Skip to main content
. 2015 Oct 9;112(43):13190–13194. doi: 10.1073/pnas.1516704112

Table S1.

Definition of the field quantities relevant for the emergence of the optical forces on small chiral particles

Definition of the quantity Description
p=(g/2c)Re{E×H} Poynting momentum density
p=(g/2c)Im{E×H} Value of the imaginary adjoint to the Poynting momentum density
po=g4ωIm{μ1E(E)+ϵ1H(H)} Orbital (or canonical) Poynting momentum density
peo=g4ωIm{μ1E(E)} Electric contribution to the orbital Poynting momentum density
pmo=g4ωIm{ϵ1H(H)} Magnetic contribution to the orbital Poynting momentum density
ps=g8ω×[(iμ)1E×E+(iϵ)1H×H] Spin part of the Poynting momentum density (Belinfante spin momentum)
pes=g8ω×[(iμ)1E×E] Electric contribution to the spin momentum density
pms=g8ω×[(iϵ)1H×H] Magnetic contribution to the spin momentum density
s=g4ω((μi)1E×E+(ϵi)1H×H) SAM density
se=g4ω((μi)1E×E) Electric contribution to the SAM density
sm=g4ω((ϵi)1H×H) Magnetic contribution to the SAM
h=(g/2ω)Im{EH} Helicity
×p=g2c×Re{E×H} Vorticity of the photon flow
ue=g4ϵ|E|2 Electric contribution to the energy density
um=g4μ|H|2 Magnetic contribution to the energy density
I=n1|E×H*| Intensity

A derivation and discussion of many quantities can be found in Bliokh et al. (17).