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Abstract Alcoholic liver disease (ALD) is one of the major causes of liver morbidity and mortality
worldwide. Chronic alcohol consumption leads to development of liver pathogenesis encompassing
steatosis, inflammation, fibrosis, cirrhosis, and in extreme cases, hepatocellular carcinoma. Moreover,
ALD may also associate with cholestasis. Emerging evidence now suggests that farnesoid X receptor
(FXR) and bile acids also play important roles in ALD. In this review, we discuss the effects of alcohol
consumption on FXR, bile acids and gut microbiome as well as their impacts on ALD. Moreover, we
summarize the findings on FXR, FoxO3a (forkhead box-containing protein class O3a) and PPARα
(peroxisome proliferator-activated receptor alpha) in regulation of autophagy-related gene transcription
program and liver injury in response to alcohol exposure.

& 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical
Sciences. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license. 
l Association and Institute of Materia

1

ogenase; AF, activation function;
dependent bile acid transporter; Atg,
ile salt export pump; CA, cholic acid;
CREBH, cAMP response element-bi
CA, deoxycholic acid; DR1, direct r
rowth factor receptor 4; FoxO3a, fork
atocellular carcinoma; IR-1, inverted
ug resistance protein 4; NADþ, nico
sporter α/β; PE, phosphatidylethano
X receptor-alpha; SHP, small heter
, taurocholic acid; TFEB, transcript
, WAY-362450; WT, wild type
89813; fax: þ1 913 5887501.
Wenxing Ding).

itute of Materia Medica, Chinese Ac

ND license. 

Medica, Chinese Academy of Medical Sciences. Production and hosting by

AKT, protein kinase B; ALD, alcoholic liver disease; ALT, alanine
autophagy-related; BAAT, bile acid CoA:amino acid N-acyltransferase;

CB1R, cannabinoid receptor type 1; CDCA, chenodeoxycholic acid; CREB,
nding protein, hepatocyte specific; CRTC2, CREB regulated transcription
epeat 1; 6ECDCA, 6α-ethyl-chenodeoxycholic acid; FGF15/19, fibroblast
head box-containing protein class O3a; FXR, farnesoid X receptor; GGT,
repeat-1; KO, knockout; LC3, light chain 3; LRH-1, liver receptor homolog
tinamide adenine dinucleotide; NTCP, sodium taurocholate cotransporting
lamine; PPARα, peroxisome proliferator-activated receptor alpha; ROS,
odimer partner; Sirt1, sirtuin 1; SQSTM, sequestome-1; SREBP1, sterol
ion factor EB; TLR4, toll-like receptor 4; TUDCA, tauro-ursodeoxycholic

ademy of Medical Sciences and Chinese Pharmaceutical Association.

www.elsevier.com/locate/apsb
www.sciencedirect.com
dx.doi.org/10.1016/j.apsb.2014.12.011
dx.doi.org/10.1016/j.apsb.2014.12.011
dx.doi.org/10.1016/j.apsb.2014.12.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apsb.2014.12.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apsb.2014.12.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apsb.2014.12.011&domain=pdf
mailto:wxding@kumc.edu
dx.doi.org/10.1016/j.apsb.2014.12.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


FXR and bile acids in alcoholic liver disease 159
1. Introduction

Alcohol consumption is ubiquitous in the United States and
worldwide. In moderate amount, alcohol can be beneficial;
however, excessive alcohol consumption may result in patho-
genesis known as alcoholic liver disease (ALD)1–3. ALD encom-
passes a wide spectrum of morbidity initiated by simple steatosis,
which may progress to more severe pathologies such as fibrosis,
alcoholic hepatitis, cirrhosis, and in extreme cases, hepatocellular
carcinoma (HCC)2–4. It is known that majority of alcoholics
develop simple steatosis, but only a small cohort of the patients
progress to more severe pathologies2. This is likely because ALD
is usually associated with other risk factors including sex, obesity,
genetics, and viral hepatitis2,5–7. Moreover, cells may adapt to the
alcohol exposure and activate cellular protective mechanisms
against alcohol-induced detrimental effects.

