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Abstract The emerging trends in the combinatorial chemistry and drug design have led to the
development of drug candidates with greater lipophilicity, high molecular weight and poor water
solubility. Majority of the failures in new drug development have been attributed to poor water solubility
of the drug. Issues associated with poor solubility can lead to low bioavailability resulting in suboptimal
drug delivery. About 40% of drugs with market approval and nearly 90% of molecules in the discovery
pipeline are poorly water-soluble. With the advent of various insoluble drug delivery technologies, the
challenge to formulate poorly water soluble drugs could be achieved. Numerous drugs associated with
poor solubility and low bioavailabilities have been formulated into successful drug products. Several
marketed drugs were reformulated to improve efficacy, safety and patient compliance. In order to gain
marketing exclusivity and patent protection for such products, revitalization of poorly soluble drugs using
insoluble drug delivery technologies have been successfully adopted by many pharmaceutical companies.
This review covers the recent advances in the field of insoluble drug delivery and business prospects.
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1. Introduction

The search for innovative medicines in disease management without
compromising on safety and efficacy is a challenge. In spite of
significant success in the discovery of new drugs, there are still unmet
medical conditions which need effective therapy. Market potential,
competition among companies, dry pipeline of developmental candi-
dates of various companies have hastened the drug discovery and
development process. As a result, a significant number of drugs getting
approvals have poor biopharmaceutical properties. An estimated 40%
of approved drugs and nearly 90% of the developmental pipeline drugs
consist of poorly soluble molecules1. Several marketed drugs suffer
from poor solubility, low permeability, rapid metabolism and elimina-
tion from the body along with poor safety and tolerability2.

Recent studies have revealed that discovery and development of
new drugs alone are not sufficient to achieve therapeutic excellence
and capture market economies3. Therefore, modified formulations of
existing drugs are gaining more importance. The improved for-
mulation of existing drugs is turning out to be lucrative business for
pharmaceutical industry which is facing innovation deficit these
days for new molecules4. New dosage form, change of forms of
drugs (ester/salt), prodrug/active metabolite of drug, different routes
of administration are few changes that pharmaceutical companies
are exploring for 505(b)(2) fillings5. Significant number of insoluble
drugs in the market provides profitable strategies for pharmaceutical
companies to file NDA under 505(b)(2) with improved formulations
providing faster dissolution and enhanced bioavailability. Hence this
review summarizes various solubilization technologies. The recent
advances, clinical benefits and business potentials of these technol-
ogies are discussed in detail. The potential benefits of insoluble drug
delivery technologies are depicted in Fig. 1.
2. Insoluble drug delivery technologies

2.1. pH modification and salt forms

Nearly 70% of drugs are reported to be ionizable, of which a
majority are weakly basic. A pH-dependent solubility is exhibited
by ionizable drugs, wherein weakly acidic drugs are more soluble
Figure 1 Benefits of insoluble drug delivery strategies.
at pH4pKa (ionization constant) and weakly basic drugs are
soluble at pHopKa6. This pH dependent solubility was explored
extensively to formulate insoluble drugs. On the other hand, salt
formation of weakly acidic or basic drugs provided alternate
strategies for formulation of drugs which have pH dependent
solubility. Pharmaceutically acceptable counter ions in the salt can
provide favorable pH conditions upon dissolution in water, and
thus the pH of resulting solution would be close to maximum pH
of drugs. Hence salt forms may sometimes avoid pH adjustments
necessary for solubilization of drugs. In addition, salt formation
has been reported to improve crystallinity, stability and pharma-
ceutical processibility of drugs6.

There are many insoluble drugs on the market which are
formulated with pH modification technology. Ciprofloxacin is a
classic drug which is weakly basic and practically insoluble in
water at neutral pH. However it exhibits pH-dependent solubility
with higher solubility at acidic condition. Most of the intravenous
formulations contain lactic acid as pH modifier to improve
solubility7. Intravenous ciprofloxacin infusions are essential for
treating different kinds of severe bacterial infections. Telmisartan
is another drug which exhibits pH-dependent solubility. The
currently marketed oral formulation of telmisartan contain alkalis,
such as sodium hydroxide and meglumine for pH modification7–10.
Telmisartan formulation marketed under brand name Micardiss is
manufactured using a expensive spray-drying process, wherein
drug and alkalis along with other excipients are dissolved in water
and spray-dried to produce granules11. The spray-dried granules
obtained were reported to have a pH-independent dissolution
profile. However, generic versions of the telmisartan formulation
are hard to come by, owing to the insoluble nature of the drug's
free-acid-form and the critical steps involved in its manufacturing
process that provided an additional market capitalization to the
innovator12.

Repaglinide is an example of Zwitterion drug with poor water
solubility of 37 mg/mL13. Currently repaglinide, marketed as
Prandins in USA, is formulated with meglumine as pH modifier.
Various patents disclose the use of meglumine in the formulation
and spray-drying as the process for preparing the granules14–17.
Tricky process and critical formulation sometimes prove to be hard
to make generic copies. In case of both telmisartan and repagli-
nide, actual salt forms of drugs are not used in the formulation,
instead the bases such as meglumine and sodium hydroxide were
added to the formulation. This could be due to technical reasons,
such as lack of crystallinity, poor stability and deliquescent nature
of resulting salts. On other hand, including bases in the formula-
tion could be due to commercial reasons, in order to build
complexity in the process and product, such that it is hard to
make generic versions. These are a few examples of how a
clinically and commercially beneficial drug product could be
launched in the market by altering the formulation strategies.

Aspirin is century old non-steroidal anti-inflammatory drug
(NSAID), yet currently explored by various companies for
commercial benefits. Soluble formulations of aspirin are currently
available on the market. Aspro Clear, is soluble, effervescent tablet
containing aspirin. The effervescence and favorable pH condition
required for solubility of aspirin are facilitated by incorporating
sodium bicarbonate and citric acid in the formulation. Aspro Clear
reported to provide faster relief of pain than plain aspirin tablets18.
This is another example, how insoluble drug formulation technol-
ogy can be explored for commercial and clinical benefits.

