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Traditional means for identity validation (PIN codes, passwords), and physiological and behavioral biometric characteristics
(fingerprint, iris, and speech) are susceptible to hacker attacks and/or falsification. This paper presents a method for person
verification/identification based on correlation of present-to-previous limb ECG leads: I (𝑟I), II (𝑟II), calculated from them first
principal ECG component (𝑟PCA), linear and nonlinear combinations between 𝑟I, 𝑟II, and 𝑟PCA. For the verification task, the one-to-
one scenario is applied and threshold values for 𝑟I, 𝑟II, and 𝑟PCA and their combinations are derived.The identification task supposes
one-to-many scenario and the tested subject is identified according to the maximal correlation with a previously recorded ECG in
a database. The population based ECG-ILSA database of 540 patients (147 healthy subjects, 175 patients with cardiac diseases, and
218 with hypertension) has been considered. In addition a common reference PTB dataset (14 healthy individuals) with short time
interval between the two acquisitions has been taken into account.The results on ECG-ILSA database were satisfactory with healthy
people, and there was not a significant decrease in nonhealthy patients, demonstrating the robustness of the proposedmethod.With
PTB database, the method provides an identification accuracy of 92.9% and a verification sensitivity and specificity of 100% and
89.9%.

1. Introduction

The reliability of automatic person identification has become
critical in our life, considering the necessary security for
the cases of financial transactions, access control, travelling,
and so forth. The traditional means for identity validation,
such as PIN codes, passwords, and identity cards, are sus-
ceptible to hacker attacks and falsification. In the past few
decades, identification based on physiological and behavioral
biometric characteristics, such as fingerprint, iris, and speech,
were proposed. However, these biometrics could be easily
circumvented, for example, by using prosthetic finger or iris
[1] or voice playback. Considering these drawbacks, recently
the efforts are focused on the development of next generation
of biometric characteristics that are internal to the human’s
body and therefore are robust to the above discussed attacks.

The analysis of the electrocardiogram (ECG) as a bio-
metric tool was started about a decade ago and two general
approaches could be distinguished: (i) methods that use
measurements after detection of fiducial points and (ii)
methods that analyze the overall morphology of the ECG.

The fiducial based approaches had been applied since
the very beginning. One of the earliest studies that demon-
strated the feasibility of ECG signals for biometrics [2]
involved 12 uncorrelated clinical diagnosis features related
to P, QRS, T amplitudes, and durations. The interpretation
of the similarities/differences between individuals’ heartbeats
was performed by principal component analysis (PCA) score
plots.The authors achieved classification rate of 100%using 10
of the features. Israel et al. [3] employed 15 temporal features
describing the P-QRS-T segment which were fed into a set of
discriminant functions for individual recognition.This group
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reported accuracy for the individual classification between
97% and 100%. In 2008,Wang et al. [4] introduced a two-step
detection that incorporates temporal and amplitude mea-
surements based on fiducial points detection and appearance
based features that capture the patterns of the heartbeats.The
authors achieved 100% subject identification based on this
combined approach.

The methods incorporating time and amplitude char-
acteristics of the heartbeats strongly rely on the correct
localization of wave boundaries within the P-QRS-T segment.
Current algorithms for ECGdelineation are dedicatedmainly
to themedical applicationswhere the detection of the approx-
imate fiducial point positions is adequate for diagnostic pur-
poses. In contrast, in order to reduce the rejection rate, perfect
heartbeat synchronization is required for biometric pur-
poses [5]. For that reason, fiducial independent approaches
appeared after 2006. Great part of the proposed methods was
based on calculation of correlation coefficients. Plataniotis et
al. [6] proposed amethod for personal identification applying
autocorrelation (AC) of windowed ECG followed by discrete
cosine transform (DCT) and reported 100% accuracy. Agrafi-
oti and Hatzinakos [5] utilized the AC of 5 s ECG segments
for biometric identification. The AC signals were processed
by discriminant analysis and accuracy of 96.4% is reported.
This work also presented an arrhythmia screening algorithm
based on complexity measurement analysis which prevented
considering ECG segments with ventricular ectopic beats.
Poree et al. [7] reported 100% identification accuracy using
themaximal correlation coefficient applied over 12-lead ECG.
The accuracy dropped down to 91.4% when the method was
applied over single ECG lead. Wübbeler et al. [8] formed a
two-dimensional heart vector using limb leads ECGs, as well
as its first and second temporal derivatives. The proposed
identification relies on distance based approach and provides
accuracy higher than 97%. Ye et al. [9] applied discrete
wavelet transform (DWT) and independent component anal-
ysis (ICA) on ECG beats and obtained 136 features that were
further reduced to 26 using PCA. The classification with
SVM led to 99.6% accuracy. Recently, Zokaee and Faez [10]
promoted a multimodal biometric system based on ECG
and palm print analysis. They used Mel-frequency cepstrum
coefficient (MFCC) approach to extract features of ECG
biometrics and PCA to extract features from palm print.
The accuracy provided by KNN classification was 94.7%.
Sidek et al. [11] achieved personal recognition accuracy
of 96.1% by feeding a normalized QRS complex into a
Multilayer perceptron. Zhao et al. [1] reported a human
ECG identification system based on ECG decomposition
in a number of intrinsic mode functions combined with
Welch spectral analysis for extraction of significant heartbeat
features. PCA was used for feature space reduction. The
classification with KNNmethod provided 95% identification
accuracy.

