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Physical systems are frequently modeled as sets of points in space,
each representing the position of an atom, molecule, or mesoscale
particle. As many properties of such systems depend on the under-
lying ordering of their constituent particles, understanding that
structure is a primary objective of condensed matter research.
Although perfect crystals are fully described by a set of translation
and basis vectors, real-world materials are never perfect, as thermal
vibrations and defects introduce significant deviation from ideal
order. Meanwhile, liquids and glasses present yet more complexity.
A complete understanding of structure thus remains a central, open
problem. Here we propose a unified mathematical framework, based
on the topology of the Voronoi cell of a particle, for classifying local
structure in ordered and disordered systems that is powerful and
practical. We explain the underlying reason why this topological
description of local structure is better suited for structural analysis
than continuous descriptions. We demonstrate the connection of
this approach to the behavior of physical systems and explore how
crystalline structure is compromised at elevated temperatures. We
also illustrate potential applications to identifying defects in plastically
deformed polycrystals at high temperatures, automating analysis of
complex structures, and characterizing general disordered systems.
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Condensed matter systems are often abstracted as large sets of
points in space, each representing the position of an atom,

molecule, or mesoscale particle. Two challenges frequently en-
countered when studying systems at this scale are classifying and
identifying local structure. Simulation studies of nucleation, crystal-
lization, and melting, for example, as well as those of defect migra-
tion and transformation, require a precise understanding of which
particles are associated with which phases, and which are associated
with defects. As these systems are abstracted as large point sets, these
dual challenges of classifying and identifying structure reduce to ones
of understanding arrangements of points in space.
A primary difficulty in classifying structure in spatial point sets

arises from a tension between a desire for completeness and the
necessity for practicality. The local neighborhood of a particle
within an ensemble of particles can be completely described by a
list of relative positions of each of its neighbors. However, al-
though such a list of coordinates is complete in some sense, this
raw data provides little direct insight, leaving us wanting for a
practical and more illuminating description. This tension is often
mediated by the choice of an “order parameter,” which distills
structural data into a single number or vector, and which is con-
structed to be both informative and computationally tractable (1).
A central limitation of conventional order parameters is exhibi-

ted in degeneracies that arise in describing neighborhoods that are
structurally distinct but map to identical order parameter values.
Some order parameters classify particles in face-centered cubic
(FCC) and body-centered cubic (BCC) crystals identically, whereas
others classify particles in FCC and hexagonal close-packed (HCP)
crystals identically (2). Similarly, particles located near defects in a
low-temperature crystal can have order parameter values identical
to those of particles in a high-temperature defect-free crystal. These
degeneracies point to an inherent incompleteness in such order

parameter classifications of local structure. Consequently, different
order parameters are necessary to study different systems (1, 2).
In this paper, we propose a mathematical framework to classify

local structure that avoids much of the degeneracy encountered in
other approaches and which, therefore, is equally applicable to all
ordered and disordered systems of particles. More specifically, the
local structure around a particle is classified using the topology of
its Voronoi cell (see Fig. 1). Families of Voronoi cell topologies
are constructed by considering those topologies that can result
from infinitesimal perturbations of an ideal structure. We dem-
onstrate that this classification scheme is consistent with the
manner in which local ordering changes in high-temperature single
crystals as the temperature is raised toward their melting points.
We highlight a potential use of this approach for visualizing de-
fects in crystalline solids at high temperatures, and contrast it with
previous methods. We then demonstrate an application of this
approach to the automated analysis of the evolution of complex
structures, where conventional methods are often inadequate.
Finally, we show an application in which this approach is used to
provide robust statistical−structural descriptors for characterizing
disordered systems.