Insoluble drugs are mostly formulated using the salt forms of
weakly acid and basic drugs. Various salt forms of drugs have
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been the area of interest for pharmaceutical companies for
commercial and clinical benefits. In the following section, few
examples of such inventions are discussed. Identification of
bisulfate salt form of atazenavir is an interesting example of
how salt screening could help a molecule to progress from being
dropped at preclinical development to clinical studies and finally to
marketing approval. Atazenavir as free base is practically insoluble
in water (o1 mg/mL) and had poor oral bioavailability in
preclinical animal models19. Lack of sufficient absorption was
reported to be a hurdle in the development of this molecule. In an
effort to identify viable option to improve the bioavailability,
series of salts were screened and finally atazenavir bisulfate was
selected for further development19,20. Atazenavir bisulfate exhib-
ited distinct advantage over other salts such as methane sulfonate
and hydrochloride in terms of solubility and solid state stability.
Hydrochloride and methane sulfonate salts of atazenavir, when
dissolved in water beyond saturation solubility of salts, there was
solid state transformation leading to dissociation of salt to free
base at pH4pHmax. Analysis of excess of solid in the suspension
revealed that material was indeed free base. Under similar
experimental conditions bisulfate was found to be stable and did
not convert to free base, and rather excess of solid was found to be
in hydrated sulfate salt20. Therefore, the absolute bioavailability of
bisulfate was multifold-higher than the free base. This invention
not only lead to superior protease inhibitor on the market but
provided additional patent protection and marketing exclusivity to
inventor company.

One of largest-selling anticancer drugs imatinib is marketed as a
salt form, imatinib mesylate. The drug exhibits poor solubility and
hence mesylate salt was used for its development, which is soluble in
water at pHo5.521,22. Among the two polymorphic forms (α and β),
generated by imatinib salt, the β form is more stable with acceptable
pharmaceutical properties. However, additional marketing rights were
assigned to the innovator due to their patent protection of the β
form23. Many old drugs have been reformulated as salt forms for
commercial purposes. One such example is fenofibrate, which was
approved in 1993 and was included in generic competition from the
year 200024. Since then, Abbott laboratories24 continued filing NDA's
altering the dose in order to gain market exclusivity. Interestingly, the
active form of all fenofibrate formulations was found to be fenofibric
acid, an active metabolite of fenofibrate which was responsible for the
therapeutic activity. This fact was well explored by Abbot and
developed cholin-fenofibrate, a soluble and light-stable salt of
fenofibric acid25. This salt form was developed into a delayed
release capsule formulation and was approved by the FDA. This
delayed release formulation was proved to be one of blockbuster
product in the recent time. In the times of innovation drought,
such inventions are becoming huge commercial success thus
improving overall investment drive in pharmaceutical research and
development.

The use of aspirin for clinical management of migraine was tested
recently. The soluble aspirin-D,L-lysine salt was formulated for
intravenous injection (IV). The clinical studies revealed that intrave-
nous administration of aspirin was effective in relieving migraine
attack. Although sumatriptan was slightly more effective than aspirin
IV in headache relief, aspirin was well tolerated26,27. Hence the new
salt form of aspirin demonstrated safe, effective and affordable
alternative therapy for the treatment of migraine. Similarly aspirin-
calcium was utilized in the formulation of soluble tablet (Solorpins).
The formulation showed faster onset of action compared to the tablet
with plain aspirin28. Improved clinical benefits, as well as commercial
profits, were accomplished with these salt forms.
Clopidogrel is an anti-platelet agent that works through
irreversible binding of its active metabolite to the P2Y12 subtype
of adenosine diphosphate (ADP) chemoreceptors on platelets cell
membrane. Initially, it was available as Plavixs, consisting of the
salt form, clopidogrel bisulfate. However, other salt forms like
clopidogrel besilate and clopidogrel hydrochloride were approved
in Europe. In this case salt forms are explored by generic maker
for market exclusivity29. Recently FDA approved Advils, a
sodium salt of ibuprofen. This product is superior in terms of its
rapid onset of action as compared to Advil Liqui-Gels capsules
containing ibuprofen30. Apart from enabling faster pain-relief to
patients, this new salt form of ibuprofen provided market
exclusivity of at least 3–5 years for the manufacturer.

Rosuvastatin (sparingly soluble) is available in the market as its
calcium salt. Recently generic-maker Watson pharmaceuticals, Inc.,
gained approval for its NDA containing rosuvastatin zinc under
section 505(b)(2)31, thus getting marketing exclusivity more than
typical ANDA. However, the approval is subject to a court decision
due to a legal petition filed by AstraZeneca. Pharmaceutical companies
are continuously exploring the salt forms of drugs for better clinical
performance. Sometimes it seems like reformulation is an alternative
path for the pharmaceutical companies to exploit marketing exclusivity
and captivity32. Further advancements in this technology will be more
interesting, since there would be many more NDA's drugs to be
approved with new salt forms in the future.
2.2. Co-solvency and surfactant solubilization

Formulation of insoluble drugs using co-solvents is also one of the
oldest and widely used technique, especially for liquid formulation
intended for oral and intravenous administration. Reduction of the
dielectric constant is possible by the addition of co-solvents, which
facilitates increased solubilization of non-polar drug molecules. In order
to maximize the solubility and prevent precipitation upon dilution, co-
solvents are used in conjunction with surfactants and pH modifiers33,34.

Taxol, an intravenous injection of paclitaxel, is the most
debated formulation using this approach. This was developed
using 49% of dehydrated alcohol and 527 mg of cremophore EL35,
which must be diluted before infusion. Additionally, pretreatment
of patients with antihistamines is essential owing to a hypersensi-
tivity reaction due to higher content of cremophore EL in the
formulation. Later, several formulations of paclitaxel excluding
cremophore EL were attempted and couple of them gained FDA
approval after making a smooth means of access through clinical
testing. Formulations devoid of cremophore EL included Abraxane
(albumin microspheres containing Paclitaxel) and Genexol (PEG-
PLA polymeric micelles with Paclitaxel)36,37.