Interestingly, ALD patients also exhibit manifestations of
cholestasis, a liver pathology defined by impaired flow of bile
acids resulting in accumulation of hepatic bile acids8. Bile acids
are amphipathic detergent-like molecules that are end-products of
hepatic cholesterol catabolism9. Due to its detergent-like proper-
ties, bile acids are critical for solubilization and absorption of
cholesterol, dietary lipids, and fat-soluble vitamins in the intes-
tines10. Moreover, bile acids promote bile flow and cholesterol
secretion from the liver11. Intriguingly, bile acids also function as
nutrient signaling molecules through activation of farnesoid X
receptor (FXR), a bile acid-sensing nuclear receptor that regulates
lipid, cholesterol, and glucose metabolism12. FXR is highly
expressed in the liver and the intestines, and is also found in
kidney and adrenal glands. FXR is a key regulator for bile acid
homeostasis13–17. FXR contains a ligand-independent transcription
activation function (AF-1) region, a DNA-binding domain with
two highly conserved zinc finger motifs, and a hinge region that
mediates simultaneous receptor dimerization and DNA binding in
the N-terminus18. A ligand binding domain, a dimerization inter-
face, and a ligand-dependent AF-2 are found in the C-terminus of
FXR18. FXR dimerizes with retinoid X receptor-alpha (RXRα),
another nuclear receptor, which enables FXR to bind to an
inverted repeat-1 response element (IR-1), an inverted AGGTCA
sequence separated by one base pair, to initiate transcription of
target genes19,20. FXR is critical for the transcriptional regulation
of bile acid synthesis and transport genes in the liver and
intestines21–23. Bile acids, in particular the unconjugated forms,
are endogenous ligands for FXR. Moreover, synthetic ligands such
as GW4064 and WAY-362450 (WAY) have been identified to be
potent FXR agonists24,25.

FXR regulates bile acid synthesis through two distinct mecha-
nisms. In the liver, FXR up-regulates expression of small hetero-
dimer partner (SHP), a unique nuclear receptor. SHP then interacts
with liver receptor homolog-1 (LRH-1) to repress the transcription
of bile acid synthesis enzymes, cytochrome P450 7A1 and 8B1
(CYP7A1 and CYP8B1), resulting in decreased bile acid syn-
thesis26–28. In the intestines, bile acids activate FXR to induce the
transcription and secretion of fibroblast growth factor 15/19
(FGF15/19) from the intestines into the portal vein. FGF15/19
then travels and binds to FGF receptor 4 (FGFR4) in the liver to
suppress the transcription of Cyp7a1 and in turn inhibits bile acid
synthesis21–23. Indeed, whole body Fxr deficiency in mice results
in increased hepatic bile acid levels and liver injury including hepatic
steatosis, inflammation, and fibrosis21,29. Here we reviewed the
emerging evidence that FXR may act as a protective factor in ALD
by regulating multiple cellular and molecular pathways.
2. Alcohol consumption disrupts bile acid synthesis and
enterohepatic circulation

Alcohol consumption induces hepatic metabolic changes,
increases oxidative stress and alters lipid metabolism that leads
to hepatotoxicity2,4. Interestingly, alcohol consumption has also
been reported to induce cholestasis in all stages of ALD8,30.
Dr. Lieber's group31,32 first observed that chronic alcohol
consumption results in increased bile acid pool and decreased
excretion of bile acids, suggesting that alcohol consumption may
affect the enterohepatic circulation. Currently, it is not clear how
alcohol induces cholestasis. However, emerging evidence suggests
that alcohol may down-regulate FXR, which results in increased
bile acid synthesis and hepatic bile acid pool33,34.

Taurine conjugation of bile acids can result in reduced hydro-
phobicity and toxicity35. Taurine and glycine conjugations also
promote the transport of bile acids out of the hepatocytes36.
Chronic alcohol consumption reduced levels of taurine-conjugated
bile acids and increased levels of more toxic unconjugated and
glycine-conjugated bile acids in rat liver, duodenum and ileum34.
Conversely, taurine supplementation attenuated chronic alcohol-
induced steatosis and lipid peroxidation possibly due to inhibition
of CYP2E1 activity in rats37. However, it is not clear if taurine
supplementation increased taurocholic acid (TCA) level. The
reduced levels of taurine-conjugated and increased levels of
glycine-conjugated bile acids were due to chronic alcohol-induced
perturbation in expression of bile acid metabolism enzymes34.

Accumulation of hepatic bile acids is one manifestation of ALD
pathogenesis, which could be due to alcohol-induced bile acid
synthesis. Acute alcohol exposure has been reported to induce bile
acid biosynthesis in man and primary cultured human hepato-
cytes38,39. Chronic alcohol consumption also induced the tran-
scription of Cyp7a1 and Cyp8b1 and reduced expression of
FGFR4, a transcription inhibitor of CYP7A133,34. Moreover,
another study demonstrated that alcohol induced transcription of
bile acid synthesis enzymes including Cyp7a1, Cyp7b1, Cyp8b1,
and Cyp27a1 by activating cAMP responsive element-binding
protein (CREBH), a liver specific transcription factor and a key
metabolic regulator, through alcohol-mediated stimulation of the
hepatic cannabinoid receptor type 1 (CB1R)40. Taken together,
accumulating evidence supports that alcohol consumption alters
bile acid synthesis by up-regulating the expression of bile acid
synthesis genes, although more studies are needed to further
elucidate the mechanisms by which alcohol induces bile acid
synthesis.

