of the children and give a brief overview of the assessments performed, the imaging 

methods applied, the genetic data produced, and the numbers of cases for whom different data 

types are available. We also cite sources of more detailed information about the methods and data. 

Finally we describe the procedures for accessing the data and for using the PING data exploration 

portal.

Introduction

Here we describe the data generated in the Pediatric Imaging, Neurocognition, and Genetics 

(PING) study, and the data repository that is now accessible to investigators through the 

PING Portal (http://pingstudy.ucsd.edu). The repository contains aggregated data collected 

at 10 sites in the United States. Multimodal neuroimaging data, developmental histories, 

behavioral and cognitive assessments, and/or genome-wide genotypes are now available for 

1493 children and adolescents, aged 3 to 21 years. The goal of PING was to address the 

imbalance in existing imaging genomics data resources between those containing data 

collected from adult and elderly participants and the very limited data available from 

pediatric and adolescent participants. A wide pediatric age range for participants was 

included to allow investigators to search for interactions between age and genotype (i.e., to 

discover gene associations with developmental phenotypes). The PING infrastructure was 

designed specifically to address the challenges of large, multi-site studies involving 

multimodal imaging and assessment of behavioral phenotypes in a developmental context, 

and to facilitate the exploration as well as the dissemination of the sharable data. While 

PING was a cross-sectional study, all features of the PING infrastructure were designed to 

be extensible to longitudinal designs and the infrastructure currently supports ongoing 

longitudinal studies that have followed PING. Below we describe briefly the PING study 

and cohort; procedures for facilitating, standardizing, and optimizing data acquisition; 

procedures for processing the imaging and genomics data; and the infrastructure for sharing 

and exploration of accumulated data.
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The PING Cohort

Participants were recruited through local postings and outreach activities conducted in the 

greater metropolitan areas of Baltimore, Boston, Honolulu, Los Angeles, New Haven, New 

York, Sacramento, and San Diego. Children, adolescents, and young adults were screened as 

eligible for PING if they were between the ages of 3 and 20 years and fluent in English 

(some older 20-year-olds turned 21 by the completion of data collection). Exclusion criteria 

included: a) neurological disorders; b) history of head trauma; c) preterm birth (less than 36 

weeks); d) diagnosis of an autism spectrum disorder, bipolar disorder, schizophrenia, or 

mental retardation; e) pregnancy; and f) daily illicit drug use by the mother for more than 

one trimester. Individuals with contraindications for MRI (such as dental braces, metallic or 

electronic implants, or claustrophobia) were also excluded from participating. Individuals 

with identified or suspected learning disability or ADHD were not excluded since these 

syndromes are fairly common in pediatric populations. Over 1700 participants were enrolled 

in PING at one of the 10 sites, however, only data from participants in whom acceptable 

data were obtained for at least two data types (i.e., demographic/developmental, behavioral, 

genomic, imaging) are included in the PING repository. This sample consists of 1,493 

participants (780 males) for whom acceptable imaging, genomics, and/or cognition 

assessments were obtained; acceptable imaging data were acquired for 1,239 of these 

participants (645 males); acceptable cognition data for 1,453 participants (752 males), and 

acceptable genotyping is available for 1391 (719 males). Similar proportions of males and 

females participated across the entire age range. Written parental informed consent was 

obtained for all PING subjects below the age of 18, and child assent was also obtained for 

all participants between the ages of 7 and 17. Written informed consent was obtained 

directly from all participants aged 18 years or older. For more information about the PING 

cohort, see Brown et al., 20121 and Akshoomoff et al., 20142.

Participant Assessments

Neuromedical History—The PING Study Demographics and Child Health History 

Questionnaire was completed by parents or guardians of the minor participants, and 

participants aged 18 and over were given a self-report version of this questionnaire. The 

questionnaire assessed basic medical, developmental, and behavioral history, as well as 

family history of medical and neuropsychiatric disorders, including substance abuse. The 

measures from this questionnaire are identified in the PING Portal ontology and defined in 

the data dictionary with the prefix “FDH_”.