Despite the reported high accuracy results and the
reported evidences for ECG stability in different physiologi-
cal conditions [3, 7, 11, 12] the validation of ECG for biometric
identification requires more severe testing conditions and
reduction to easily acquirable ECG leads in order to be ade-
quate to the real situation and to be convenient and reliable

for the person under identification process. In this respect,
the cited papers have the following limitations:

(1) Several studies use ECG recordings acquired in a very
short temporal interval or in the same session [1, 3–
5, 10, 11, 13] and this produces higher accuracy values.
This factwas reported in a recent comparative analysis
[14] over 20 authentication methods based on ECG
analysis, where significant accuracy degradation was
observed when training and testing data come from
different sessions if compared to the case of single
session.

(2) The proposed methods are applied generally on
healthy subjects. However, there are factors of patho-
logic nature that can severely influence ECG mor-
phology and stability, such as transient or acute
cardiac ischemia (manifested in ST-segment changes
and sometimes in intra-QRS changes), hypertonia
(high ECGvoltage), ectopic beats, conductive anoma-
lies causing sometimes intermittent bundle branch
blocks, and paroxysmal atrial fibrillation. Many of
these changes are of a long-lasting nature and could
obviously influence the verification/identification
accuracy.

(3) Some studies are based on analysis over all standard
12 ECG leads [7] or on ECG acquired with electrodes
placed on the chest [11]. However, the acquisition
of the precordial leads is not realistic in many real
situations or applications, and the analysis of reduced
number of leads produces a reduction of the iden-
tification accuracy [7]. The acquisition of ECG for
person identification is addressed by Chan et al. [15]
and Lourenço et al. [13] who reported 95% and 94.3%
accuracy using ECG leads acquired from palms and
fingers, respectively.

The aim of this paper is to present, test, and validate amethod
for person verification and identification based on correlation
using only the limb ECG leads. The method is developed
and tested using a population based ECG database, in which
the two recordings have been performed at an interval of
5 years. In addition, the database considers both healthy
people andpersonwith some cardiac disease or hypertension.
The influence of the presence of nonhealthy patients in the
validation phase is studied in detail.

2. Material and Methods

2.1. ECG Database. Two independent ECG databases have
been used in this study for training and testing the proposed
method: a population based database (ECG-ILSA) and a
reference database present in many comparisons in literature
(the PTB database).

2.1.1. The ECG-ILSA Database. The ECG signals used for
training and testing are taken from a computerized ECG-
ILSA database, collected for the Italian Longitudinal Study
on Aging Project [16–19]. A random sample of 5632 indi-
viduals aged from 65 to 84 years, living independently or in
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institutions, stratified by age and sex with an equal allocation
strategywas identified on the demographic lists of the registry
office of 8 Italian municipalities. They were followed up
with an interval of 5 years in order to study and evaluate
physiologic and pathologic modifications connected with
aging. The computerized acquisition of ECG signals was
performed in about 43% of the initial population.

This population based ECG-ILSA database consists of
2513 ECG signals in the first phase (𝑇

1
) and 1352 ECG signals

in the second phase (𝑇
2
= 𝑇
1
+ 5 years), and both ECGs

are present in 901 patients. For this study, a subset of 540
subjects considered in a previous study [20] was selected.
This group is consisting of 147 healthy subjects, 218 people
with hypertension, and 175 with cardiac diseases.The healthy
group is characterized by absence of cardiovascular and
chronic pulmonary disease, no use of drugs that can influence
the electrical cardiac activity, and no electrolyte imbalance.
The cardiac group is characterized by 56 patients with single
diagnosis of cardiovascular diseases, while, in the remaining
group with multiple diagnoses, there are 51 patients with MI,
44 with ischemia, and 24 with both.

The ECG recordings are with duration of 10 s and they
include the standard 12 leads, sampled at 500Hz. In order
to have a more robust validation procedure, considering the
temporal variability of ECG signal and/or modifications in
the pathologies, the learning phase was performed in the
healthy group. For this purpose, a random subset of 98 ECGs
from the healthy group at times 𝑇

1
and 𝑇

2
represents the

training set. Consequently the remaining group of 49 healthy
subjects and the entire cardiac and hypertension groups have
been considered for the validation/testing procedure.

2.1.2. The Reference PTB Database. We have used an addi-
tional test set, the PTB ECG database, which is a common
reference database present in the literature for comparative
results. The ECG signals are taken from the Physikalisch-
Technische Bundesanstalt (PTB) database. The ECGs were
collected from healthy volunteers and patients with different
heart diseases. The database contains 549 records from 290
subjects, each one represented by one to five recordings,
and it includes the conventional 12 leads together with the
3 Frank leads, sampled at 1000Hz. The testing ECG set
used in this study includes 14 healthy control subjects with
multiple ECG recordings, for whom the first (𝑇

1
) and the

last (𝑇
2
) ECG recordings have been considered. This dataset

is characterized by a short time interval between the two
acquisitions at 𝑇

1
and 𝑇

2
: they were performed mainly in a

temporal interval from hours (in half of patients) to some
months. These ECG recordings have been used in literature
as a reference for the evaluation of the methods for person
verification/identification [4, 5].

2.2. Methods. Aiming at a practicable biometric system, the
presented method operates over 10 s ECG segments and uses
only the limb leads I and II. To minimize the negative effect
of random noises the ECG signals were passed through

(i) high-pass filter with 0.64Hz cutoff frequency to
suppress baseline drift,

(ii) low-pass filter with cutoff frequency 35Hz to reduce
muscle noise,

(iii) a notch filter to eliminate power-line interference.