Chronic alcohol consumption also alters metabolic enzymes
that facilitate bile acid conjugation prior to the transport of bile
acids into bile canaliculi. Upon alcohol exposure, the enzyme
responsible for taurine conjugation, bile acid CoA:amino acid N-
acyltransferase (BAAT), was down-regulated. However, the
enzyme responsible for glycine conjugation, bile acid CoA
synthetase (BACS), was increased upon alcohol exposure34. As
a result, chronic alcohol exposure alters bile acid synthesis and
conjugation by up-regulating the classic pathway and decreasing
BAAT-mediated taurine conjugation.

Chronic alcohol exposure also alters the enterohepatic circula-
tion of bile acids. Alcohol exposure increases the expression of
bile acid efflux transporters including the bile salt export pump
(BSEP), multidrug resistance protein 4 (MRP4) and organic solute
transporter α/β (OSTα/β) and decreases the expression of bile acid
uptake transporter, sodium taurocholate cotransporting polypeptide
(NTCP) in the liver33,34. In the ileum, alcohol consumption
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increases the expression of bile acid transporters including OSTβ
and apical sodium dependent bile acid transporter (ASBT)34.
Furthermore, alcohol exposure decreases the expression of
FGF1534. The transcriptional changes in the ileum may result in
increased absorption of bile acids into the portal circulation.
Altogether, chronic alcohol consumption increases hepatic and
serum bile acid levels. Alcohol-induced accumulation of bile acids
may be attributed to increased bile acid synthesis, increased bile
acid absorption in the intestines, and increased bile acid efflux in
the liver.
3. Role of FXR in alcohol-induced liver injury

Alcohol-induced disruption of the enterohepatic circulation has
been attributed to decreased FXR activity. FXR negatively
regulates the expression of CYP7A1 and CYP8B1 but positively
regulates the expression of BSEP and FGF1526,29,41. Chronic
alcohol consumption disrupted the interaction of FXR with RXRα
by increasing acetylation of FXR, resulting in FXR inactivation33.
Decreased acetylation of FXR may be due to alcohol-mediated
inhibition of sirtuin 1 (SIRT1), a nicotinamide adenine dinucleo-
tide (NADþ)-dependent histone deacetylase, and activation of
acetyltransferase p30033,42,43. Alcohol metabolism increased
[NADH]:[NADþ] ratio44, which may reduce NADþ-dependent
SIRT1 enzymatic activity45. These results suggest that FXR and
SIRT1 may be potential pharmacological targets for alleviating
alcohol-induced cholestasis and liver injury.

WAY and 6α-ethyl-chenodeoxycholic acid (6ECDCA) are
potent FXR-specific agonists25,46. Intriguingly, pharmacological
activation of FXR by WAY and 6ECDCA attenuated chronic
alcohol-induced liver injury and steatosis33,47. FXR regulates
sterol regulatory element-binding protein 1 (SREBP1) through
the SHP-liver X receptor (LXR) axis, in which SHP inhibits LXR
activity resulting in decreased expression of SREBP148. Indeed,
FXR activation by 6ECDCA attenuated alcohol-induced steatosis
by ablating SREBP1-mediated lipogenesis47. Furthermore, FXR
activation also decreased alcohol-mediated reactive oxygen species
(ROS) production33,47. The mechanism of how FXR activation
protects against alcohol-induced oxidative stress is currently not
well elucidated. However, WAY treatment decreased alcohol-
mediated induction of CYP2E1, which may play a role in
attenuation of alcohol-induced oxidative stress33. Interestingly, in
human hepatocyte-derived cell lines, the proximal promoter sites
of human alcohol dehydrogenase (ADH) isomers, ADH1A and
ADH1B, have functional IR1. It has been found that FXR binds to
the response elements and induces expression of ADH1A and
ADH1B, resulting in increased ADH1 enzymatic activity. How-
ever, FXR did not induce ADH expression in rodent livers and
hepatocytes, indicating that FXR-mediated induction of ADH may
be species specific49. FXR may play a protective role against
human ALD by inducing ADH-mediated metabolism of alcohol.