Theory
The Configuration Space of Local Structure. A deeper understanding
of local structure can be developed through consideration of all
possible arrangements of neighbors of a central particle. The local
neighborhood of a particle within an ensemble of particles can
be completely described by a vector of relative positions of its
n nearest neighbors: x= ðr1, r2, . . . , rnÞ, where ri is the relative
position of the ith neighbor of a central particle. For suitably large
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n, any question about the local neighborhood of a particle can be
answered through complete knowledge of x. We use CðnÞ to de-
note the configuration space of all possible arrangements of n
nearest neighbors,

CðnÞ=�ðr1, r2, . . . , rnÞ : ri ∈R3�. [1]

Each point in CðnÞ thus corresponds to a specific local arrange-
ment of particles. Fig. 2D provides a schematic of CðnÞ and
highlights points corresponding to local arrangements of BCC,
FCC, HCP, and diamond structures. As defined in Eq. 1, the
dimension of CðnÞ is 3n; ignoring rotations and scaling reduces
the dimension of CðnÞ by 4. Ignoring permutations of the n neigh-
bors and disallowing multiplicities further changes the geometry
and topology of CðnÞ, but not its dimension.
Order parameters can be thought of as functions that map CðnÞ

to a lower-dimensional order parameter space; order parameter
spaces most commonly used are Rd, where d is substantially smaller
than 3n. Each choice of order parameter results in a different
subdivision of CðnÞ into regions on which that order parameter is
constant; for real-valued continuous functions, these regions are
commonly known as level sets. To help understand the degeneracy
observed in continuous order parameter methods, consider that for
every continuous mapping ϕ from an unbounded high-dimensional
space to a lower-dimensional space, there exist points x1, x2 arbi-
trarily far apart, but for which ϕðx1Þ and ϕðx2Þ are identical (3).
The continuity of an order parameter thus entails the kind of de-
generacy highlighted above. In contrast, discrete order parameters
are not subject to this limitation, as distances between points with
identical order parameter values can be bounded. This motivates
the question of how to reasonably subdivide CðnÞ. We now show
that Voronoi topology offers one such approach.

Voronoi Topology. For a fixed set of particles, the Voronoi cell of
a central particle is the region of real space closer to that particle
than to any other (4). Fig. 1 illustrates a central particle, its
Voronoi cell, and 15 neighboring particles. Two particles whose
Voronoi cells share a face are called neighbors. We identify
two Voronoi cells as having the same topology, or “topological
type,” if there exists a one-to-one correspondence between their
sets of faces that preserves adjacency.
The topology of the Voronoi cell of a particle describes the

manner in which neighbors of a particle are arranged relative to
it. An n-sided face, for example, indicates a pair of particles that
have n neighbors in common. The topology of a Voronoi cell
thus provides a robust description of how neighbors are arranged
relative not only to a central particle but also to one another. In
this sense, it is a good description of local structure.
Voronoi cell topology also provides a natural decomposition

of CðnÞ into regions in which the Voronoi cell topology is con-
stant, as illustrated in Fig. 2D. We consider this decomposition
natural because it allows us to coarse-grain the effects of small
perturbations on local structure. Small perturbations of the par-

ticle coordinates correspond to small displacements in CðnÞ, and
because the Voronoi topology does not change for almost all
points under small perturbations, these small perturbations, which
are often unimportant, are naturally ignored without the intro-
duction of an artificial cutoff (2).
Voronoi cell topology was first introduced by Bernal and

others to study the atomic structure of liquids (5–7), and has
been subsequently applied to study a wide range of condensed
matter systems, including random sphere packings (7, 8), finite-
temperature crystals (9), and metallic glasses (10). In those stud-
ies, however, the topology of a cell was characterized by counting
its types of faces (e.g., triangles and quadrilaterals), but it ignored
the way in which those faces are arranged. Although this limited
description has been used to study some aspects of crystallization
(11), it cannot distinguish particles whose local environments are
FCC from those whose local environments are HCP, as both
Voronoi cells have 12 four-sided faces. In previous work (12, 13),
the authors have shown how to use a graph-tracing algorithm in-
troduced by Weinberg (14) to efficiently compute strings that
encode a complete description of the Voronoi cell topology; see
Materials and Methods for further details.
A second limitation arising in traditional Voronoi approaches

results from abrupt changes in topology due to small geometric
perturbations. Consider, for example, that Voronoi cells of par-
ticles in FCC and HCP crystals are topologically unstable: Because
some vertices are shared by more than four Voronoi cells (see Fig.
2), infinitesimal perturbations of the particle positions, such as
those arising from nonhydrostatic strain or thermal vibrations, will
change their topology (15). This problem has been sufficiently
challenging to limit the utility of conventional Voronoi approaches
in studying even slightly perturbed crystal structures (2). This
problem can be solved through the classification of topological
types described in the following section.