The filtered signals were subjected toQRS detection [21], pro-
viding the R-peak positions (QRSindex). The QRS detection
was based on comparison of a complex lead, representing the
sum of the absolute values of the differentiated lead I and lead
II with a combined adaptive threshold

LeadQRS det (𝑖) = abs (LeadI (𝑖) − LeadI (𝑖 − 1))

+ abs (LeadII (𝑖) − LeadII (𝑖 − 1)) .
(1)

For the purposes of biometric recognition, an ECG from
Set2 (2nd recording) is compared to the ECG in Set1 (1st
recording) by applying the following procedures:

(1) Calculation of the mean RR interval of the tested
ECGSet2 and the ECGSet1 involved in the current com-
parison (the smaller RR interval is further referred to
as RRmin).

(2) Opening of a window (QRSindex − RRmin/3 to
QRSindex + 2RRmin/3) around the QRS complexes
detected in ECGSet1 and ECGSet2.

(3) Application of principle component analysis (PCA)
over the opened window, for derivation of combined
information for the waveforms in leads I and II.

(4) Calculation of the correlation between each couple
QRSSet1, QRSSet2, using the equation below:

𝑟 (QRSSet2,QRSSet1)

=

∑
QRSindex+2RRmin/3

𝑖=QRSindex−RRmin/3
QRSSet2 (𝑖)QRSSet1 (𝑖)

√∑
QRSindex+2RRmin/3

𝑖=QRSindex−RRmin/3
QRS (Set2)2

𝑖
∑

QRSindex+2RRmin/3

𝑖=QRSindex−RRmin/3
QRS (Set1)2

𝑖

.

(2)

The maximal correlation coefficient representing the best
correlated couple QRSSet1, QRSSet2 is considered. The values
of three independent correlation coefficients—𝑟I (for the
heartbeats in lead I), 𝑟II (lead II), and 𝑟PCA (for the first
principal component), two combined correlation coefficients
(𝑟I + 𝑟II)/2, (𝑟I + 𝑟II + 𝑟PCA)/3, and two nonlinear com-
binations between them representing the minimal value
min(𝑟I, 𝑟II, 𝑟PCA) and the maximal value max(𝑟I, 𝑟II, 𝑟PCA) are
further analyzed over the training dataset.

There are two typical scenarios for application of biomet-
ric recognition.

(1) Person Verification.The one-to-one scenario is applicable;
that is, the ECG of the tested subject in 𝑇

2
is compared

to previously recorded ECG in 𝑇
1
with known identity. If

the maximal correlation is above a preset threshold value
(CorrThr), it is accepted that both ECGs belong to one and
the same person and the identity of the tested person is
verified.

The accuracy for person verification over the training
database is represented by sensitivity (Se verification) and
specificity (Sp verification). Se verification is calculated as
the percentage of subjects for whom the assessed correlation
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Figure 1: Influence of the threshold for 𝑟I, 𝑟II, and 𝑟PCA on the person verification accuracy: (a) Se verification (I) = 𝑓(𝑟I); Sp verification (I)
= 𝑓(𝑟I). (b) Se verification (II) = 𝑓(𝑟II); Sp verification (II) = 𝑓(𝑟II). (c) Se verification (PCA) = 𝑓(𝑟PCA); Sp verification (PCA) = 𝑓(𝑟PCA). (d)
ROC curves and calculated AUC for classification based on 𝑟I, 𝑟II, and 𝑟PCA. The solid circles mark the optimal solutions.

coefficients and their combinations are above preset thresh-
old values when their ECG signals in𝑇

1
and𝑇
2
are compared:

Se verification

= 100

∑
𝑁

𝑖=1
𝑟 (QRS

𝑖
(𝑇
2
) ,QRS

𝑖
(𝑇
1
)) ≥ CorrThr

𝑁

,

(3)

where𝑁 is the number of tested subjects.
Sp verification is the percentage of cases for which the

assessed correlation coefficients and their combinations are
below the preset threshold values when comparing ECGs of
different subjects:

Sp verification = 100

⋅

∑
𝑁

𝑖=1
∑
𝑁

𝑗=1
𝑟 (QRS

𝑖
(𝑇
2
) ,QRS

𝑗
(𝑇
1
)) < CorrThr

𝑁(𝑁total − 1)
,

𝑖 ̸= 𝑗,

(4)

where 𝑁 is the number of tested subjects and 𝑁total is the
number of subjects in the database for comparison.

Threshold values for 𝑟I, 𝑟II, 𝑟PCA, (𝑟I + 𝑟II)/2, (𝑟I + 𝑟II +
𝑟PCA)/3, max(𝑟I, 𝑟II, 𝑟PCA), and min(𝑟I, 𝑟II, 𝑟PCA) are selected,
based on analysis of the relation between their values and
the verification accuracy (see Figures 1(a)–1(c) and 2(a)–
2(d)). Using max(Se verification + Sp verification) as an
optimization criterion, we selected threshold values for 𝑟I
(0.96), 𝑟II (0.92), 𝑟PCA (0.95), (𝑟I + 𝑟II)/2 (0.93), (𝑟I + 𝑟II +
𝑟PCA)/3 (0.94), max(𝑟I, 𝑟II, 𝑟PCA) (0.97), and min(𝑟I, 𝑟II, 𝑟PCA)
(0.93).The achieved accuracy indices are presented in Table 1.
Receiver operating characteristic (ROC) curves are built and
the area under the curve (AUC) is calculated for 𝑟I, 𝑟II,
𝑟PCA, (𝑟I + 𝑟II)/2, (𝑟I + 𝑟II + 𝑟PCA)/3, max(𝑟I, 𝑟II, 𝑟PCA), and
min(𝑟I, 𝑟II, 𝑟PCA). AUC could be used for scoring the potential
for person verification of different models.