NIH Toolbox Cognition Battery Measures—Cognitive assessments for the PING 

project were conducted using the NIH Toolbox Cognition Battery (NTCB). The NTCB was 

designed to tap key functions (executive function, attention, episodic memory, working 

memory, language, and processing speed) across the lifespan (ages 3 to 85 years). This 

computerized approach provides an economical method for assessing a wide range of 

cognitive abilities, which is appealing for large-scale studies. For pediatric studies, this also 

has the advantage of providing the same set of measures for use with young children, older 

children, and adolescents in an appealing format that provides automated data collection, 

storage, and scoring3,4. A detailed description of the NTCB results in the PING study is 

provided in Akshoomoff et al., 20142. More detailed information on the NIH Toolbox for 
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Cognition is available at http://www.nihtoolbox.org/. The eight NTCB subtests for which 

data are available are: Dimensional Change Card Sort Test, Flanker Inhibitory Control and 

Attention Test, Picture Sequence Memory Test, Pattern Comparison Processing Speed Test, 

Oral Reading Recognition Test, List Sorting Working Memory Test, and Picture Vocabulary 

Test. The measures obtained with the NTCB are identified in the PING Portal ontology and 

data dictionary with the prefix “TBX_”.

Social-Emotional and Substance Use Assessments—In a subset of participants, a 

limited number of additional assessments of social and emotional functions and substance 

exposure were acquired through the PhenX Rising project. More information about the 

PhenX Toolkit and PhenX Rising is available at https://www.phenxtoolkit.org and about the 

data collected in PING in association with PhenX Rising in McCarty et al., 20143. PhenX 

assessments were obtained on only a subset of participants because PING was already 

underway when the PhenX Rising study began. Also, many of the assessments are age-

specific. Variables associated with PhenX assessments are identified in the PING ontology 

and data dictionary with the prefix “PHX_”.

Multimodal Image Acquisition and Quality Control

In PING, the imaging, quality control, and analysis protocols were developed specifically to 

meet the challenges associated with multisite, multimodal imaging of children. These 

procedures were also designed to ensure that acquisition and preprocessing methods were 

compatible with, and facilitated, the use of post-processing methods developed by leading 

imaging groups throughout the neuroimaging community as well as those applied by 

consortium investigators.

Image Acquisition and Preprocessing—The PING imaging protocol takes advantage 

of key technologies developed for the consortium and builds on earlier methods 

development performed as part of the Biomedical Informatics Research Network (BIRN4) 

and the Alzheimer's Disease Neuroimaging Initiative (ADNI5). Specifically, a standard 

PING scan session included: 1) a 3D T1-weighted inversion prepared RF-spoiled gradient 

echo scan using prospective motion correction (PROMO), for cortical and subcortical 

segmentation; 2) a 3D T2-weighted variable flip angle fast spin echo scan, also using 

PROMO, for detection and quantification of white matter lesions and segmentation of CSF; 

3) a high angular resolution diffusion imaging (HARDI) scan, with integrated B0 distortion 

correction (DISCO), for segmentation of white matter tracts and measurement of diffusion 

parameters; and 4) a resting state blood oxygenation level-dependent (BOLD) fMRI scan, 

with integrated distortion correction. Pulse sequence parameters used across (3T) scanner 

manufacturers (GE, Siemens, and Phillips) and models were optimized for equivalence in 

contrast properties and consistency in image-derived quantitative measures.

Gradient nonlinearity correction (3D GradWarp): Nonlinearity of the gradient fields 

used for spatial encoding in MRI is one of the most prominent sources of spatial distortion 

in MRI scans67. Through the involvement of PING neuroimaging investigators in the 

Biomedical Informatics Research Network (BIRN) and the Alzheimer's Disease 

Neuroimaging Initiative (ADNI), the group has led the development of a fully automated 
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procedure to correct for gradient field nonlinearities using displacement maps computed 

based on scanner-specific specifications provided by the MRI scanner manufacturers. The 

correction software developed in the UCSD MultiModal Imaging Laboratory (MMIL) was 

adopted as part of the routine preprocessing routine for all scans acquired as part of ADNI, 

and has been shown to significantly improve the accuracy of longitudinal change estimates 

based on serial MRI scans8.