Conversely, ablation of Fxr exacerbated alcohol-induced liver
injury in an acute alcohol model and the recent established chronic
plus binge model (also called Gao-binge model)3,4,50,51. It was
reported that Gao-binge treatment suppressed expression of lipid
oxidation genes in Fxr knockout (KO) mice, which may contribute
to exacerbated hepatic steatosis. Furthermore, Gao-binge treatment
induced expression of CD14, the receptor for LPS (lipopolysac-
charide), in Fxr KO mice with a higher degree in comparison to
WT (wild type) mice. Increased CD14 expression may exacerbate
alcohol-induced liver injury by increasing the sensitivity to
inflammation51. We also observed a much higher induction of
hepatic CYP2E1 after acute alcohol treatment in Fxr KO than that
of WT mice, which may contribute to exacerbated alcohol-induced
liver injury in Fxr KO mice50. Altogether, these findings suggest
that FXR plays a role in protecting the liver from alcohol-induced
hepatotoxicity likely by regulating lipid metabolism, sensitivity to
inflammation and CYP2E1-mediated oxidative stress.
4. Bile acid modulates alcohol-induced liver injury

Bile acid accumulation in cholestatic conditions can result in
hepatotoxicity. As discussed before, alcohol exposure increased
bile acid hydrophobicity via accumulation of more toxic unconju-
gated bile acids. Indeed, rats feed with chronic alcohol together
with chenodeoxycholic acid (CDCA), a toxic hydrophobic bile
acid, increased the hydrophobicity of pooled bile acids and
exacerbated alcohol-induced liver injury52. However, the mecha-
nism by which CDCA increased alcohol-induced liver injury is not
elucidated.

Another group demonstrated that infusion of relatively hydro-
phobic TCA in bile duct obstructed rats or rats with choledocho-
caval fistula resulted in decreased hepatic ADH and catalase
activity. However, the serum ADH activity as well as microsomal
alcohol oxidizing system and aldehyde dehydrogenase was greatly
increased under these conditions. In contrast, hydrophilic tauro-
ursodeoxycholic acid (TUDCA) had no effects on alcohol-
metabolizing enzymes53. These data suggest that hydrophobic bile
acids may induce leakage of cytosolic alcohol metabolizing
enzymes into the serum, resulting in altered alcohol metabolism
during cholestasis.

Ursodeoxycholic acid (UDCA) is a cytoprotective therapeutic
hydrophilic bile acid approved to treat cholestasis. UDCA protects
cholangiocytes against toxicity exerted by hydrophobic bile acids,
stimulates hepatobiliary secretion, and inhibits bile acid-induced
apoptosis in hepatocytes54. UDCA and its conjugated form,
TUDCA both protected against alcohol-induced toxicity in human
hepatoblastoma HepG2 cells55. However these studies are ques-
tionable since HepG2 cells may not be suitable to study alcohol
hepatotoxicity due to the lack of expression of alcohol-
metabolizing enzymes such as ADH and CYP2E156,57. UDCA
or TUDCA co-treatment with alcohol protected against alcohol-
induced toxicity in ADH-containing human hepatoma cells
(SK-Hep-1)58. Moreover, UDCA treatment reduced alcohol-induced
liver injury and steatosis in rat livers59. UDCA and TUDCA
attenuated alcohol-induced hepatotoxicity through various possible
mechanisms including preservation of mitochondrial integrity,
improvement of ATP synthesis, and decrease of alcohol-induced
oxidative damage independent of CYP2E1 and glutathione60–62.
Moreover, chronic alcohol consumption has been shown to inhibit
production of liver prostaglandins, and UDCA treatment restored
expression of prostaglandin E and increased linoleoyl-CoA desa-
turase activity in alcohol-treated rat livers possibly due to
enhanced membrane fluidity63. Therefore, UDCA protects against
alcohol-induced hepatotoxicity by improving mitochondrial func-
tion and attenuating oxidative stress in vivo although its protective
effect against alcohol-induced toxicity in vitro is less clear.

The beneficial effects of UDCA against ALD in animal models
have led to clinical trials for UDCA therapy in alcoholic cirrhosis
although so far these trials yielded mixed results. In a placebo-
controlled cross-over trial, the patients were administered with
UDCA (15 mg/kg/d) or placebo for 4 weeks. UDCA treatment
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resulted in a significant decrease in bilirubin, gamma-
glutamyltranspeptidase (GGT), and alanine aminotransferase
(ALT) levels64. These clinical data thus suggest that UDCA
treatment may alleviate alcohol-induced hepatotoxicity despite
continued alcohol consumption. In another study using a rando-
mized controlled trial, UDCA (13–15 mg/kg/d) or placebo was
administered for 6 months. Patients that received UDCA had
decreased levels of GGT and alkaline phosphatase compared to the
patients that were received placebo65. However, UDCA treatment
also resulted in lower survival rates and increased complications65.
It should be noted that the pilot study by Plevris et al. only
included patients with initial bilirubin levels below 50 mmol/L and
lower Child-Pugh score (A–B with one patient being C) in
comparison to the clinical study by Pelletier et al., which consisted
of patients displaying higher initial bilirubin levels (all above
50 mmol/L) and the majority of patients were Child-Pugh C. The
recruitment of patients with different initial bilirubin levels may be
partially contributed to the different outcomes from these two
different trials. Moreover, the dose of UDCA may be inappropriate
for more severe form of alcohol cirrhosis because the patients in
the UDCA groups displayed dramatic increase in total bile acid
levels and some patients even displayed serum bile acid levels as
high as 1000 mmol/L. Therefore, the dispute in efficiency of
UDCA treatment in alcoholic cirrhosis may be attributed to the
severity of hepatic damage prior to the initiation of UDCA
treatment. More clinical trials are needed to further determine
the effects of UDCA on different stages of ALD patients.
5. Gut microbiome and ALD