Similarly, docetaxel is another widely used anticancer drug and
the original formulations of taxotere contains ethanol and Tween
80 to solubilize the drug (0.54 g polysorbate 80 and 0.395 g
dehydrated alcohol)38. However, hypersensitivity reactions using
this product were reported due to the surfactants in the formula-
tion. Sandoz, Inc., Hospira Inc. and Apotex Inc. each has
docetaxel containing a new drug product approved under section
505(b)(2)39–41. Most of the new formulations have PEG 300 as
additional cosolvent and Tween 80 content significantly less than
taxotere. These new formulations were claimed to be safer and
stable than taxotere. Insoluble drug delivery technology utilizing
the co-solvent-surfactant approach had indeed proved vital in
providing an effective treatment option for cancer patients. Further
improvement in the formulation of taxol's resulted in more patient



Table 1 List of parenteral drug formulations containing co-solvents and surfactants.

Solvent Percentage in marketed formulation
(%)

Percentage administered
(%)

Route of
administration

Example

Cremophor EL 11–65 r10 IV infusion Paclitaxel
Cremophor RH 60 20 r0.08 IV infusion Tacrolimus
Dimethylacetamide
(DMA)

6 r3 IV infusion Teniposide

Ethanol 5–80 r6 SC Dihydroergotamine
Glycerin 15–32 r15 IM, SC, IV Dihydroergotamine
N-methyl-2-pyrrolidone 100 100 Subgingival Doxycyclin
PEG 300 r60 r50 IM, IV bolus Methocarbamil
PEG 400 18–67 r18 IM Lorazepam
Polysorbate 80 0.075–100 r4 IM Chlordiazepoxide
Propylene glycol 10–80 r80 IM Lorazepam
Solutol HS-15 50 50 IV Propanidid

IM: intramuscular; IV: intravenous; PEG: polyethylene glycol; SC: subcutaneous.
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compliance and new intellectual properties for pharmaceutical
companies. A list of pharmaceutical formulations containing the
highest amounts of co-solvents and surfactants are provided in
Table 1 42. Though co-solvency and surfactant solubilization
techniques are widely used for enhancing the solubility of
hydrophobic drugs, they have some disadvantages: tolerability of
formulations with high levels of synthetic surfactants may be poor
in cases where long term chronic administration is intended;
uncontrolled precipitation may occur upon dilution with aqueous
media or physiological fluids. Precipitates may be amorphous or
crystalline and can vary in size; precipitation of drug from a co-
solvent mixture may result in embolism and local adverse effects
at the injection site; concomitant solubilization of other ingredients
such as preservatives may lead to consequent alteration in stability
and effectiveness of the drug product.
2.3. Amorphous forms, solid dispersions and cocrystals

Stable crystal forms of drugs pose problem in solubilization due to
high lattice energy. Thus, disordered amorphous forms offer distinct
advantage over crystal forms with regards to solubility. Hence,
changing the solid state characteristics of active pharmaceutical
ingredient (API) renders the molecule more water soluble. But,
excess of enthalpy, entropy and free energies of amorphous forms
makes them prone to crystallization, leading to the formation of stable
crystals43. However, the advent of new techniques to improve
stability of amorphous forms improved chances of their use in
pharmaceutical formulations44. Complicated process of making
amorphous drug systems and various factors affecting the stability
of those forms resulted in reduced generic competition for already
approved amorphous products. Cefuroxime axetil practically was
insoluble in water and introduced as Ceftins by GSK in amorphous
form and was protected by a couple of patents, which barred the entry
of generic players for a reasonable period45,46. Another drug product,
the amorphous zafirlukast is available commercially as Accolates.
The amorphous form is subject to various patents which precluded
early generic entry47,48. Amorphous forms of other drugs like
nelfinavir mesylate, quinapril hydrochloride and rosuvastatin calcium
are also commercially available in the market.

Solid dispersion technology was extensively explored in recent
decades for the delivery of insoluble drugs. Physically, solid
dispersions are eutectic mixtures or solid solutions in which drugs
exist either in an amorphous form dispersed in the carrier or as a
molecular dispersion in the carrier49–51. Solid dispersions favor
enhanced dissolution of drugs due to the formation of a high-
energy amorphous form or increased solubility leading to super-
saturation. The increased solubility can be attributed to the dispersion
of drugs at the molecular level and/or solubilization effects of the
polymer. The drug remains in a metastable form for considerable time
in the supersaturated state and polymeric carrier in turn can stabilize
the metastable state by preventing nucleation51. Advances in melt-
extrusion and spray-drying have accelerated industrial applications of
solid dispersions for the delivery of insoluble drugs.

Sporanoxs is a classic example of a drug (itraconazole)
formulated using solid dispersion technology. At neutral pH
itraconazole has a negligible solubility of 1 ng/mL52. For preparing
solid dispersions of itraconazole, spray-layering technology was
used in which an organic solution of drug and hydroxylpropyl
methylcellulose (HPMC) was sprayed over sugar beads to form a
thin film consisting of molecularly dispersed drug and polymer.
This amorphous formulation significantly enhanced bioavailability
compared to crystalline itraconazole. Apart from spray layering,
itraconazole solid dispersions were also prepared using hot-melt
extrusion with varying polymers such as HPMC, Eudragit and
polyvinyl pyrrolidone (PVP) mixture. In vitro studies revealed a
faster dissolution of solid dispersions containing Eudragit in
comparison to HPMC and sporanox52. In contrast, clinical studies
revealed a similarity between solid dispersions containing HPMC
and sporanox, which can be attributed to the solubilization and
stabilization effects of HPMC in physiological conditions (in vivo).