Motion correction (PROMO): An important recent advance in MRI acquisition technology 

is the development of real-time, or prospective, motion correction. The PROMO approach9, 

first applied widely in PING, utilizes three orthogonal spiral navigators together with a 

recursive image-based estimation strategy based on the extended Kalman filter (EKF) for 

motion measurement. The spiral k-space trajectory allows image-domain reconstruction 

prior to motion estimation, which when combined with the flexible EKF framework, allows 

for efficient image-based tracking within an a priori region of interest. Significant reduction 

of motion-related image degradation in pediatric imaging is possible with this method10,11.

EPI B0 distortion correction (DISCO): Single-shot echo planar imaging (EPI) is an 

efficient MRI acquisition scheme for producing fast, high-definition images for diffusion 

weighted imaging and fMRI. However, EPI suffers from severe spatial distortions and 

intensity variations due to susceptibility-induced B0 field inhomogeneity. Anatomically 

accurate, undistorted images are essential for integrating the HARDI and fMRI images with 

anatomical (T1-weighted) images in PING, i.e., for achieving accurate spatial registration of 

the information from different modalities. Since the B0 distortion pattern depends on the 

exact position of the subject in the scanner, which may vary across scan sessions, correcting 

for such distortions is also essential for obtaining accurate estimates of change based on 

longitudinal MRI scans. Our group has developed a fast, robust, and accurate procedure for 

removing such spatial and intensity distortions from the EPI images obtained for HARDI 

and fMRI12. The method involves acquisition of brief scans with opposite phase encoding 

polarities (resulting in opposite spatial distortion patterns) and subsequent alignment of the 

resulting images using a fast nonlinear registration procedure. The DISCO method, which 

requires minimal additional scan time, provides superior accuracy and better cross-modality 

registration relative to the more commonly used, and more time consuming, field mapping 

approach.

Multimodal Image Analysis

Morphometric analysis of structural MRI data was performed using a specialized processing 

stream developed for PING that is based on FreeSurfer, with additional corrections and 

analyses developed at UCSD MMIL.

Structural MRI Preprocessing—As described above, distortions caused by nonlinearity 

of the spatial encoding gradient fields were corrected with predefined, scanner specific, 

nonlinear transformations, provided by MRI scanner manufacturers13. Non-uniformity of 

signal intensity was reduced using the nonparametric non-uniform intensity normalization 

(N3) method14. Images were rigidly registered and resampled into alignment with an atlas 

brain with 1 mm isotropic voxels, facilitating standardized viewing and analysis of brain 
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structure. If multiple, good quality scans were obtained for a participant, they were 

registered to each other and averaged.

Morphometric Analysis—FreeSurfer encompasses tools for cortical surface 

reconstruction, subcortical segmentation, cortical parcellation, and estimation of various 

measures of brain morphometry using routinely acquired T1-weighted MRI volumes15–27. 

Important extensions made at MMIL include maps of relative cortical surface area 

changes28,29 and genetically informed cortical parcellations28,30,31. Cortical surface 

reconstruction involves skull-stripping26, non-uniformity correction32, white matter 

segmentation, initial mesh creation15, correction of topological defects20,27, and generation 

of optimal white and pial surfaces15,16,19. Subcortical structures were labeled using an 

automated, atlas-based, volumetric segmentation procedure21; volumes in mm3 and average 

T1-weighted intensity (T1w) were calculated for each structure. Labels for cortical gray 

matter and underlying white matter voxels were assigned based on surface-based nonlinear 

registration to atlas based on gyral and sulcal patterns23 and Bayesian classification 

rules17,18,24,25. White matter voxels adjacent to the cortical parcels were also labeled25. 