Gut microbiome is one of the key players in ALD. Bacterial
growth and dysbiosis are hallmarks of various liver diseases
including ALD. Several groups have extensively reviewed the
role of gut microbiome in ALD recently66–68. ALD patients exhibit
bacterial overgrow along the gastrointestinal tract, which affects
alcohol metabolism resulting in increased concentration of
acetaldehyde69–76. Endotoxemia is well documented in patients
with ALD. Endotoxemia increased hepatic inflammation due to
activation of Kupffer cells and subsequent toll-like receptor
4 (TLR4)-mediated cytokine and chemokine production66,77.
Alcohol exposure induces bacterial translocation and increases
gut permeability that promote endotoxemia and facilitate the
development of ALD66.

Intestinal dysbiosis occurs when the composition of intestinal
bacteria is altered, and is a hallmark of ALD. Patients with
alcoholic cirrhosis have higher amount of Proteobacteria, Pre-
votellaceae, and Veillonellaceae, and lower amount of Bacteroi-
detes in the colon and feces compared to non-cirrhotic alcoholic
patients or healthy people78–80. Moreover, in several animal
studies, alcohol-fed animals had higher proportions of Verruco-
mircobia, Proteobacteria, and Actinobacteria, and lower propor-
tions of Firmicutes including Lactobacillus, Pediococcus,
Leuconostoc and Lactococcus72,73,81. One study has shown that
Bacteroidetes was elevated in chronic alcohol-fed rats, whereas,
another study has demonstrated that chronic alcohol feeding
decreased the proportion of Bacteroidetes72,73. Currently, it is
not clear how enteric dysbiosis influences the progress of ALD.
Interestingly, probiotics and prebiotics including Lactobacillius
feedings alleviated alcohol-induced liver injury and restored
the gut microbiota in both animal models and alcoholic
patients66,73,82–88. Restoring gut microbiota by dietary approach
using prebiotics and probiotics emerges as a promising therapy
for ALD.

Gut microbiota plays an essential role in bile acid metabolism,
in which the intestinal bacteria are involved in biotransformation
of bile acids through deconjugation, dehydroxylation, and recon-
jugation89. Chronic alcohol consumption increased the concentra-
tion of unconjugated bile acids along the gastrointestinal tract,
especially in the small intestines (duodenum and ileum). Alcohol
consumption decreased the concentration of taurine-conjugated
bile acids and increased the amount of unconjugated bile acids in
the intestinal tract, liver and serum34. The perturbed bile acid
profile may be attributed to gut bacterial overgrowth, resulting in
increased deconjugation of bile acids and taurine metabolism66. It
is known that gut bacteria metabolize majority of taurine into
inorganic sulfate, which results in decreased taurine bioavailabi-
lity90. Interestingly, alcohol feeding increased the formation and
excretion of a taurine metabolite, N-acetyltaurine91. Therefore,
alcohol-induced taurine metabolism by gut bacteria may decrease
taurine available for bile acid conjugation in the liver and alter the
systematic bile acid profile.

Conversely, bile acids also regulate the gut flora via their
antimicrobial activity92. Rats fed with a cholic acid (CA)-contain-
ing diet had increased gut Firmicutes to Bacteroidetes ratio.
Moreover, these rats displayed increased level of a toxic bile acid,
deoxycholic acid (DCA), in the cecum due to bacterial-mediated
7α dehydroxylation of CA. DCA is extremely toxic and selectively
inhibits growth of gut bacteria including Bacteroidetes and
Lactobacillus, which results in altered gut microbiota93. Moreover,
increased abundance of Firmicutes promotes the growth of DCA-
producing bacteria94. Alcohol consumption also increased DCA
concentration in the gastrointestinal tract34. Patients with or
without alcoholic cirrhosis that are active drinkers exhibited
increased secondary bile acids including DCA along with
decreased fecal Bacteroidetes80. Therefore, toxic DCA may play
a role in alcohol-induced gut bacteria dysbiosis.