A list of currently marketed solid-dispersion products is shown
in Table 2 51. All the listed products have generated clinically
beneficial results by producing adequate drug levels in the body at
desired therapeutic concentration, leading to improved bioavail-
ability. Apart from potential clinical benefits, these products have
generated considerable intellectual property and commercial suc-
cess to the manufacturer.

Pharmaceutical cocrystal technology has received greater atten-
tion in the last decade owing to its successful delivery of insoluble
drugs. Stoichiometric solids of drug and conformer (second
component), which exist as crystals at ambient temperature are
referred to as cocrystals. Non-covalent forces like acid–amide,
acid–acid, and amide–amide interactions, usually of hydrogen
bonding nature, hold the drug and conformer together in the
cocrystal. The enhanced solubility of drug in cocrystal is achieved



Table 2 List of marketed products in United States utilizing solid dispersion technology.

Drug Brand name Carrier Manufacturer Year of FDA approval

Itraconazole Sporanoxs HPMC Janssen Pharmaceuticals, Inc., USA 1992
Tacrolimus Prografs HPMC AstellasPharma, US Inc. 1994
Lopinavir/Ritonavir Kaletras PVP/VA Abbot Labarotaries, USA 2005
Nabilone Casamets PVP Meda Pharmaceuticals Inc., USA 2006
Nimodipine Nimotops PEG Bayer (Pty) Ltd., USA 2006
Fenofibrate Fenoglides PEG/Poloxamer Santarus, Inc. 2007
Etravirine Intelences HPMC Janssen Therapeutics, USA 2008
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by lower lattice energy and higher solvent affinity53. Any of the
generally regarded as safe (GRAS)-listed excipients, organic acids
(such as fumaric acid, malic acid, glutaric acid, succinic acid,
oxalic acid), nutraceuticals (such as pterostilbene, quercetin, p-
coumaric acid and saccharine) can act as a conformer. Co-crystal
technology has been explored for solubility enhancement of drugs
like itraconazole, carbamazepine, gabapentinin, modafinil, piroxi-
cam, caffeine, etc.53. The cocrystal technology have been used to
create intellectual property and large number of patents have been
filed54. However there is no approved product with drug cocrys-
tals, with enormous potential for delivery of insoluble drugs till
today, but the future of cocrystals is promising.
2.4. Polymeric micelles

Water insoluble drugs often have greater affinity for hydrophobic
solvents because of hydrophobic–hydrophobic interactions and
also have affinity for hydrophobic region of micelles. Hence
encapsulation of those drugs in micelles enables their formulation
in aqueous vehicle. Initially the hydrophilic surfactants were used
to solubilize the drug for oral and intravenous administration.
However, limited solubilization, higher critical micellear concen-
trations (CMC) and potential adverse events after intravenous
administration have limited their application. Polymeric micelles
on other hand, offer greater advantage in terms of solubilization
capacity, lower CMC and greater tolerability. Polymeric micelles
are formed using diblcok polymers such as PEG-PLA or triblock
polymers PLA-PEG-PLA. The PEG is usually the hydrophilic
component in the polymer for micelles and hydrophobic chain can
be of poly lactic acid, poly aspartic acid, polycaprolactic acid,
etc.37,55. Due to low CMC, the polymeric micelles remain stable at
low polymer concentration after dilution with body fluids. The
nano-sized nature of polymeric micelles provides opportunity for
tumor-targeting via enhanced permeation and retention effect
(EPR). The hydrophilic PEG surface makes micelles less suscep-
tible for reticulo-endothelial scavenging, and thus drugs have
longer circulation time. Polymeric micelles can also be tailored for
pH-responsive release of drugs at specific tissues and for active-
targeting using targeting ligands37.

The Genexol-PM is polymeric micelles comprising of PEG-
(D,L-lactide) polymer with paclitaxel encapsulated in the micelles.
This is the first polymeric micelle formulation approved by FDA56

and is reported to be superior in terms of safety and tolerability
compared to other marketed formulations (ethanol/Cremophore
EL). The pluronics-based polymeric micelles containing doxoru-
bicin (SP1049C) are currently in phase III clinical trial and have
been granted orphan status by FDA. Another paclitaxel polymeric
micelles (NK105) and cisplatin micelles are in phase II clinical
trials37. The polymeric micelles for delivery of insoluble drugs,
especially parenteral formulations can offer intellectual property
for companies and better treatment options for the patients in need
of those drugs37. Table 3 presents the representative list of drug-
loaded polymeric micelles products and their progress57,58.
2.5. Inclusion complexation

Cyclodextrins (CD) are the versatile excipients studied extensively
for pharmaceutical applications59. These are cyclic oligosacchar-
ides consisting of glucopyranose units that are united via 1,4-
linkage. Three major types of CDs include α, β and γ, varying with
6, 7 and 8 glucopyranose units, respectively. CDs have a
truncated-cone structure with a hydrophobic interior and a hydro-
philic exterior due to the cyclic orientation of pyranose units.
Central cavity of cyclodextrin is hydrophobic due to skeletal
carbon atoms and ethereal oxygen. Polarity of cavity is estimated
to be somewhere close to aqueous ethanolic solution59. The
hydrophobic nature of cavity enables entrapment of hydrophobic
molecules of suitable size inside the cavity and hydrophilic surface
of CD makes complex soluble in water. Apart from solubilization,
cyclodextrins are also used for drug stabilization, drug protection
from light, thermal and oxidative stress, taste masking of drugs,
and reduced dermal, ocular or gastrointestinal irritation.

The relative size of CD to the guest molecule, the presence of
key functional groups on the guest molecule, and thermodynamic
interactions between CD, guest molecule and solvent are the key
factors that enable the formation of an inclusion complex. In
addition to natural CDs, insoluble drugs are formulated using
synthetic CDs like hydroxy propyl-β-cyclodextrins, hydroxy
propyl-γ-cyclodextrins and sulfobutyl cyclodextrin (Captisols),
since the latter have higher solubility and safety profiles when
compared to the former59,60.