Theory of λ-Types. In this section, we show how topological types can
be classified using the approach developed in The Configuration
Space of Local Structure and Voronoi Topology. On a basic level,
every arrangement of neighbors relative to a central particle can be
described by its Voronoi cell topology. Families of topological types

Fig. 1. The frame of a Voronoi cell of a central particle (blue), surrounded
by its nearest neighbors (gold). The topology of the Voronoi cell captures
structural information about the local neighborhood.

A

B

C

D

Fig. 2. Voronoi cells of particles in (A) BCC, (B) FCC, and (C) HCP crystals.
Vertices at which more than four Voronoi cells meet are marked by red
circles. Small perturbations of the particle positions result in topological
changes near these vertices. (D) Schematic of CðnÞ, the space of all possible
configurations of n neighbors. This space can be divided into regions on
which the Voronoi cell topology is constant. The topology of a point that lies
on the boundaries of multiple regions is unstable, and infinitesimal pertur-
bations of the neighbors will result in a change of topology. Inset shows the
neighborhood around xFCC; unshaded regions indicate primary types, and
shaded ones indicate secondary types.
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associated with a particular structure can then be defined as sets of
types obtained through infinitesimal perturbations of that structure.
This classification scheme enables a description of the effects of
small strains and thermal vibrations on local structure, and provides
a robust framework suitable for theoretical and numerical analysis.
Every local arrangement of neighbors λ is described by a distinct

point xλ in CðnÞ, and subsequently corresponds to a unique Vor-
onoi cell topology V ½xλ�. For example, if λ = BCC, then xλ = xBCC
describes a particle that has the same local environment as a
particle in a perfect BCC crystal; its Voronoi cell topology V ½xBCC�
is the truncated octahedron, illustrated in Fig. 2A.
A suitable distance function on CðnÞ allows us to define sets of

topological types associated with infinitesimal perturbations as fol-
lows. We let BeðxÞ be a ball of radius « centered at x. This region of
CðnÞ corresponds to configurations obtained through small pertur-
bations of a particle and its neighbors, where « controls the mag-
nitude of such a perturbation. The set of topological types obtained
from all possible perturbations of xwith magnitude smaller than « is
denoted V ½BeðxÞ�. We define the family of topological types asso-
ciated with infinitesimal perturbations of λ as the limiting set

F λ := lim
e→0

V ½BeðxλÞ�. [2]

In more physical terms, F λ is the set of all topological types that
can be obtained through arbitrarily small perturbations of a cen-
tral particle and its neighbors. The Voronoi cell topology of
points in the interior of a region in CðnÞ remains unchanged by
small perturbations. In contrast, points such as xFCC and xHCP are
located at the boundaries of multiple regions, and small pertur-
bations entail a change in Voronoi cell topology. Thus, FFCC and
FHCP consist of multiple topological types, whereas FBCC, lo-
cated in the interior of a region, consists of a single type. If a
topological type is in F λ, then we say that it is a λ-type. Note that
a topological type can belong to multiple families; this indeter-
minacy will be considered below. This classification of λ-types

allows us to account for topological instability without modifying
the sample data by collapsing edges or faces using ad hoc criteria
(e.g., cutoffs) (2, 9).
Among λ-types, a further distinction can be drawn based on

the manner in which the Voronoi cell topology subdivides CðnÞ.
Using a suitable volume measure Vol, we define the ideal fre-
quency fλðτÞ of a topological type τ relative to xλ as follows:

fλðτÞ := lim
e→0

Vol
�
V−1½τ�∩BeðxλÞ

�

VolðBeðxλÞÞ , [3]

where V−1½τ� is the set of points in CðnÞwhose Voronoi cells have
topology τ. If fλðτÞ> 0, we call τ a primary λ-type; if fλðτÞ= 0, we
call it a secondary λ-type. The Inset in Fig. 2D highlights a num-
ber of regions incident with xFCC. Some of those regions meet
xFCC at finite solid angles; therefore, their fractional volumes
within an «-ball converge to positive values as e→ 0; these are
primary FCC types. In contrast, fractional volumes tend to zero
as e→ 0 for other regions that meet xFCC at cusps; these are
secondary FCC types.
The distinction between primary and secondary types appears