(2) Person Identification. The one-to-many scenario is appli-
cable to a specific group of persons. The ECG in 𝑇

2
of
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Figure 2: Influence of the threshold for (𝑟I + 𝑟II)/2, (𝑟I + 𝑟II + 𝑟PCA)/3, max(𝑟I, 𝑟II, 𝑟PCA), and min(𝑟I, 𝑟II, 𝑟PCA) on the person verification
accuracy: (a) Se verification (I + II) = 𝑓((𝑟I + 𝑟II)/2); Sp verification (I + II) = 𝑓((𝑟I + 𝑟II)/2). (b) Se verification (I + II + PCA) = 𝑓((𝑟I + 𝑟II +
𝑟PCA)/3); Sp verification (I + II + PCA) = 𝑓((𝑟I + 𝑟II + 𝑟PCA)/3). (c) Se verification (max(𝑟I, 𝑟II, 𝑟PCA)) = 𝑓(max(𝑟I, 𝑟II, 𝑟PCA)); Sp verification
(max(𝑟I, 𝑟II, 𝑟PCA)) = 𝑓(max(𝑟I, 𝑟II, 𝑟PCA)). (d) Se verification (min(𝑟I, 𝑟II, 𝑟PCA)) = 𝑓(min(𝑟I, 𝑟II, 𝑟PCA)); Sp verification (min(𝑟I, 𝑟II, 𝑟PCA)) =
𝑓(min(𝑟I, 𝑟II, 𝑟PCA)). (e) ROC curves and calculated AUC for classification based on 𝑟I + 𝑟II, 𝑟I + 𝑟II + 𝑟PCA, min(𝑟I, 𝑟II, 𝑟PCA), and max(𝑟I, 𝑟II,
𝑟PCA). The solid circles mark the optimal solutions.
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Table 1: Verification/identification accuracy calculated over the training database: selected threshold value (VerTHR), sensitivity, specificity,
and value of the optimization criterion for person verification; accuracy for person identification (AccID),𝑁 = 98.

VerTHR Se verification Sp verification Opt. criterion AccID
𝑟I 0.96 78.6% (77/98) 77% (7320/9506) 77.8% 53.1% (52/98)
𝑟II 0.92 83.7% (82/98) 85.7% (8147/9506) 84.7% 59.2% (58/98)
𝑟PCA 0.95 79.6% (78/98) 76.6% (7282/9506) 78.1% 52% (51/98)
(𝑟I + 𝑟II)/2 0.93 87.8% (86/98) 86.6% (8232/9506) 86.7% 69.4% (68/98)
(𝑟I + 𝑟II + 𝑟PCA)/3 0.94 85.7% (84/98) 87.4% (8308/9506) 86.6% 71.4% (70/98)
max(𝑟I, 𝑟II, 𝑟PCA) 0.97 80.6% (79/98) 83.0% (7890/9506) 81.8% 59.2% (58/98)
min(𝑟I, 𝑟II, 𝑟PCA) 0.93 77.6% (76/98) 92.7% (8812/9506) 85.1% 65.3% (64/98)

the subject under identity examination is compared to all
previously recorded ECG in 𝑇

1
and the maximal correlation

of this comparison detects the identity to the tested subject.
The identification accuracy (AccID) is calculated as the
percentage of subjects for whom ECG in 𝑇

2
is maximally

correlated with their own ECG in 𝑇
1
.

3. Results

The Se verification, Sp verification, and the value of the
optimization criterion achieved for the training database
with the selected thresholds for the 𝑟I, 𝑟II, 𝑟PCA, and their
combinations are presented in Table 1. The accuracy for
person identification, calculated as the percentage of subjects,
whose ECG in𝑇

2
ismaximally correlatedwith their ownECG

in 𝑇
1
is also presented in Table 1.

The proposed method for person verification/identifica-
tion was independently tested over the two test databases.
For the verification task, the correlation coefficients threshold
values observed over the training database were applied.
Aiming to obtain comparable results to the one reported in
literature and to provide an unbiased basis for assessment of
the influence of the personal health status on the verifica-
tion/identification accuracy, we performed 2 types of tests as
follows:

(i) Tests include only the healthy subjects: the results are
presented in Table 2 for ILSA test dataset (49 persons)
and Table 4 for PTB test dataset (14 persons). Figure 3
illustrates the ROC curves with the respective AUCs
that prove the similar behavior of the designed person
validation method over the training and test ILSA
datasets.

(ii) Tests include all patients from the ILSA test dataset
(442 persons): the results for verification and identifi-
cation accuracy are presented in Table 3, considering
the three groups of patients: healthy, cardiac, and
hypertension ones.

Examples that show cases of both correct person verification
and identification are presented in Figure 4 for the training
database and Figure 5 for the publicly available PTB test
dataset. Despite the strong correlations observed in both
examples, it is visible that there is a complete matching
between the waveforms of the ECGs in Figure 5, while the

Table 2: Sensitivity and specificity for person verification and
accuracy for person identification obtained for the healthy subset
in the test ILSA dataset (𝑁 = 49 subjects).