The use of cyclodextrins in the formulation has enabled many
product containing insoluble drugs to reach the market and
eventually helped to treat many life-threatening disease conditions.
Recently cyclodextrins are explored to reformulate existing drugs
for better clinical applications and also for revenue generation via
NDAs under section 505(b)(2). There were several cyclodextrin
containing drug products in Japan, Germany and other European
countries; however, Janssen Pharmaceuticals, Inc. was the first
company to get US FDA approval for its antifungal drug product
(sporanox oral and IV solution) containing itraconazole with 40%
of hydroxy propyl-β-cyclodextin in the year 199958. This was
proved to be huge commercial successes for Janssen Pharmaceu-
ticals, Inc. and their efforts in finding modified CD were paid off.
The introduction of spornox oral solution lead to effective
treatment of fungal throat infections and intravenous formulation
for severe systemic fungal infections. The intravenous formula-
tions of ziprazidone mesylate and voriconazole formulated with



Table 3 Representative list of drug-loaded polymeric micelles-based products.

Product Incorporated drug Status Company

Genexol PM Paclitaxel Marketed Samyang
Estrasorb Estrogen Marketed Novavax
Medicelle DACH-platin-PEG-polyglutamic acid phase I/II NanoCarrier
Flucide Anti-influenza phase I/II Nano Viricides
Basulin Insulin phase II/III Flamel Technologies
DO/NDR/02 Paclitaxel phase I/II Dabur Research Foundation
NK-911 Doxorubicin phase II Nippon Kayaku Co.
NK-105 Paclitaxel phase II/III Nippon Kayaku Co.
NK-012 SN-38 phase II Nippon Kayaku Co.
NC-6004 Cisplatin phase III Nanocarrier Co.
NC-4016 Oxaliplatin phase I/II Nanocarrier Co.
SP-1049C Doxorubicin phase II/III SupratekPharma Inc.
NC-6300 Epirubicin phase I/II Nanocarrier Co.
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sulphobutyl cyclodextrin are available in many countries including
USA. The reformulation of existing drugs using cyclodextrin has
been explored to get approval of new drug applications with
greater marketing exclusivity and patent protection. Drugs such as
aripriprazole, mitomycine, diclofenac sodium, chlodizepoxide,
meloxicam, alfaxalone, cisapride, indomethacine, insulin (nasal
spray) and omeprazole have been reformulated using cyclodextrins
for both commercial and health benefits61.

2.6. Size reduction and nanonization

Over the past two decades, nanoparticle technology has become a
well-established and proven formulation approach for poorly-soluble
drugs. Reducing a drug's particle size to sub-micron range is referred
to as ‘nanonization’. In the field of pharmaceuticals, the term
‘nanoparticle’ is applied to structures less than 1 μm in size. Higher
intracellular uptake of nanoparticles due to their sub-micron-size
range offers a distinct advantage over microparticles. Nanoparticles
offer a potential opportunity to overcome the challenges associated
with the formulation of insoluble drugs. Drug nanoparticles can be
produced by various technologies, which can be broadly categorized
into ‘bottom up’ and the ‘top down’ technologies.

In bottom-up technologies controlled precipitation of the solubi-
lized drug is achieved by adding a suitable non-solvent. Hydrosol
developed by Sandoz (presently Novartis) is an example for
nanoformulation prepared using the precipitation technique62–64.
In this process, the drug is dissolved in a solvent and this solution is
subsequently added to a non-solvent solution. This results in high
super saturation, rapid nucleation and the formation of many small
nuclei65. Upon solvent removal, the dispersion can be filtered and
lyophilized to obtain amorphous nanocrystals having a high
solubility and dissolution rate.

High-pressure homogenization and milling methods are the
alternate technologies that are frequently used for producing drug
nanoparticles. However, a combination approach, with a pre-
processing step followed by size reduction is also in application.
Supercritical fluid technology is another approach for nanosizing,
but it is industrially less successful when compared to the
aforementioned technologies.

In early 19th century, heterogeneous catalysts were first among
the reported techniques for nanosizing66,67. Preclinical studies of
danazol nanosuspension with a median diameter of 169 nm
showed enhanced oral bioavailability 82.3710.1%, when com-
pared to conventional ‘as-is’ drug suspension 5.171.9%68,69. Fine
particles of atovaquone in the range of 100–300 nm have been
successfully produced using the homogenization (microfluidiza-
tion) technique. Following oral administration, the nanoparticle
formulation enhanced the drug concentration in plasma from 15%
to 40% in comparison to micronized Wellvones, at equivalent
doses. These results reflect the potency of the nanonization
technique in terms of reducing drug load from 22.5 mg/kg (Well-
vones) to 7.5 mg/ kg, and increasing the activity 2.5-fold70.

In August 2000, the first product incorporating the NanoCrystals

technology was approved by the US FDA. Wyeth's Rapamunes

(sirolimus, an immunosuppressant) developed using similar technol-
ogy captured the market after its approval. Rapamunes was marketed
as an oral solution and stored at refrigerated condition. The oral
solution was given with orange juice prior to dosing. The develop-
ment of a NanoCrystals dispersion of sirolimus provided a drug
product with enhanced bioavailability and improved stability.

In April 2003 an antiemetic drug, Emends (aprepitant, MK
869) was approved and introduced into the market. Emend is
capsule dosage form containing 80 or 125 mg of aprepitant
formulated as drug nanoparticles. Following oral administration,
the nanosuspension was able to overcome the significant food
effect observed with the microsuspension formulation. Abraxanes

(a reformulation of paclitaxel) is a nanoparticle-based product and
was approved by FDA in 2006 for intravenous administration. It is
a novel formulation consisting of lyophilized particles with 10%
(w/w) paclitaxel and 90% (w/w) albumin71. The particle size of the
nanosuspension is about 130 nm. The maximum tolerated dose
observed from this study was higher than the commercial Taxols

formulation. Further studies confirmed that the nanoparticle
formulation eliminated the need for premedication (since the toxic
excipient Cremophor EL was not used in the formulation). Studies
from intravenous and pulmonary applications of nanoparticles
reported good tolerability and provided an alternative solution to
insoluble drug therapeutics72,73. A list of marketed products using
drug nanoparticles is summarized in Table 4 74.