to result from the manner in which topological instabilities re-
solve when perturbed. To illustrate this distinction, Fig. 3A shows
an unstable vertex shared by six Voronoi cells in FCC or HCP
crystals; such vertices are marked by red circles in Figs. 2 B and C.
Fig. 3B depicts the most common manner in which such an un-
stable vertex resolves upon small perturbations of neighboring
particles (15). In this resolution, a new four-sided face is formed
between two nonadjacent Voronoi cells; all unstable vertices re-
solve in this manner in primary types. A less common resolution
can also occur as a result of cooperative motion of neighboring
particles. In this resolution, depicted in Fig. 3C, two triangular faces
are created (11); secondary types can include such resolutions.
Determining F λ is feasible through consideration of all pos-

sible ways in which unstable vertices can resolve. For example,
the ideal FCC Voronoi cell, illustrated in Fig. 2B, has six unstable
vertices. In primary types, each such vertex resolves in a manner
illustrated in Fig. 3B, in one of three directions. More specifically,
the unstable vertex can transform in such a way that the central
cell gains a square face, or else gains an edge in one of two di-
rections. We consider all possible combinations of these resolu-
tions over the six unstable vertices, and calculate the topological
types of the resulting polyhedra using the algorithm developed in
ref. 13; a total of 44 distinct topological types occur in this manner.
In secondary types, unstable vertices can also resolve in the
manner illustrated in Fig. 3C, or else remain unstable. An addi-
tional 6,250 topological types can occur in this manner. A similar
approach can be followed to determine F λ for other structures.
Additional details can be found in Supporting Information.

A B C

Fig. 3. (A) An unstable vertex shared by six Voronoi cells in FCC or HCP
crystals; such vertices are marked by red circles in Fig. 2 B and C. A small
perturbation will cause the vertex to resolve into either (B) a four-sided face
or (C) a pair of adjacent triangular faces; these resolutions are associated
with primary and secondary types, respectively.

A B C

Fig. 4. Frequencies of all λ-types and all non-λ-types that appear in the single-crystal (A) BCC tungsten, (B) FCC copper, and (C) HCP magnesium as a function
of temperature upon heating from T = 0 to 150% of the bulk melting temperature. Blue curves indicate primary λ-types, pink curves indicate secondary
λ-types, and gray curves indicate non-λ-types. Thick curves indicate the sum of all frequencies of the corresponding color; note that there is only one primary
λ-type and no secondary λ-types for BCC.
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Finite-Temperature Crystals
The proposed distinction between primary and secondary types is
supported by atomistic simulation. We studied the atomic struc-
ture of three model materials, BCC tungsten (16), FCC copper
(17), and HCP magnesium (18), at elevated temperatures using
molecular dynamics (MD) a canonical ensemble (NPT) (19). Sim-
ulated systems contained 1,024,000, 1,372,000, and 1,029,600
atoms, respectively, in periodic supercells. In each simulation, a
defect-free crystal was heated from T = 0 in increments of 50 K
and equilibrated for 50 ps at each temperature. Fig. 4 shows how
the distribution of topological types changes with temperature;
each curve indicates the frequency of a single topological type.
Types can be grouped according to the shape of their frequency

curves. Frequencies of one group of types approach finite values
as T→ 0, and change very little with temperature (blue curves in
Fig. 4). Frequencies of a second group rapidly approach zero as
T→ 0 (pink curves). Types of a third group only appear at high
temperatures (gray curves). Remarkably, these groups correspond
exactly to the sets of primary λ-types, secondary λ-types, and non-
λ-types for each system, as enumerated using the analysis of in-

stabilities, described above. The theory of λ-types is thus consis-
tent with observed results and suggests an approach for analyzing
thermal effects.
One noteworthy feature of Fig. 4 is the similarity between