FXR activation by bile acids induced expression of genes
involved in enteroprotection and inhibited bacterial overgrowth
and mucosal injury95. Conversely, Fxr KO mice displayed more
severe bacteria overgrowth and epithelial barrier deterioration95.
These results suggest that FXR also has antimicrobial activity.
As discussed above, alcohol consumption inhibits FXR activation,
and it will be interesting to determine the role of FXR in alcohol-
induced bacteria dysbiosis and gut permeability in the future.
6. Autophagy in ALD

Macroautophagy (hereafter referred to as autophagy) is an
evolutionarily conserved catabolic process responsible for dispos-
ing and recycling cellular proteins and damaged/excess organelles
in response to starvation and cellular stresses. The autophagy
process initiates with formation of isolation membranes, which are
elongated and fused to become double membrane autophago-
somes96. Autophagosomes then fuse with the lysosomes to
complete the degradation process. More than 30 autophagy-
related (Atg) genes have been identified in yeast and most of
them have mammalian homolog counterparts that participate in the
autophagic process97. One of the key steps in the formation of a
double membrane autophagosome is the conjugation of the
microtubule associated protein 1 light chain 3 (LC3) with
phosphatidylethanolamine (PE). LC3-PE translocates from the
cytosol to the isolation membrane to promote the formation of
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autophagosomes98–101. Sequestome-1 (SQSTM-1)/p62 is an auto-
phagy receptor protein with a LC3 interacting region, which
enables p62 to recruit ubiquitinated protein aggregates and deliver
them to the autophagosomes for degradation102. p62 is also an
autophagic substrate that is normally degraded under starvation-
induced autophagy, and is accumulated in autophagy-deficient
conditions103–105. Therefore, monitoring the levels of p62 has been
widely used as an autophagic flux marker100.

Autophagic degradation can be either non-selective or selective
depending on the cellular conditions. Non-selective autophagy
occurs in energy deficient condition such as starvation, and
degrades cellular components in order to provide nutrient and
energy. Selective autophagy degrades protein aggregates and
excessive or damaged organelles as a protective mechanism in
either nutrient-rich or poor conditions3,106,107.

Autophagy has been shown to play an essential role in liver
physiology, and deregulation of hepatic autophagy has been
implicated in pathogenesis of various liver diseases including
ALD108–110. We have demonstrated that acute alcohol treatment
induced hepatic autophagy to selectively degrade damaged mito-
chondria and excess lipid droplets111,112. Acute alcohol-mediated
autophagy induction required alcohol-metabolizing enzymes, e.g.,
CYP2E1 and ADH3,112. More importantly, pharmacological acti-
vation of autophagy protected against alcohol-induced hepatotoxi-
city and steatosis. Conversely, pharmacological inhibition of
autophagy exacerbated alcohol-induced hepatotoxicity112,113.
In contrast to the acute alcohol exposure, the status of autophagy
in chronic alcohol exposure is less clear and controversial, which
could be reflected by the lack of reliable autophagic flux assay
in vivo and the dynamic nature of autophagy during the long time
chronic feeding conditions3. Nevertheless, similar to the findings
from the acute alcohol exposure, pharmacological activation of
autophagy also showed beneficial effects against chronic alcohol
feeding-induced liver injury in mice113. Therefore, induction of
autophagy may be a promising therapeutic option for ALD.

We recently demonstrated that alcohol also regulates autophagy
at the transcriptional level42. Forkhead box-containing protein
class O3a (FoxO3a) is a member of FoxO family of evolutionarily
conserved DAF-16 like transcription factor114–116. Multiple post-
translation modifications, which include phosphorylation, ubiqui-
tination, acetylation, and methylation, regulate FoxO3a acti-
vity114,116. Protein kinase B (AKT) phosphorylates FoxO3a at
serine 253, resulting in sequestration of FoxO3a in the cytoplasm,
which inhibits FoxO3a-mediated transcriptional activation117.
FoxO3a regulates transcription of genes involved in apoptosis,
oxidative stress, cell-cycle transition, and DNA repair114,117.
Moreover, FoxO3a also regulates transcription of Atg genes in
skeletal muscles, cardiomyocytes, and liver42,118–121. Our group
and others have demonstrated that FoxO3a protects against alcohol-
induced hepatotoxicity and steatosis by initiating transcription of Atg
and antioxidant genes42,122,123. Acute alcohol treatment increased
expression of Atg genes in mouse livers and primary cultured
hepatocytes. Mechanistically, acute alcohol treatment decreased
AKT-mediated FoxO3a phosphorylation at serine 253, which resulted
in nuclear accumulation of FoxO3a in mouse livers42. Interestingly,
induction of SIRT1 activity by resveratrol promoted deacetylation of
FoxO3a, which increased FoxO3a-mediated transcription of Atg genes
in response to alcohol. Both acute alcohol exposure and chronic
alcohol feeding induced more severe steatosis and hepatotoxicity in
FoxO3a KO mice compared to WT mice122. These results suggest that
FoxO3a protects against alcohol-induced hepatotoxicity likely by
inducing expressions of Atg and antioxidant genes.
7. Bile acids and FXR regulate hepatic autophagy in ALD