Nanoparticle technology serves as a screening aid during
preclinical efficacy and safety studies of new chemical entities
(NCEs). Fabrication of existing drugs with maximal drug expo-
sure, less toxicity, expanded intellectual property by drug life cycle
management and minimized competition during the drug's life
time can be achieved through nanoparticle-based drug delivery
systems. In fact, viable formulations for poorly soluble drugs with
maximum drug exposure can be developed potentially by nano-
particle technology, which has opened the stage gates for reviving



Table 4 Overview of nanoparticle technology based marketed products.

Trade name Drug Indication Drug delivery company Innovator company

Rapamunes Rapamycin, sirolimus Immunosuppressant ElanNanosystems Wyeth
Emends Aprepitant Anti-emetic ElanNanosystems Merck & Co.
Tricors Fenofibrate Hypercholesterolemia Abbott Laboratories Abbott laboratories
Megace ESs Megestrol Anti-anorexic ElanNanosystems Par Pharmaceuticals
Triglides Fenofibrate Hypercholesterolemia IDD-P Skyepharma ScielePharma Inc. King
Avinzas Morphine sulfate Phychostimulant drug ElanNanosystems Pharmaceuticals
Focalin Dexmethyl-phenidate HCl Attention deficit hyperactivity

disorder (ADHD)
ElanNanosystems Novartis

Ritalin Methyl phenidate HCl CNS stimulant ElanNanosystems Novartis
Zanaflex Capsules Tizanidine HCl Muscle relaxant ElanNanosystems Acorda

Table 5 Key nanotechnology-based approaches for the enhancement of drug solubility and oral bioavailability.

Company Nanotechnology-based formulation approach Description and reference

American Biosciences
(Blauvelt, USA)

Nanoparticle albumin-bound technology. e.g. paclitaxel-albumin nanoparticles Paclitaxel albumin
nanoparticles76

Baxter
Pharmaceuticals
(Deerfield, USA)

Nanoedge technology: particle size reduction was achieved by homogenization,
micro-precipitation, lipid emulsion and other dispersed systems.

Nano-lipid emulsion77

BioSante
Pharmaceuticals
(Lincolnshire, USA)

Calcium phosphate based nanoparticles were produced for improved oral
bioavailability of hormones/proteins and vaccine adjuvants

Calcium phosphate
nanoparticles78

ElanPharma
International
(Dublin, Ireland)

Nanoparticles (o1 mm) were produced by Wet milling technique using
surfactants and stabilizers. The technology was applied successfully in
developing apprepitant and reformulation of Sirolimus.

Nanocrystal drug
particle79

Eurand
Pharmaceuticals
(Vandalia, USA)

Nanocrystal or amorphous drug is produced by breakdown of crystal lattice and
stabilized by using biocompatible carriers (swellablemicroparticles or
cyclodextrins)

Cyclodextrin
nanoparticle80

iMEDDInc
(Burlingame, USA)

Implantable drug delivery system using silicon membrane with nano-pores
(10–100 nm)

Stretchable silicon
nanomembrane81

pSivida Ltd.
(Watertown, USA)

The solubility and bioavailability of hydrophobic drugs was achieved by
incorporating drug particles within the nano-width pores of biocompatible
silicon membranes or fibers.

Silicon nanoparticles

PharmaSol GmbH
(Berlin, Germany)

High pressure homogenization was used to produce nanostructured lipid
particles dispersions with solid contents that provide high-loading capacity
for hydrophilic drugs

Drug encapsulated in lipid
nanoparticles69

SkyePharmaPlc,
(Piccadily, London,
UK)

Nanoparticulate systems of water insoluble drugs were produced by applying
high shear or impaction and stabilization was achieved by using
phospholipids.

A polymer stabilizing nano-
reactor with the
encapsulated drug
core69
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currently marketed products with suboptimal drug delivery,
leading to better clinical and commercial benefits. Some of the
key nanotechnology-based approaches for improving the oral
bioavailability of poorly water-soluble drugs (according to
Saffie-Siebert and co-workers75) are highlighted in Table 569,76–81.
2.7. Solid lipid nanoparticles

Solid lipid nanoparticles (SLN) are promising drug carriers with
potential applications in the delivery of poorly soluble drugs82,83.
The lipid excipients used in the SLN formulations are biocompatible
and biodegradable and most of them are physiological components that
are generally regarded as safe (GRAS). Site-specific drug delivery,
particularly for poorly soluble proteins and peptide drugs could be
achieved by exploring SLN technology84. A significant increase in
bioavailability was achieved when a poorly soluble compound,
ofloxacin was formulated as SLN85. The enhancement in drug's
bioavailability is attributed to the increase in surface area of the
particles, improved dissolution rate and enhanced concentration of
ofloxacin in gastrointestinal tract (GIT) fluids86,87. The drug in lipid
nanoparticles may adhere to the intestinal wall and thereby increases
the drug residence time in the GIT, resulting in improved
bioavailability88.

Pandita et al.89 developed an SLN formulation for a poorly soluble
compound, paclitaxel. Improved oral bioavailability as compared to
the control group was observed with the in vivo studies of SLN
formulation. Studies also revealed an improved dissolution rate of
poorly soluble drugs such as camptothecin, vinpocetine and fenofi-
brate by their successful incorporation into SLNs90,91. Controlled



Table 6 List of examples of drugs developed using solid lipid nanoparticle technology.