Fuzzy-cluster parcellations based on genetic correlation of surface area were used to 

calculate weighted averages of cortical surface measures28. Cortical thickness was 

calculated as the shortest distance between the white and pial surfaces19. Maps of relative 

cortical areal expansion were created by resampling individual subject surfaces to a standard 

tessellation, such that the area assigned to each mesh vertex reflects the degree of expansion 

or contraction relative to the atlas28,29. T1w was sampled to the cortical surface at a distance 

of ±0.2 mm along the normal vector at each surface location, and T1w cortical contrast was 

calculated from gray and white matter values33. Average thickness, area, and T1w were 

calculated for each cortical parcel. Surface-based maps were sampled to the FreeSurfer 

atlas22 and smoothed along the cortical surface34.

Diffusion MRI Preprocessing—As described above, spatial and intensity distortions 

caused by B0 field inhomogeneity were reduced using a robust and accurate procedure for 

reducing spatial and intensity distortions in EPI images12 that relies on the reversing 

gradient method6,34. Eddy current distortions were corrected with a nonlinear estimation 

procedure that used the diffusion gradient orientations and amplitudes to predict the pattern 

of distortions across the entire set of diffusion weighted volumes35.

Microstructural Analysis—Diffusion parameters were computed for a set of major brain 

fiber tracts36, as well as for other brain structures of interest. Conventional DTI methods 

were used to calculate measures related to microstructural tissue properties37-39, including 

the principal diffusion orientation, fractional anisotropy (FA), and mean, longitudinal, and 

transverse diffusivity (MD, LD, and TD). T2-weighted intensity (T2w) was calculated from 

the b=0 image (averaged if multiple b=0 images). To remove arbitrary intensity variation 

across subjects due to scanner settings (i.e., gain), T2w images were normalized for each 

subject. A linear fit with zero intercept was calculated between MD and b=0 intensity values 

using each voxel within a brain mask as a separate data point. The slope of the linear 

relationship was used to scale the T2w images.
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AtlasTrack was used to automatically label long-range white matter tracts based on a 

probabilistic atlas of fiber tract locations and orientations35. The fiber atlas contains prior 

probabilities and orientation information for specific long-range projection fibers, including 

some additional fiber tracts not included in the original description, such as cortico-striate 

connections and inferior to superior frontal cortico-cortical connections.

Imaging variables associated with morphometry are identified in the PING ontology and 

data dictionary with the prefix “MRI_” followed by additional labels appropriate for specific 

measures (e.g., “cort_area”, “cort_thick”, “subcort_vol”, etc); and those associated with 

diffusion data with the prefix “DTI_” followed by additional labels appropriate for specific 

measures (e.g., “fiber”, “aseg”, etc). The “aseg” designation refers to regions of interest 

delineated in the volumetric analysis.

Imaging Data Quality Control

Raw Image Quality Control—Through the secure web-based application, individual 

sites uploaded DICOM images for each scan session. The data were automatically checked 

for completeness and protocol compliance, and images were reviewed for image quality by 

technicians trained by faculty. Specifically, images were inspected for motion artifacts, 

excessive distortion, operator error, or scanner malfunction. Quality ratings—good, average 

(usable), and bad (unacceptable)—were entered into the quality control utility within 24 

hours from time of upload to allow re-scanning of subjects when possible.

T1-weighted images were examined slice-by-slice for evidence of excessive motion, such as 

stark ribbon or criss-cross artifacts within parenchyma and ghosting artifacts outside the 

head. Each volume was rated as either acceptable or recommended for rescan. Similarly, 

diffusion images were examined across all slices for signs of artifacts and poor image 

quality. Volumes with five or more slices showing significant slice-to-slice motion, motion 

artifacts, or whole-slice dropout were rejected (i.e., recommended for rescan). BOLD data 

were inspected for excessive subject movement and artifacts, and the mean frame-to-frame 

head motion was calculated.

Processed Image Quality Control—Processed images from all modalities were also 

examined for all participants, including subcortical volumetric segmentations, cortical areal 

parcellations, and white and pial surface reconstructions. A series of QC movies were also 

produced using Matlab scripts for each subject that assisted in data examination. A movie 

showing coronal views in sequence was used to judge white matter texture consistency and 

possible temporal underestimation. A related horizontal sequence was used to check for 

temporal underestimation in other regions (i.e., superior). A movie showing sagittal views 

was used for examination and rating of pial and dural overestimation along parietal regions 

and for signs of excessive head motion. White matter tracts produced using AtlasTrack were 

inspected for contiguity and overall quality and rated as acceptable or not.