Se verification Sp verification AccID

𝑟I 77.6% (38/49) 83%
(1912/2304)

63.3%
(31/49)

𝑟II 87.8% (43/49) 81.7%
(1882/2304)

61.2%
(30/49)

𝑟PCA 81.6% (40/49) 80.7%
(1859/2304)

59.2%
(29/49)

(𝑟I + 𝑟II)/2 89.8% (44/49) 83.9%
(1933/2304)

77.6%
(38/49)

(𝑟I + 𝑟II + 𝑟PCA)/3 87.8% (43/49) 86.6%
(1995/2304)

75.5%
(37/49)

max(𝑟I, 𝑟II, 𝑟PCA) 75.5% (37/49) 87.5%
(2016/2304)

65.3%
(32/49)

min(𝑟I, 𝑟II, 𝑟PCA) 79.6% (39/49) 90.6%
(2087/2304)

75.5%
(37/49)

ECGs in Figure 4 show slight changes mainly in the QRS
amplitudes.

Figures 6 and 8 present cases for which neither the veri-
fication nor the identification will be successful. The example
in Figure 7 illustrates a case, which will be correctly verified if
𝑟II, 𝑟PCA, or the combined correlation coefficients are used and
erroneously rejected if 𝑟I < 0.96 is applied for verification.
The only chance this person to be correctly identified is the
application of one of the combined correlation coefficients
(𝑟I + 𝑟II)/2 and (𝑟I + 𝑟II + 𝑟PCA)/3.

4. Discussion

This paper presents a method for person verification and
identification based on cross-correlation over ECG signals.
Aiming to assure a convenient and a comfortable acquisition
procedure for the tested person, the proposed algorithm uses
only the independent limb leads I, II.

The person verification is performed by comparison
between the ECG of the person who pretends for certain
identity and a previously recorded ECG of subject with the
tested identity, using the maximal cross-correlation as an
estimator for their similarity. The curves in Figures 1(a)–1(c)
and 2(a)–2(d) provide the opportunity to select threshold
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Table 3: Sensitivity and specificity for person verification, together with the accuracy for person identification, obtained for the entire test
ILSA dataset (𝑁 = 442 subjects), considering the health status of the tested subjects.

Se verification (%) Sp verification (%) AccID (%)
Healthy Card Hypt Healthy Card Hypt Healthy Card Hypt

𝑟I 77.6% 74.9% 76.1% 82.8% 87.9% 81.4% 38.8% 46.3% 46.3%
𝑟II 87.8% 77.7% 78.9% 85.4% 90.8% 86.7% 42.9% 52.0% 44.5%
𝑟PCA 81.6% 80.0% 79.4% 81.6% 85.0% 78.9% 42.9% 48.0% 41.3%
(𝑟I + 𝑟II)/2 89.8% 86.3% 82.6% 86.6% 91.8% 87.0% 59.2% 60.6% 53.7%
(𝑟I + 𝑟II + 𝑟PCA)/3 87.8% 78.3% 79.8% 88.9% 92.9% 88.4% 61.2% 62.3% 54.6%
max(𝑟I, 𝑟II, 𝑟PCA) 75.5% 73.1% 74.8% 87.4% 90.9% 85.8% 42.9% 57.7% 46.8%
min(𝑟I, 𝑟II, 𝑟PCA) 79.6% 69.7% 71.6% 92.6% 95.6% 92.9% 59.2% 54.9% 49.5%
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Figure 3: ROC curves and calculated AUCs for the test datasets: (a) ILSA test dataset (healthy subjects), (b) PTB healthy controls.
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Table 4: Sensitivity and specificity for person verification and
accuracy for person identification over the test PTB dataset (𝑁 = 14
subjects).

Se verification Sp verification AccID

𝑟I 85.7% (12/14) 91.2% (166/182) 92.9%
(13/14)

𝑟II 100% (14/14) 69.8% (127/182) 92.9%
(13/14)

𝑟PCA 92.9% (13/14) 75.3% (137/182) 78.6%
(11/14)

(𝑟I + 𝑟II)/2 100% (14/14) 81.9% (149/182) 92.9%
(13/14)

(𝑟I + 𝑟II + 𝑟PCA)/3 92.9% (13/14) 83.0% (151/182) 85.7%
(12/14)

max(𝑟I, 𝑟II, 𝑟PCA) 78.6% (11/14) 87.4% (159/182) 78.6%
(11/14)

min(𝑟I, 𝑟II, 𝑟PCA) 92.9% (13/14) 90.7% (165/182) 92.9%
(13/14)
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Figure 4: Subject 3 from the ILSA database. The strong correlation
(>0.98) between the P-QRS-T waveforms of this person of the
training set in 𝑇

1
(blue solid line) and 𝑇

2
(red dashed line) assures

both correct verification and correct identification.The time interval
between the recordings of ECG in 𝑇

1
and 𝑇

2
is about 5 years.

values for 𝑟I, 𝑟II, 𝑟PCA, (𝑟I + 𝑟II)/2, (𝑟I + 𝑟II + 𝑟PCA)/3, max(𝑟I,
𝑟II, 𝑟PCA), andmin(𝑟I, 𝑟II, 𝑟PCA) depending on the application.
Lower thresholds are suitable when low rejection rate (high
sensitivity) is required at the expense of increased erroneous
verifications. On the other side, the higher threshold values
guarantee high security combined with higher rejection rate.
Depending on the exact task that has to be solved, one can
decide threshold values of the applied correlation coefficients.
The ROC curves andAUCs presented in Figures 1(d) and 2(e)
illustrate the behavior of the models over the train dataset.
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and correct identification.The time interval between the recordings
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2
is less than 24 hours.

According to [22], AUC higher than 0.9 is an approximate
indication of an excellent classifier.