Drug Lipid used Biopharmaceutical application

5-Fluoro uracil Dynasan 114 and Dynasan 118 Prolonged release in simulated
colonic media

Apomorphine Glycerylmonostearate, polyethylene glycol monostearate Enhanced bioavailability in rats
Calcitonin Trimyristin Improvement of the efficacy of

proteins
Clozapine Trimyristin, Tristearin and Tripalmitin Improvement of bioavailability
Cyclosporin A Glycerylmonostearate and glycerylpalmitostearate. Controlled release
Gonadotropin release
hormone

Monostearin Prolonged release

Ibuprofen Stearic acid, Triluarin and Tripalmitin Stable formulation with low
toxicity

Idarubicin Emulsifying wax Delivery of oral proteins
Insulin Stearin acid, octadecyl alcohol, cetylpalmitate,

glycerylpalmitostearate, glyceryltripalmitate,
glycerylbehenate and glycerylmonostearate.

Potential for oral delivery of
proteins.

Lopinavir Campritol 888 ATO Bioavailability enhanced
Nimusulide Glycerylbehanate, palmitostearate, glyceryltristearate Sustained release of drug
Progesterone Monostearin, stearic acid and oleic acid Potential for oral drug delivery
Repaglinide Glycerylmonostearate and tristearin Reduced toxicity
Tetracycline Gycerylmonostearate and stearic acid Sustained release
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release of drugs in the GIT with improved bioavailability by
decreasing the variability in absorption can be achieved by these
carrier systems. Apart from these, avoidance of organic solutions,
increased drug stability in GIT and feasibility to scale-up are a few of
the potential therapeutic benefits of solid lipid nanoparticles. How-
ever, a product with SLN is yet to hit the market. A list of examples
of drugs developed using SLN technology and their biopharmaceu-
tical applications are summarized Table 6.

2.8. Liposomes and proliposomes

Liposomes are spherical closed vesicles of phospholipid bilayers with
an entrapped aqueous phase, and may consist of one or more bilayers.
Liposomes were first prepared by A.D. Bangham in the early 1960s
and demonstrated that a wide variety of molecules can be encapsulated
within aqueous spaces of liposomes or inserted into their membranes.
Liposomes have been regarded as new drug delivery systems capable
of transporting drug molecules to specific target site with enhanced
efficacy and safety92. A potential advantage of liposomes is the
encapsulation of hydrophobic as well as hydrophilic drugs, either in
the phospholipid bilayer, at the bilayer interface or in the entrapped
aqueous volume. Recent developments in liposome technology are
generating more effective strategies for improving the vesicle stability
after systemic administration93,94.

Liposomal drug delivery offer significant therapeutic benefits to
poorly soluble compounds. One such example is the formulation of
cyclosporine and paclitaxel in which surfactants and organic co-
solvents are used for systemic administration in humans. These
solubilizers may cause toxicity at the administered doses. In
comparison, liposomes are relatively non-toxic, non-immunogenic,
biocompatible and biodegradable molecules, which can encapsulate
a wide range of water-insoluble (lipophilic) compounds. Paclitaxel
liposomes were able to deliver the drug systemically and increase
the therapeutic index of paclitaxel in human ovarian tumor
models95,96. Currently, liposomes are being used as excipients for
preparing better-tolerated clinical formulations of several lipophilic,
sparingly water soluble drugs such as amphotericin B97. Developing
liposome drug delivery improved solubility of lipophilic and
amphiphilic drugs such as porphyrins, minoxidil, peptides and
anthracyclines, respectively. Furthermore, in some cases anticancer
agent such as acyclovir can be encapsulated in liposome interior at
concentrations above their aqueous solubility98. A representative list
of liposomal based drug delivery products is summarized in Table 7.

Proliposomes are dry, free flowing powders which can form
multilamellar vesicles (MLVs) upon hydration with water. Prolipo-
somes have been extensively studied as a potential carrier for oral
delivery of drugs with poor bioavailability99. It provides a novel
solution to product stability problems associated with the storage of
aqueous liposomal dispersions, wherein it produces a dry product that
can be stored for long duration and hydrated immediately before
use100. Liposomes are either formed in vivo upon contact with the
physiological fluids or prepared in vitro before administration using a
hydrating solvent. The liposomes formed upon hydration are similar to
conventional liposomes with uniform vesicle size101,102.

Indomethacin proliposomes for oral administration were
reported by Katare et al.103, in which the efficacy of the oral
formulation was studied by measuring ulcerogenic index and anti-
inflammatory activity using carrageenan-induced paw edema test
in rats. The liposomal formulation showed enhanced performance
in vivo with reference to their cytoprotective and anti-inflammatory
properties.

Greater efficacy and less toxicity were reported by encapsulat-
ing vinpocetine in proliposomes. The study showed that the oral
bioavailability of proliposomes was enhanced in New Zealand
rabbits and thereby provided a new delivery platform to enhance
the absorption of poorly soluble drugs in the GIT104. Therapeutic
benefits of proliposomes include enhanced bioavailability, protec-
tion of drugs from degradation in the GIT, reduced toxicity and
taste masking. The proliposomes can also provide target drug
delivery and controlled drug release.
2.9. Microemulsions and self-emulsifying drug delivery systems

Micro-emulsions are thermodynamically stable, isotropic mixtures
of oil, water, surfactant and a co-surfactant. In comparison to



Table 7 Representative list of liposomal based drug products.