Processing and Analysis of Genetic Information

Acquisition of Samples and DNA Extraction—Saliva collection in PING was 

performed using two different products from DNAgenoTek, Oragene•DISCOVER 
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(OGR-500) and Oragene•DISCOVER (OGR-250). DNA extraction was carried out using 

respective protocols provided by Oragene, and DNA quantity was assessed using a 

Nanodrop fluorometer. DNA samples with at least 3ug total DNA were carried forward for 

further processing. Additional saliva samples were requested on specimens with less than 

3ug total DNA. Stock DNA was stored at -80C for long-term storage. Ultimately samples 

were processed for 1411 PING participants.

Genome-Wide Genotyping—Genome-wide genotyping was performed on the extracted 

DNA using the Illumina Human660W-Quad BeadChip. The Illumina Human660W-Quad 

BeadChip (see www.illumina.com) contains more than 550,000 genetic markers (single 

nucleotide polymorphisms or SNPs and other variants) and is designed to measure most of 

the genetic variation present in the human genome (based on Hapmap release 21 reference 

data, see http://hapmap.ncbi.nlm.nih.gov/). The BeadChip measures variants on all 

autosomes (i.e., non-sex-chromosomes), the X and Y chromosomes, as well as 

mitochondrial DNA. The SNP call rate was >99% (i.e., >99% of the 539,865 SNPs were 

called). Acceptable genotyping data could be obtained by the Genomics Core for 1391 of the 

participant samples processed (out of the total 1396 received, or > 99.5%), including 727 

males and 679 females.

Up to 1000 single nucleotide polymorphism values can be downloaded through the PING 

Portal Genetics Browser and the entire set of genotyping data is available in bulk.

Genetic Ancestry Assessment—In order to assess each participant's ancestry based on 

their genotype information, we constructed an ancestry-informative reference panel by 

bringing together genotype data from 2,513 individuals of known ancestry from 63 

populations around the world using several publicly available sources: 1) the Human 

Genome Diversity Project (HGDP)36; 2) the Population Reference (POPRES)37; 3) the 

International HapMap 3 Consortium (HapMap3)38; and 4) the University of Utah dataset39. 

The reference panel was created in a stepwise fashion in order to ensure that the included 

individuals were not admixed among six major continental populations (African, Central 

Asian, East Asian, European, Native American, and Oceanic) and that each continental 

population was represented by a reasonably large number of diverse individuals originating 

in the relevant continent. The assembled reference panel contained genotype information at 

16,433 strand-unambiguous SNPs. These markers exhibited low LD (r-squared less than 0.1 

was observed between 99% of marker pairs), and allele frequency was higher than 1%.

To assess ancestry and admixture proportions in the PING participants, we used a 

supervised clustering approach implemented in the ADMIXTURE software40 and 

probabilistically assigned each participant to six clusters corresponding to the six major 

continental populations. The genotype profiles of the six populations were defined by the 

individuals who made up the reference panel. Although some individuals could be easily 

associated with a particular continental population, other individuals were clearly admixed. 

Such admixture could easily be associated with important phenotypic variation and hence 

needs to be quantified41–44. We therefore determined the degree of ancestry of each 

participant, effectively quantifying the amount of their genome that is likely to be derived 
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from each of the six populations. Variables associated with genetic ancestry factors are 

identified in the PING ontology and data dictionary with the prefix “GAF_”.

Data Sharing

Access to the PING Data Resource is available through an online web interface at http://

pingstudy.ucsd.edu. Here, information about the study, the consortium, and the methods are 

available for browsing, and instructions are given for applying for approval to explore, 

download, or request bulk shipping of data (for a fee covering media and shipping charges). 