The person identification is performed by computing the
correlation between the ECG of the subject under exami-
nation and a previously collected ECG database. The tested
person is identified according to the maximal correlation to a
subject in the database.

Considering the accuracy results (Tables 1, 2, and 3) over
the training and test ILSA database and the AUCs (Figures
1(d) and 3), 𝑟II seems more reliable for person verification
than 𝑟I. However, this observation is not confirmed by the
results over the test PTB database (Table 4, Sp verification <
70%). Although the first PCA component presents a combi-
nation between leads I and II, 𝑟PCA do not lead to verification
accuracy increase neither for the training nor for the test
databases. Generally, the best verification/identification accu-
racy is achieved with the combined correlation coefficients
(𝑟I + 𝑟II)/2, (𝑟I + 𝑟II + 𝑟PCA)/3 that also present AUCs higher
than 0.9 (Figure 2(e) for training, Figure 3 for testing).This is
in concord with the results of Poree et al. [7], who reported
accuracy increase when more ECG leads are involved in the
analysis.

Considering the verification/identification of healthy per-
sons, the following observations can be pointed out:

(i) There is comparable verification accuracy for both
training and test part of ILSA database (Table 1
versus Table 2, AUCs in Figures 1(d) and 2(e) versus
Figure 3).

(ii) The identification accuracy is higher in the healthy
ECG-ILSA test set (𝑁 = 49 Table 2) than in the
learning set (𝑁 = 98, Table 1).
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Figure 6: Subject 16 from the test part of ILSA database. (a) The assessed correlation coefficients 𝑟I < 0.946, 𝑟II = 0.919, and 𝑟PCA < 0.949 are
below the preset threshold values (0.96, 0.92, and 0.95, resp.) and the identity of this person will not be verified neither by means of 𝑟I, 𝑟II,
and 𝑟PCA nor by applying any of their combinations. (b) This subject will be identified as subjects 466 (Max(𝑟I) ∼ 0.99, max(𝑟I, 𝑟II, 𝑟PCA) =
0.99); 312 (Max(𝑟II) ∼ 0.98), 37 (Max(𝑟PCA) ∼ 0.99); 134 ((𝑟I + 𝑟II)/2 = 0.95, (𝑟I + 𝑟II + 𝑟PCA)/3 = 0.96); or 439 (min(𝑟I, 𝑟II, 𝑟PCA) = 0.94). When
the patient’s ECG is compared to his own previously recorded ECG (𝑟I + 𝑟II)/2 = 0.93, (𝑟I + 𝑟II + 𝑟PCA)/3 = 0.94, max(𝑟I, 𝑟II, 𝑟PCA) = 0.95, and
min(𝑟I, 𝑟II, 𝑟PCA) = 0.92.
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Figure 7: Subject 124 from the training part of ILSA database. Considering the independent correlation coefficients 𝑟I, 𝑟II, and 𝑟PCA, this
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Figure 8: Subject 174 from the PTB database-time interval between the recordings of ECG in𝑇
1
and𝑇

2
is 59 days. (a)The assessed correlation

coefficients 𝑟I = 0.93 and 𝑟PCA = 0.94 are below the preset threshold values (0.96 and 0.95, resp.) and the identity of this person will not be
verified. (b) This subject will be identified as 233 according to Max(𝑟I) ∼ 0.96, (𝑟I + 𝑟II)/2 = 0.95, (𝑟I + 𝑟II + 𝑟PCA)/3 = 0.95, min(𝑟I, 𝑟II, 𝑟PCA) =
0.94, or as 236 if Max(𝑟II) ∼ 0.96, Max(𝑟PCA) ∼ 0.97, and max(𝑟I, 𝑟II, 𝑟PCA) = 0.97 are considered. When the patient’s ECG is compared to his
own previously recorded ECG (𝑟I + 𝑟II)/2 = 0.94, (𝑟I + 𝑟II + 𝑟PCA)/3 = 0.94, max(𝑟I, 𝑟II, 𝑟PCA) = 0.94, and min(𝑟I, 𝑟II, 𝑟PCA) = 0.93.

(iii) There is lower identification accuracy for the test ILSA
dataset when all ECGs in the ECG-ILSA test set (𝑁 =
442) are used as database for comparison (Table 3
versus Tables 1 and 2).

(iv) There is higher verification/identification accuracy
for the test PTB dataset compared to the ECG-ILSA
training and test sets.

These observations can be motivated by the following
remarks:

(i) The better verification accuracy for the test PTB
dataset can be explained by the shorter temporal
interval between the two acquisition times 𝑇

1
and

𝑇
2
, compared to the temporal interval of 5 years in

the ECG ILSA database which is in concord with
the observations in [14]. In fact the 14 subjects are
characterized by

(a) (𝑇
2
− 𝑇
1
) < 24 hours in 7 cases,

(b) (𝑇
2
− 𝑇
1
) < 1 month in 2 patients,

(c) (𝑇
2
− 𝑇
1
) > 1 and < 3 months in 2 patients,

(d) (𝑇
2
− 𝑇
1
) > 6 months for 3 patients.

(ii) The identification accuracy is influenced by the num-
ber of records in the testing set, and, consequently
with reduced number of patients, it is possible to
obtain higher values. In fact, the PTB database with
only 14 records produces better identification accu-
racy (92.9% with (𝑟I + 𝑟II)/2 in Table 4) if compared
with the test set of 49 healthy people of the ECG-ILSA

database (Table 2) or if comparedwith all 442 subjects
of the test set (Table 3). This behavior is in agreement
with the study of Zokaee and Faez [10] where the
increasing from 10 to 50 of the number of ECGs in
the test dataset produced decreasing of the accuracy
of about 10% (from 98.6% to 89%).