FCC and HCP, in contrast to BCC. These general behaviors
appear to depend primarily on the crystal structure rather than
on bonding particulars. Indeed, preliminary investigations show
that when atoms in BCC, FCC, and HCP crystals are perturbed
from their equilibrium positions with a Gaussian noise whose
magnitude scales with temperature [i.e., an Einstein model (20)],
the distribution of topological types changes in a manner similar
to that observed in Fig. 4.
A second notable feature is the total frequency of λ-types in

the liquid phases of the three systems. In liquid tungsten, the
unique BCC type accounts for less than 0.05% of all atoms just
above Tm, where Tm is the bulk melting temperature. In contrast,
liquid copper consists of roughly 20% FCC types, and liquid
magnesium consists of roughly 30% HCP types, just above Tm.
These structural data are relevant in studying physical processes
such as crystallization (21) and melting (22).
A third feature that stands out is the high fraction of λ-types in

the FCC and HCP samples at temperatures just below melting.
In FCC, 94% of all atoms are classified as having FCC local
structure just below melting; in HCP, this number is 96%. At
0.85 Tm, these numbers are over 99% in both systems. This
suggests a natural use of λ-types for identifying structure in highly
perturbed atomistic systems, such as those at high temperatures.
We next consider several applications of the proposed approach

to illustrate some of its unique features.

Defect Visualization
As noted, the high frequencies of λ-types in single crystals, even
at extremely high temperatures, suggest their use for visualiza-
tion of local structure in atomic systems. Fig. 5 shows thin cross-
sections from an FCC aluminum polycrystal prepared using MD

Fig. 5. Polycrystalline aluminum at 938 K (0.9Tm); the width of each cross-
section is 2 nm. Atoms that are FCC types are not shown for clarity. Of the ones
remaining, those that are HCP types are shown in gold, and all other atoms are
shown in dark blue. Grain boundaries are seen as a network of non-FCC types
(dark blue and gold atoms). In cross-section A, defects are labeled as follows:
vacancies, A; twin boundary, B; and stacking fault, C. Cross-sections B and C
show magnified images of a dislocation and stacking fault. (A) Polycrystal
cross-section. (B) Dislocation. (C) Stacking fault.

Fig. 6. Cross-section of an SFT in copper at 85% of its melting temperature,
colored using several popular visualization approaches, and the proposed
one. In B and C, dark blue, yellow, and red indicate atoms in FCC, HCP, and
other local environments, respectively. In D, dark blue, yellow, and red in-
dicate atoms that are FCC types, HCP but not FCC types, and all other types,
respectively. (A) CS. (B) Bond angle analysis. (C) Adaptive common-neighbor
analysis (CNA). (D) Voronoi topology.
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(23). The sample was obtained by annealing a microstructure
obtained through simulated grain growth (24), plastically deform-
ing it at low temperature, and then thermalizing it at 0.9Tm. In
these figures, atoms that are FCC types are not shown for clarity;
among the remaining atoms, those that are HCP types are shown
in gold, and all other atoms are shown in dark blue.
In Fig. 5A, grain boundaries can be identified as a network of

non-FCC-type atoms. Vacancies (region A) can be identified within
the grain interiors as small clusters of non-FCC-types; as only a thin
cross-section of the material is shown, not all atoms adjacent to
these defects appear in the figure. A twin boundary (region B) and
stacking fault (region C) can be identified as one and two layers of
gold-colored (HCP, non-FCC type) atoms, respectively. Fig. 5 B
and C shows magnified images of a dislocation and a stacking fault
inclined at a low angle relative to the cross-section plane.
As noted earlier, individual Voronoi topologies can belong to

multiple families; we use the term “indeterminate type” to refer
to such cases. This indeterminacy complicates the visualization
procedure suggested here, as many types in FHCP also belong to
FFCC. For this reason, some atoms that belong to the twin
boundaries and stacking faults are not seen in Fig. 5 A and C.
This shortcoming can be easily addressed within the topological
framework, and is discussed in Supporting Information.
The utility of the proposed topological framework for local

structure classification and identification is useful for finite-
temperature simulations of atomic systems containing defects.
Of particular interest are the many phenomena that are only of
interest at high temperature, such as dislocation climb (25), in-
terface thermal fluctuation (26), and defect kinetics under ir-
radiation conditions (27). Conventional visualization methods

require quenching or temporally averaging a sample before crystal
defect analysis (2). In general, we do not know whether this
“tampering” with the data leads to significant discrepancies be-
tween the observed structures and the actual finite-temperature
ones. Remarkably, the proposed approach identifies all defects in
Fig. 5 and does not erroneously identify any bulk atoms as being
adjacent to defects, all at very high temperature and without
quenching or time averaging. The topological approach thus pro-
vides a natural method for identifying and visualizing local struc-
ture that involves no ad hoc cutoff parameters and is robust at high
temperatures. This opens a new opportunity for in situ structure
analysis of atomic simulations at temperature, potentially identi-
fying new high-temperature mechanisms and defect structures.