As discussed above, bile acids are nutrient signaling molecules.
Emerging evidence shows that bile acids also regulate autophagy.
DCA, a hydrophobic secondary bile acid, induced accumulation of
autophagosomes in cultured rodent hepatocytes and human
esophageal cells as well as increased LC3-II protein expression
in colon epithelial cells124–126. We demonstrated that bile acids
inhibit completion of autophagic process in hepatocytes by
decreasing Rab7-mediated fusion of autophagosomes with lyso-
somes in hepatocytes, a process which is independent of FXR127.
Whole body Fxr KO mice had impaired hepatic autophagy as
demonstrated by the elevated hepatic p62 and LC3-II levels. This
is likely due to the elevated hepatic bile acid levels since
hepatocyte-specific Fxr KO mice had normal levels of hepatic
bile acids and normal autophagy. Because of the impaired hepatic
autophagy in Fxr KO mice, it is not surprising that we further
found that alcohol-induced liver injury is exacerbated in Fxr KO
mice50. Intriguingly, we further found that alcohol-induced expres-
sion of Atg genes (Atg5, Becn-1 and Map1lc3b) was abolished in
Fxr KO mouse livers. Furthermore, alcohol-induced hepatic
expression of FoxO3a target genes (MnSod, p21, and FoxO3a)
in WT mice was also suppressed in Fxr KO mice50. These results
suggest that FXR is associated with acute alcohol-induced FoxO3a
activation and autophagy in mouse livers. The decreased FoxO3a-
mediated expression of Atg genes in acute alcohol-treated mouse
livers was likely due to the secondary effects such as increased
hepatic AKT activation in Fxr KO mice, but not due to the direct
FXR-FoxO3a interaction since we failed to detect such an
interaction in either FXR and FoxO3a over-expressed cultured
cells or in alcohol-treated mouse livers50.

FXR is a nutrient-sensing nuclear receptor that is activated in
fed state by bile acids returning to the liver, whereas peroxisome
proliferator-activated receptor alpha (PPARα) is activated by fatty
acids during fasting128–133. Therefore, FXR may also be involved
in regulating autophagy in response to nutrient abundance
especially in postprandial period. Indeed, two recent studies from
Moore's group and Kemper's group134,135 independently demon-
strated that activation of FXR ablated nutrient starvation-induced
autophagy in vitro and in vivo. Pharmacological activation of FXR
by GW4064 attenuated the expression of Atg genes in fasted, but
not fed mouse livers134,135. Mechanistically, FXR inhibited
transcription of Atg genes by two distinct but complementary
mechanisms. First, FXR and PPARα compete for binding to the
shared direct repeat 1 (DR1) sites, with opposite transcriptional
outcomes on the expression of autophagy genes135. Second, FXR
disrupts the interaction of cAMP response element binding protein
(CREB) with its co-activator, CREB-regulated transcription coac-
tivator 2 (CRTC2), resulting in decreased expression of Atg genes
in fed state134. These findings suggest that FXR negatively
regulates autophagy by nutrient status. These observations seem
to conflict with our findings that Fxr KO mice had impaired
hepatic autophagy. However, it should be noted that Fxr KO mice
had increased hepatic bile acids, inflammation and cell death as
well as altered various signaling pathways such as AKT that may
regulate autophagy29,136,137. The impaired hepatic autophagy in
Fxr KO mice could be due to the secondary factors as a result of
the loss of FXR. Indeed, Fxr KO mice have increased hepatic
accumulation of p62, inflammation and developed spontaneous
liver tumors, which are very similar to the autophagy-deficient
mouse livers127,136–140. Therefore, while FXR may inhibit auto-
phagy in response to the nutrient status, FXR is not the only
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regulator of hepatic autophagy. It is also possible that the chronic
loss (or inhibition) of FXR or acute activation of FXR may have
different impacts on hepatic autophagy. As discussed above,
chronic alcohol consumption has been shown to inhibit FXR
activity. Currently, the effect of chronic alcohol exposure on FXR-
mediated repression of autophagy gene transcription has not been
elucidated. However, one would assume that chronic alcohol
exposure might increase the expression of Atg genes due to
inhibition of FXR and subsequent impair FXR-mediated repres-
sion of Atg gene transcription. Liver-specific Fxr KO mice fed
with alcohol will be a very useful model to further test this
hypothesis, because these mice would avoid the problems such as
increased bile acids and liver injury in whole body Fxr KO mice.