In literature there are only few studies [5] which consider the
ECG biometric recognition in the presence of cardiac irreg-
ularity conditions, although they were performed mainly
with single day sessions. Consequently, the present work
represents a significant test on the influence of the personal
health status for the verification/identification accuracy in the
presence of long term interval recordings.

Our observations for cardiac and hypertension persons
are as follows.

Considering the (𝑟I + 𝑟II)/2 classification method, the
validation procedure on the entire test set of 442 healthy and
nonhealthy patients, some observations can be performed as
follows:

(i) The hypertension group (Table 3) shows lower
Se verification (82.6%) and AccID (53.7%) compared
to the healthy and cardiac groups (resp., 89.8%, 86.3%
and 59.2%, 60.6%).

(ii) The cardiac group shows a slight improvement in
AccID (60.6%) and in Sp verification (91.8%) in com-
parison with the healthy group (59.2% and 86.6%).

These results show the robustness of the proposed classi-
fication method for person identification and verification,
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Table 5: Comparison between verification/identification accuracy achieved by the proposed method over the test dataset and the results
reported by other authors with different databases used (db). The number of ECG recordings per patient (1 rpp for one and mrpp for more)
and the acquisition interval (acq int) on the same patient are reported.

Method Database Accuracy

Agrafioti and Hatzinakos, 2009 [5]
MIT-BIH normal sinus
MIT-BIH arrhythmia 1 rpp
PTB db, 13 healthy subjects mrpp

AccID = 96.2%
Sp ver = 99%
Se ver = 87%

Israel et al., 2005 [3] Own db: 29 subjects
close in time recordings AccID = 100%

Lourenço et al., 2011 [13] Own db: 16 subjects
close in time recordings

AccID = 94.3%
Se = Sp = 87%

Sidek et al., 2012 [11] Own db: 30 healthy subj., close in time recordings AccID = 96.1%

Wang et al., 2008 [4] MIT-BIH normal sinus 1 rpp
PTB db, 13 healthy subj. mrpp AccID = 100%

Zhao et al., 2013 [1] MIT-BIH ST change db, long-term ST db 1 rpp;
PTB db, 12 healthy subj. mrpp

AccID (tot) = 95.6%
AccID (PTB) = 96%

Zokaee and Faez, 2012 [10] MIT-BIH db 1 rpp
Own Holter, 50 subjects 1 rpp

AccID = 100%
AccID = 89%

Poree et al., 2011 [7] Own db: 11 subjects, mrpp, acq int = 16 months AccID = 91.4%
Lee et al., 2012 [23] Own db: 10 subjects, ∼100 rpp within 3-month period AccID = 99.5%

Wübbeler et al., 2007 [8] db from 74 subjects, mrpp, acq int = 16 months AccID = 98.1%
Se = Sp = 97.2%

Our method
(based on assessment of (𝑟I + 𝑟II)/2)

Test ILSA db, 49 healthy subjects mrpp
AccID = 77.6%
Se ver = 89.8%
Sp ver = 83.9%

Test PTB db, 14 healthy subjects mrpp
AccID = 92.9%
Se ver = 100%
Sp ver = 81.9%

although the obtained results are probably not effective for
real applications. It is interesting to consider the classification
of some examples with or without problematic identifica-
tion/verification.

The example in Figure 5 shows strong correlation
between 2 ECG recordings of one subject from the
test database that lead to unconditional correct person
verification and identification. It should be mentioned,
however, that both ECGs are recorded within time interval
less than 24 hours. High values of the correlation coefficients
are also observed for ECG recordings with temporal interval
of several years (see the example in Figure 4); however, for
such cases the expected ECG changes are visible.

On the other pole, the examples in Figures 6 and 8 present
aligned P-QRS-T segments of subjects, for whommost of the
correlation coefficients are below the thresholds for person
verification. Moreover, the ECGs of these people are more
correlated with ECGs of other members in the datasets used
for comparison which leads to incorrect identification.

The example in Figure 7 proves the advantages of the
combined correlation coefficients (𝑟I + 𝑟II)/2 and (𝑟I +
𝑟II + 𝑟PCA)/3 that prevent erroneous identifications when
strong correlation with a wrong ECG from the database for
comparison is observed only in lead I, lead II, or the first PCA
component.

Considering the differences in the verification/identifica-
tion accuracy over the training and test databases, as
well as the presented examples for correct and erroneous

verification, we can conclude that the changes appearing
in ECG with time could affect the accuracy of person
verification/identification. This is also confirmed by the
comparison between our results on healthy persons and
the results reported in literature (see Table 5). It is obvious
that the studies using only close in time ECG recordings
[3, 10, 11] report higher identification and/or verification
performances. The direct comparison to studies that use
the healthy controls in PTB database is not possible, since
the authors have applied their methods on part of the
healthy persons (12 or 13 from all 14 patients) and have
mixed them with cases that do not have separated in time
ECGs. Nevertheless, our results could be positively compared
with studies for the identification task which consider ECG
datasets with comparable size and similar temporal interval
between the 1st and the 2nd recording [1, 5, 7, 10].