Product Drug Company Indication target

Atragen™ Tretinoin Aronex Pharmaceuticals Inc. Acute myeloid leukemia
Amphotec Amphotericin B Sequus Pharmaceutical Inc. Fungal infections leishmaniasis
Ambisome™ Amphotericin B NeXstar Pharmaceutical Inc. Co. Serious fungal infections
Amphocil™ Amphotericin B Sequus Pharmaceutical Inc. Serious fungal infections
Abelcet™ Amphotericin B The Liposome Company, Inc. Serious fungal infections
ALEC™ Dry protein free powder of

DPPC-PG
Britannia Pharmaceuticals Ltd. Expanding lung diseases in infants

Avian retrovirus
vaccine

Killed avian retrovirus Vineland Laboratories, USA Chicken pox

DaunoXome™ Daunorubicin citrate NeXstar Pharmaceutical Inc., Co. Kaposi sarcoma in AIDS
DepoDur Morphine Pacira Pharmaceuticals Inc. Post-surgical pain reliever
DaunoXome Daunorubicin citrate Galen Ltd. Kaposi sarcoma in AIDS
Depocyt Cytarabin Pacira Pharmaceuticals Inc. Treatment of lymphomatous

meningitis
Doxil Doxorubicin SequusPharmaceutical Inc. Kaposi sarcoma in AIDS
Estrasorb estradiol Novavax Menopausal therapy
Evacet™ Doxorubicin The liposome company, USA Metastatic breast cancer
EpaxalBernas Vaccine Inactivated hepatitis-A

Virions
Swiss serum & vaccine institute,
Switzerland.

Hepatitis A

Fungizone Amphotericin B Bristol-Myers Squibb, Netherland Serious fungal infections
MiKasomes Amikacin NeXstar Pharmaceutical Inc., Co. Bacterial infection
Nyotran™ Nystatin Aronex pharmaceuticals Inc. Systemic fungal infections
Topex-Br Terbutalinesulphate Ozone Pharmaceuticals Ltd. Asthma
Ventus Prostoglandin-E1 The liposome company, Inc. Systemic inflammatory disease
VincaXome Vincristine NeXstar Pharmaceutical Inc., Co. Solid tumors

Table 8 Representative list of marketed parenteral microemulsion products.

Drug Product name Company Therapeutic area

Cyclosporine A Restasis Allergan Immunomodulation
Diazepam Diazemuls Braun Melsungen Sedation
DexamethazonePalmitate Limethason Green Cross Carticosteroid
Etomidate Etomidat Dumex (Denmark) Anesthesia
Flurbiprofen Lipfen Green Cross Analgesia
Prostaglandin-E1 Liple Green Cross Vasodilator
Propofol Propofol Baxter Anesthesia Anesthesia

Diprivan AstraZeneca Anesthesia
PerflurodecalinþPerflurotripropylamine Fluosol-DA Green Cross Analgesia
Vitamins A, D, E and K Vitalipid Kabi Nutrition
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conventional emulsions, micro-emulsions produce a clear emulsion
on mild agitation. The advantage of micro-emulsions over conven-
tional emulsion and solution formulations is that the former
produces a stable heterogeneous system. Micro-emulsion technol-
ogy is widely used to address the challenges associated with poorly
soluble compounds. Insoluble drugs can be administered through
parenteral route by formulating into micro-emulsions. The micro-
emulsions for parenteral delivery comprise lipid droplets (10%–

20%), osmotic agent and an emulsifier. Apart from these, an
antimicrobial agent is incorporated if the emulsion is packed in a
multi-dose container. Propofol injection is a classic example of
parenteral microemulsion formulation. Initially, Cremophore EL
was used for formulating propofol, and then ethanol was included
by changing the formulation. Finally, it was introduced into market
by formulating into a microemulsion with soybean oil105, having a
higher tolerable limit and safety profile. The representative list of
marketed parenteral microemulsions is summarized in Table 8.
Self-emulsifying drug delivery systems have gained importance
owing to their ability to enhance solubility and bioavailability of
insoluble drugs106. Upon dilution by the aqueous environment in the
GIT, these systems undergo rapid self-emulsification producing
nano-sized globules of high surface area resulting in enhanced rate
and extent of absorption with consistent plasma time profiles. An
example of drug product developed using self-micro-emulsifying
drug delivery system (SMEDDS) is Neorals, an oral cyclosporine
formulation which forms micro-emulsion in aqueous environment.
The drug product showed improved bioavailability from 174%–

239% as compared to cyclosporine-A, Sandimmunes107.
There are many examples and studies involving self-emulsifying

systems for improving the in vitro and in vivo performances of
poorly soluble drug candidates108. A significant enhancement in the
bioavailability was observed with vinpocetin and atorvastatin in
self-emulsifying systems as compared to their conventional tablet
formulation, indicating the criticality of surfactant concentration in



Table 9 Marketed oral products which yield an emulsion or microemulsion in the gastrointestinal tract.

Drug Product name Company Therapeutic area

Cyclosporine Sandimmune oral Novartis Immunosuppressant
Cyclosporine Neoral Novartis Immunosuppressant
Calcitrol Rocaltrol Roche Calcium regulator
Clofazimine Lamprene Geigy Leprosy
Doxercalciferol Hectoral Bone care Calcium regulator
Dronabionol Marinol Roxane Anoxeria
Dutasteride Avodart GSK Benign Prostatic Hyperplasia (BPH)
Isotretionoin Accutane Roche Acne
Ritonavir Norvir Abbott AIDS
Ritonavir/lopinavir Kaletra Abbott AIDS
Paricalcitol Zemplar Abbott Calcium regulator
Progesterone Prometrium Solvay Endometrial hyperplasia
Saquinavir Fortovase Roche AIDS
Sirolimus Rapumune Wyeth-ayerst Immunosuppressant
Tritionoin Vesanoid Roche Acne
Tipranavir Aptivus Boehringer Ingelheim AIDS
Valproic acid Depakene Abbott Epilepsy
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formulation for yielding the smaller particles with concomitant
enhancement in drug permeation and absorption109,110. The mar-
keted oral products which yield an emulsion or micro-emulsion in
the gastrointestinal tract are summarized in Table 9.
3. Conclusions

A great opportunity as well as potential challenge is foreseen from the
large number of insoluble drugs that are approved by FDA, as well as
those in the developmental pipeline. Exploring recent advances of
insoluble drug delivery technologies will help in better therapeutic
applications with improved patient compliance. On the other hand, the
insoluble drug delivery technologies are being effectively utilized
predominantly for commercial benefits through NDA route by
developing improved formulations. Therefore, further advancement in
the insoluble drug delivery technologies and their exploration for new
drug applications will be much more promising in coming years.
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