Comparison with Other Methods
Although a complete survey of existing methods for analyzing
structure in high-temperature atomic systems is beyond the scope
of this introductory paper, we briefly consider how visualization
using λ-types compares with three of the most frequently used
order parameters: centrosymmetry (CS) (28), bond angle analysis
(29), and adaptive common neighbor analysis (2, 30).
As a concrete example, we consider a stacking fault tetrahedron

(SFT) (31) in a high-temperature FCC aluminum single crystal.
An SFT is a 3D defect consisting of four stacking faults that form
the faces of a tetrahedron. The interior of an SFT is an FCC
crystal; its edges are stair rod dislocations (25). Fig. 6 illustrates a
cross-section through the center of an SFT and parallel to one of
its four faces; the intersection of the SFT boundary with the
viewing plane is an equilateral triangle. This perfect SFT was
constructed in FCC copper and then thermalized at 0.85 Tm. CS,
bond angle, and adaptive common neighbor analyses were all
performed using the OVITO software package (32).
Fig. 6A shows atoms colored using the CS order parameter. In

this coloring, atoms belonging to faces of the SFT have higher CS
values than those in the FCC environment, as expected. Note,
however, that many atoms inside and outside the SFT also have
high CS values. Such atomic environments do not, however, in-
dicate crystal defects but rather result from thermal fluctuations
that locally distort the atomic environment. The inability of the CS
order parameter to distinguish structural defects from thermal
perturbations requires users to quench a system before analyzing it.
Fig. 6 B and C shows atoms colored using bond angle analysis

and adaptive common neighbor analysis, respectively, also at
0.85 Tm. In these images, many atoms belonging to the SFT faces
are classified as having HCP local structure, as expected.

Fig. 7. (A−C) Three structurally distinct stable phases of the Σ5 [001] (310)
symmetric tilt boundary in BCC tungsten, arbitrarily labeled phase I (A), phase
II (B), and phase III (C). Atoms are colored according to topological type, each
assigned a unique color; BCC-type atoms are not shown for clarity. (D) An
image from a large simulation of the same boundary, initially constructed
uniformly of the phase I structure, and into which self-interstitial atoms have
been randomly placed at a constant rate at 1,500 K. Atoms are colored by
topological type, as shown in A−C; BCC-type atoms are not shown for clarity;
all other atoms are shown in gray.

Fig. 8. The fraction of the Σ5 [001] (310) symmetric tilt boundary in BCC
tungsten occupied by its structurally distinct, stable phases during the in-
sertion of self-interstitial atoms at a fixed rate.
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However, both methods identify many atoms away from the
stacking faults as structural defects, despite the absence of other
defects in the crystal. Moreover, application of bond angle
analysis incorrectly identifies many atoms in the bulk as having
HCP local structure. Although the general shape of the SFT can
be discerned in Fig. 6 B and C, the details are ambiguous, and
automated location of the SFT in an atomic ensemble is difficult
or impossible at the simulation temperature.
These results are in contrast with the picture produced using

Voronoi topology, illustrated in Fig. 6D. The approach taken here
provides the clearest representation of the SFT. In this case, every
atom characterized as being in an HCP environment is on an SFT
face, without exception, despite the high temperature and the
strain fields of the constituent partial dislocations. Moreover, all
atoms not at the surface of the SFT are correctly identified as being
FCC type. Finally, atoms lying at the corners of the triangular
cross-section through the SFT triangle are identified as neither
stacking faults (HCP type) nor bulk type but as having a distinct
local structure; these are the dislocation cores. The sole weakness
of this visualization procedure results from indeterminate types
that belong to both FFCC and FHCP and whose neighborhoods are
identified as FCC rather than HCP. This limitation can be
addressed and is discussed in Supporting Information.
This topological approach to structure visualization can also

be applied to low-temperature systems such as those obtained
through quenching (inherent structures); an example can be
found in Supporting Information.