Full sharing of all data is not permitted by the IRB for some PING sites. This includes 

restrictions on the sharing of some raw image data on the NITRC site and restrictions on 

sharing of some genetics data. All sharable data are available through the PING Data Portal 

to any researcher who holds a position in a research institution and is at least at the 

postdoctoral level (upon assent to the PING Data Use Agreement and approval of a brief 

data use description). Students can gain access to data if sponsored by eligible supervising 

researchers who agree to supervise the students’ compliance with the data use agreement. 

Raw image data for a subset of the participants is available through NITRC after an account 

is approved through the PING Portal.

Large data request downloads for PING are handled in two ways. First, raw image data in 

DICOM format is distributed using the dedicated image distribution platform on 

NITRC.org. The system used by NITRC (XNAT) is specifically built to host and download 

data across wide-area networks. Processed imaging and genetics data are also shared by 

PING using hard drives that can be ordered as PING-IN-A-BOX systems. The hard drive is 

shipped to customers (drive and shipping costs are billed to the recipient) and contains data 

in DICOM, Nifti, MGZ, and plink binary formats for easy integration into other existing 

post-processing pipelines.

Although PING data are publicly available, new data cannot be contributed into the PING 

data repository from outside sources. Given its strict standardization procedures for 

behavioral, imaging, and genomic data acquisition and processing, it is considered to be a 

completed resource.

The primary sponsors of the PING repository, NIDA and NICHD, as well as the NIH Office 

of the Director, have made a major, long term commitment to preservation of informative 

data repositories, particularly those with valuable genomic data, for future use. The contents 

of the repository may be transferred to one or more of the major NIH sponsored data 

repositories, such as NDAR or dbGaP, but it is likely that continuing support of the PING 

dataset will be provided. The Center for Human Development at UCSD is also committed to 

long-term maintenance of this resource.

PING Data Exploration Portal—An intelligent data exploration tool is available to 

facilitate the application of advanced statistical models to PING data, and to enable region of 

interest- and vertex-wise mapping of effects and 3D visualization of the results onto the 

cortical surface45. In contrast to many data sharing tools, the Portal also integrates 

appropriate statistical modeling capabilities, with structured descriptors for all of the PING 
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measurements and an intuitive user interface to control diverse quality control and analysis 

workflows.

The Portal supports online collaborative exploration of interrelationships among 

measurements obtained from structural, behavioral, and genetic analyses. Using this web 

application, a user can select a specific variable of interest (e.g., cortical thickness) from the 

data dictionary and, with a single click of a button fit a statistical model (e.g., generalized 

additive model; GAM) with one or more independent variables and covariates (e.g., age, 

sex, scanner, genetic ancestry factor), and plot the resulting model fits along with the 

individual data points. For example, using the Portal one can interactively produce a scatter 

plot of each participant's total cortical surface area as a function of age, color-coded by sex, 

and controlling for other factors such as socioeconomic status (SES) and genetically derived 

ethnic ancestry. This statistical model can then be applied to every cortical vertex to produce 

a map of this relationship between age and surface area with covariates of interest. Main 

effects and interactions can be modeled for summary variables, averages, or by vertex, and 

displayed interactively, in real-time, using a WebGL-based application with control over 

color mapping, orientation of brain hemispheres, and corrections for multiple comparisons 

by controlling the false discovery rate (FDR)46. The same modeling functions can be applied 

to region of interest analyses either specified by the user or using built-in cortical 

parcellations from Freesurfer.

The model, or query, can then be stored by the user and shared with other users. The ease of 

interaction permits deeper understanding of the complex relationships within the dataset and 

facilitates the discovery of hidden structure in the data. In PING, for example, the Portal has 

been an effective way to visualize scanner effects and the results of different methods for 

modeling them. The Portal supports an online chat feature that is used to send model 

descriptions to other people visiting the page, as well as a user feedback forum monitored by 

the developer. Users can construct and download datasets, statistical reports, results tables, 

model specifications, and figures for off-line analysis, archiving, or publication.
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Highlights

• We provide a brief description of the Pediatric Imaging Neurocognition and 

Genetics (PING) Study.

• We describe the data in the PING Data Repository.

• We outline the methods used to generate the data.

• We describe the procedure for accessing and exploring the data through the 

PING Portal.
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