The ECG variability within small time interval could be
due to electrode position variation between the two record-
ings. Even a meal can cause considerable ECG changes, both
in healthy people and in cardiac patients. ECG recordings
acquired one or more years apart show larger intraindividual
variability. Sources such as age, weight, and heart position
then come into play, in addition to the sources already having
effect on smaller time scales. The influences of different fac-
tors on the intraindividual ECG variability are summarized
by Schijvenaars [24]. In healthy people, the most prominent
changes after a standard meal are an increase of heart rate,
a decrease of T-wave amplitude and QT interval, and small
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left axis shifts of the QRS and T-axes. The influences of
age, weight, and heart position are often interdependent;
the heart position becomes more horizontal when one gains
weight, people generally gain some weight as years pass,
and so forth. The general trend is a decrease in amplitudes
and a left axis shift in frontal QRS axis with increasing age
or weight. The general age trends found among adults are
decrease of precordial amplitudes (QRS spatial magnitude
decreases with approximately 8% per decade), a leftward shift
of the frontal plane axis (approximately 10∘ per decade), and a
more anterior axis in the horizontal plane. Interval durations’
increase for PR andQT interval and decrease inQRSduration
are also observed.

Considering the above mentioned sources of ECG vari-
ability, as well as our observations over the training and test
databases, we conclude the following.

(i) Aiming at higher identification accuracy, the database
for comparison (TrainSet1, TestSet1) should be kept
as small as possible for the particular application and
should be updated with actual ECG recordings.

(ii) Aiming at higher verification accuracy, the ECG
recordings in the database for comparison should be
updated on a regular basis (as short as possible, e.g.,
every time when the person passes through border
control). The new ECG could replace the old one,
after verification, or could be added to a personal
folder with a reasonable size. This would guarantee
higher values of Se verification andwould provide the
opportunity to increase the threshold values for the
correlation coefficients which in turn would increase
Sp verification.

5. Conclusions

This paper studies the reliability of the ECG signal for person
verification/identification. The population based ECG-ILSA
database of 540 patients (147 healthy subjects, 175 patients
with cardiac diseases, and 218 with hypertension) has been
considered for the validation procedure. For a more robust
validation procedure, considering the temporal variability
of ECG signal and/or modifications in the pathologies, the
learning phase was performed only in the healthy group, and
the testing procedures have been performed also with non-
healthy patients. The proposed method relies on assessment
of correlation coefficients as well as their linear and nonlin-
ear combinations and provides 100% verification sensitivity
combined with 18.1% erroneous verification rate in the PTB
database, a widely used test set in literature, with a relatively
short temporal interval of ECG acquisition and a limited
number of healthy subjects (𝑁 = 14). This dataset produces
an identification accuracy of 92.9%. The test set of healthy
subjects in the ECG-ILSA database (𝑁 = 49) produces
a lower verification sensitivity (89.8%) and identification
accuracy (77.6%) but a better erroneous verification rate
(16.1%). For cardiac and hypertension patients we observe
decreased sensitivity and increased specificity for verification.
Considering the identification task, our conclusions are that

the accuracy depends generally on the size of the database for
comparison, but not on the person’s health status.

Although the ECG is considered to be strongly individual
biometric feature, this study shows that there are some
changes over time that could prevent correct individual
verification, and two healthy persons could have similar
ECGs that could lead to incorrect identification. This poses
requirements towards the database stored for comparison,
such as size of the database and maximal time interval
between the tested ECG and the ECG stored in this database.
Despite these limitations, the ECG has the indisputable
advantage to be not susceptible to falsification. It seems
to be a reliable biometric characteristic for specific access
control applications, which operatewith smaller databases for
comparison.

Although there are several limitations in this methodol-
ogy, which can prevent its use in real practice, it could be
possible to overcome the drawbacks with the inclusion of
some demographic/personal information in the classification
process for obtaining “certain” identification. Moreover, this
study proves the potential of ECG application for increasing
the reliability of person verification and identification based
on biometrical information from other sources.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This study is supported by Bulgarian National Science Fund,
Grant no. T02/11.

References

[1] Z. Zhao, L. Yang, D. Chen, and Y. Luo, “A human ECG identi-
fication system based on ensemble empirical mode decomposi-
tion,” Sensors, vol. 13, no. 5, pp. 6832–6864, 2013.

[2] L. Biel, O. Pettersson, L. Philipson, and P. Wide, “ECG analysis:
a new approach in human identification,” IEEE Transactions on
Instrumentation and Measurement, vol. 50, no. 3, pp. 808–812,
2001.

[3] S. A. Israel, J. M. Irvine, A. Cheng, M. D.Wiederhold, and B. K.
Wiederhold, “ECG to identify individuals,” Pattern Recognition,
vol. 38, no. 1, pp. 133–142, 2005.

[4] Y. Wang, F. Agrafioti, D. Hatzinakos, and K. N. Plataniotis,
“Analysis of human electrocardiogram for biometric recogni-
tion,” EURASIP Journal on Advances in Signal Processing, vol.
2008, Article ID 148658, 2008.

[5] F. Agrafioti and D. Hatzinakos, “ECG biometric analysis in car-
diac irregularity conditions,” Signal, Image andVideo Processing,
vol. 3, no. 4, pp. 329–343, 2009.

[6] K. N. Plataniotis, D. Hatzinakos, and J. K. M. Lee, “ECG bio-
metric recognition without fiducial detection,” in Proceedings
of the Biometrics Symposium: Special Session on Research at the
Biometric Consortium Conference (BSYM ’06) , 2006 (BSYM
’06), pp. 1–6, Baltimore, Md, USA, September 2006.

[7] F. Poree, A. Gallix, and G. Carrault, “Biometric identification
of individuals based on the ECG. Which conditions?” in



BioMed Research International 13

Proceedings of the Computing in Cardiology, vol. 38, pp. 761–764,
IEEE, Hangzhou, China, September 2011.
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