Grain Boundary Characterization and Analysis
The proposed framework also enables the analysis of structurally
complex systems in an automated manner. To illustrate this ca-
pability, we analyze how a particular grain boundary transforms
between a series of distinct structures as a result of absorbing point
defects, as it may, for example, under irradiation conditions.
In particular, we consider a Σ5 [001] (310) symmetric tilt bound-

ary in a BCC tungsten bicrystal. This grain boundary exhibits three
structurally distinct, stable phases. We begin by characterizing these
phases using the Voronoi topologies of the constituent atoms; these
phases are illustrated in Fig. 7 A−C. Atoms are colored according to
their topological type; BCC-type atoms are not shown for clarity.
Phase I consists of three distinct topological types, colored in dif-
ferent shades of blue; phase II consists of two distinct topological
types, colored in shades of green; and phase III consists of six to-
pological types, colored in shades of red, orange, and yellow.
We initialize the simulation by constructing a large bicrystal

containing a Σ5 [001] (310) symmetric tilt boundary at 0 K and
uniformly of the phase I structure. The sample is then heated to
1,500 K, and equilibrated at this temperature for 4 ns. Self-interstitial
atoms are then inserted into random locations in the boundary plane
at a rate of 1.62 atoms per square nanometer per nanosecond. We
analyze the resulting grain boundary structure throughout the MD
simulation using Voronoi topology. Fig. 7D shows a grain boundary
with distinct domains of all three grain boundary phases, suggesting a
phase transition driven by absorption of self-interstitial atoms.
To study the transformation of the grain boundary structure, we

track the fraction of each phase present during the evolution. We
begin by counting the number of atoms in the sample with topo-
logical types associated with each of the three phases. We next
calculate the number of non-BCC-type atoms per square nanometer
in each of the three phases. Finally, we normalize the λ-type counts
for the three phases by dividing by the number of λ-types per unit
area and the total grain boundary area.
Fig. 8 shows the fraction of the three phases over time, starting

when the first self-interstitial atom is added to the grain
boundary. During the initial 100 ps, there is a sharp decrease in
phase I, accompanied by a rapid growth of phase III. After ∼300 ps,
the grain boundary structure settles into a pattern of increasing and
decreasing phase I, phase II, and phase III fractions, all with the

same period. The minimum in the phase III fraction corresponds to
the maximum in the phase I fraction, and the maximum in the
phase II fraction corresponds to minima in the phase I and III
fractions. The period is commensurate with the time required to
add a full (310) plane of atoms to the sample. At this temperature,
the equilibrium grain boundary structure is dominated by phase III,
phase I (the equilibrium structure at 0 K) never completely disap-
pears, and phase II is present only in a very small fraction of the
grain boundary.
This example illustrates the power of the topological approach

for automating structure analysis in systems with complex defect
structures and for determining defect statistics. We defer a more
complete analysis of this example to a future study of grain
boundary structure evolution during irradiation.

Disordered Structures
Finally, we consider how the proposed approach can be used to
characterize disordered systems such as liquids and glasses. In
contrast to conventional order parameters—which are typically
useful for studying either ordered or disordered systems, but
not both—the approach taken here can be applied effectively to
all kinds of systems. As the topological type of each Voronoi
cell provides a robust structural description of the local
neighborhood of a particle, the distribution of topological types
in a system can be interpreted as a statistical−topological de-
scription of the system as a whole. This ability to characterize
both ordered and disordered systems within the same frame-
work is of particular importance for studying phase transitions
between ordered and disordered phases, as well as between
distinct disordered phases.
Using MD, we simulate two disordered systems of copper

atoms: a high-temperature liquid (HTL) equilibrated at roughly
1.85Tm, and a glass-forming liquid (GFL) obtained by under-
cooling the initial liquid to roughly 0.75Tm; each system con-
tained 1,372,000 atoms. The distributions of topological types in
the two systems enable us to describe structural features of the
systems in a robust and quantitative manner, and to observe struc-
tural differences between them.
Bars in Fig. 9 show frequencies of the 50 most common to-

pological types in the HTL, and corresponding frequencies in the
GFL. The most common types in the HTL do not occur nearly as
frequently as the most common types in the GFL. In particular,
the sum of frequencies of the 5 most common topological types
in the GFL is greater than the sum of frequencies of the 50 most