Chronic alcohol-treated Pparα KO mice exhibited hepatome-
galy and increased hepatocyte proliferation, enhanced mitochon-
drial damage, liver injury and inflammation141. Chronic alcohol
feeding decreased the DNA-binding affinity of PPARα, which was
reversed by treatment with WY14643, a PPARα agonist142.
Pharmacological activation of PPARα by WY14643 protected
against chronic alcohol-induced hepatotoxicity and steatosis in
mice142,143. These results are consistent with the notion that
PPARα promotes autophagy although the expression of autophagy
genes and autophagy activity were not determined in these studies.

As discussed above, PPARα and FXR compete for DR1
binding to regulate the expression of Atg genes and FXR
negatively regulates transcription factor EB (TFEB), a regulator
of lysosomal biogenesis134. PPARα is an important downstream
mediator of TFEB in response to nutrient starvation144. Chronic
alcohol feeding did not affect CREB phosphorylation or nuclear
Figure 1 Schematic diagram of the cellular and molecular events of alco
autophagy. Alcohol treatment inhibits FXR in the liver, which results in
taurine conjugation of bile acids and increases efflux of bile acids out of the
also induces autophagy by inhibiting AKT, which results in FoxO3a ac
increases the uptake of bile acids into the enterocytes and promotes efflu
exposure also inhibits intestinal FXR activation, which leads to decreased F
Increased abundance of intestinal bacteria promotes taurine metabolism and
acids including DCA exacerbate alcohol-induced dysbiosis. FXR may ne
against ALD.
translocation, but chronic alcohol feeding (four weeks) plus a
single alcohol binge increased phosphorylated CREB and
decreased nuclear CREB levels in rat livers145. Whether and
how TFEB, FXR, CREB and PPARα are integrated or indepen-
dently participate in the regulation of Atg genes expression after
alcohol exposure are currently unknown. It seems that the
regulation of autophagy at the transcriptional level after alcohol
exposure could be very complex and different from starvation
conditions. Nevertheless, future studies on deciphering these
complex transcriptional factor-mediated regulations on autophagy
after alcohol exposure may offer some novel promising
approaches for treating ALD.
8. Conclusions and perspectives

ALD is one of the major causes of liver morbidity and mortality
worldwide. Currently, there is no effective treatment for ALD. The
last treatment proposed for ALD was in the 1970s, in which
corticosteroids were used to treat alcoholic steatohepatitis. There-
fore, developing novel pathophysiological-targeted therapies is
urgently needed. FXR has emerged as a novel possible therapeutic
target in ALD. Recent evidence demonstrated that alcohol
exposure impairs FXR activation, which results in increased bile
acid synthesis and pool. Moreover, FXR protects against alcohol-
induced gut bacteria dysbiosis and overgrowth as well as the
accumulation of toxic bile acids such as DCA. Increased bile acids
may inhibit the completion of autophagic degradation in hepato-
cytes. Therefore, restoring bile acid homeostasis is important for
hol exposure on FXR, enterohepatic circulation, gut microbiome and
increased bile acid synthesis. Moreover, alcohol exposure decreases
hepatocytes into the portal vein and bile duct. Acute alcohol exposure
tivation and FoxO3a-mediated up-regulation of Atg genes. Alcohol
x of bile acids into the portal circulation from the intestines. Alcohol
GF15/19 expression and promotes bacteria overgrowth and dysbiosis.
bile acid deconjugation. Finally, increased levels of unconjugated bile
gatively regulate autophagy and cholestasis, and autophagy protects
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the autophagy function, which is an important protective mech-
anism against ALD. Paradoxically, FXR may inhibit the induction
of autophagy in response to nutrient starvation. However, the
effect of alcohol exposure on FXR-mediated repression of
autophagy needs to be further deciphered. Moreover, other
transcription factors including FoxO3a, PPARα, CREB and TFEB
have been implicated in the regulation of Atg gene expression.
Therefore, elucidating the mechanism of how transcriptional
factor-mediated regulation on autophagy after alcohol exposure
may lead to generate promising therapeutic target for ALD in the
future. In summary, the FXR-bile acid axis may be a promising
therapeutic target for ALD. More studies are needed to further examine
the role of FXR and bile acids in alcohol-induced hepatotoxicity and
steatosis. The molecular and cellular events of alcohol on FXR, bile
acids, gut microbiome and autophagy are summarized in Fig. 1.
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