Fig. 9. Frequencies of the 25 most common topological types in liquid copper
at 1.85Tm, and corresponding frequencies in the GFL copper at 0.75Tm; circles
indicate frequencies in quenched samples.
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common types in the HTL. In this sense, the GFL is substantially
more ordered than the HTL. Note that in an ideal gas, in which
there is no interaction between particles, the distribution of types is
considerably less concentrated than in either of these systems (33).
Circles in Fig. 9 indicate corresponding frequencies in systems

obtained by quenching these two systems. When quenched, fre-
quencies of these common types change only modestly. This
again indicates that the current method is relatively insensitive to
thermal vibrations.
Other means of quantifying disorder in atomic systems have

been widely developed, and have been used to distinguish dis-
tinct types of disordered systems. Structural correlation functions
(1) and configurational entropy (34–36) are both nonlocal de-
scriptors that have been used to study disordered systems. Other
recent work has focused on local structural measures (5, 10); our
approach is in this vein.

Conclusions and Discussion
We have introduced a mathematical approach toward classifying
and identifying local structure of a particle within a system of par-
ticles. Applications highlight its utility in analyzing atomistic data
sets, such as those produced by molecular dynamic simulations. In
particular, the theory of λ-types enables identification and visualiza-
tion of defects in ordered systems at high temperatures. This capa-
bility can play an important role for in situ study of high-temperature
mechanisms currently inaccessible to current structure identification
methods. The proposed framework also enables a new approach for
characterizing and identifying defects. This in turn allows for an au-
tomated approach for studying systems in which structural features
evolve. Finally, Voronoi topology enables the characterization of
disordered systems in a statistical manner, through the distri-
bution of topological types. We have illustrated the potential of
this approach in distinguishing an HTL from a GFL.
Any description of structure within a fixed distance of a particle

will be unable to capture all long-range structural features of
a system. Fig. 5 provides clear examples of this limitation, where
an atom with HCP local environment might be part of a twin
boundary, stacking fault, or other defect; further analysis is re-
quired to distinguish between these. The analysis of local struc-

ture introduced here can be integrated into tools such as those
developed in ref. 37 to automate long-range structural analysis.
The authors have developed software to automate this anal-

ysis, and it is available upon request.

Materials and Methods
Deciding whether two Voronoi cells have the same topological type is
equivalent to deciding whether two planar graphs are identical, as the edge
boundary of every Voronoi cell is a planar graph. For each particle in a system,
we compute a “code” that records the graph structure of the edge boundary
network of its Voronoi cell. To do this, we first determine the Voronoi cell
using the Voro++ software package (38), which computes a list of faces, each
represented as an ordered sequence of vertices. Next, we use a graph-tracing
algorithm to compute a code for this planar graph. More specifically, the
following algorithm of Weinberg (14) is followed: (a) An initial vertex is
chosen and assigned the label 1. (b) An edge adjacent to that vertex is chosen,
and travel begins along that edge. (c) If an unlabeled vertex is reached, it is
labeled with the next unused integer and we “turn right” and continue. (d) If
a labeled vertex is reached after traveling along an untraversed edge, we
return to the last vertex along the same edge but in the opposite direction.
(e) If a labeled vertex is reached after traveling along an edge previously
traversed in the opposite direction, we “turn right” and continue; if that
right-turn edge has also been traversed in that direction, we turn along the
next right-turn edge available; if all outgoing edges have been traversed,
we stop. At this point, each edge in the graph has been traversed once in
each direction; the ordered list of the vertices visited is called a code.

Codes are constructed for each choice of initial vertex and edge, and for each of
two spatial orientations; all labels are cleared before producing each code. For a
Voronoi cell with e edges, 4e codes are generated, each an ordered list of 2e
integer labels. Each code completelydescribes theVoronoi cell topology, and so it is
sufficient to only record one of them. A code for a typical Voronoi cell requires less
than 100 bytes of storage. Additional details can be found in refs. 12, 14, and 39.

The use of Voronoi topology for structure identification is computationally
efficient. In preliminary tests, the Voronoi topology of 1 millions atoms could
be calculated on a desktop computer in less than 1 min. By contrast, con-
ventional approaches used in high-temperature structure analysis require that
systems be quenched before visualization. A complete quench necessary to
obtain the inherent structure can require several hours of computation for a
system of comparable size.
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