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Abstract

Sparse systems are usually parameterized by a tuning parameter that determines the sparsity of the 

system. How to choose the right tuning parameter is a fundamental and difficult problem in 

learning the sparse system. In this paper, by treating the the tuning parameter as an additional 

dimension, persistent homological structures over the parameter space is introduced and explored. 

The structures are then further exploited in drastically speeding up the computation using the 

proposed soft-thresholding technique. The topological structures are further used as multivariate 

features in the tensor-based morphometry (TBM) in characterizing white matter alterations in 

children who have experienced severe early life stress and maltreatment. These analyses reveal 

that stress-exposed children exhibit more diffuse anatomical organization across the whole white 

matter region.
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I. Introduction

In the usual tensor-based morphometry (TBM), the spatial derivatives of deformation fields 

obtained during nonlinear image registration for warping individual magnetic resonance 

imaging (MRI) data to a template is used in quantifying neuroanatomical shape variations 

[3], [20], [70]. The Jacobian determinant of a deformation field is most frequently used in 

quantifying the brain tissue growth or atrophy at a voxel level. [20], [22], [25], [54], [71] 

used the Jacobian determinant of the deformation field as a measure of regional brain 

change. Subsequently, the statistical parametric maps are obtained by fitting the tensor maps 

as a response variable in a linear model at each voxel, which results in a massive number of 

univariate test statistics.

Recently, there have been attempts at explicitly modeling the structural variation of one 

region to another [11], [37], [38], [50], [62], [75], [76] using network approaches. This 

provides additional information that complements existing univariate approaches. In most of 

these multivariate approaches, anatomical measurements such as mesh coordinates, cortical 

thickness or Jacobian determinant across different voxels are correlated using models such 

as canonical correlations [4], [62], cross-correlations [11], [37], [38], [50], [75], [76], partial 

correlations, which are equivalent to the inverse of covariances [6], [8], [30], [40], [48]. 

However, these multivariate techniques suffer the small-n large-p problem [17], [31], [48], 

[66], [73]. Specifically, when the number of voxels are substantially larger than the number 

of images, it produces an under-determined linear model. The estimated covariance matrix is 

rank deficient and no longer positive definite. In turn, the resulting correlation matrix is not 

considered as a good approximation to the true correlation matrix.

The small-n large-p problem can be remedied by using sparse methods, which regularize the 

under-determined linear model with additional sparse penalties. There exist various sparse 

models: sparse correlation [17], [48], sparse partial correlation [8], [40], [48], sparse 

canonical correlation [4] and sparse log-likelihood [6], [7], [30], [41], [55], [74]. Sparse 

model (λ) is usually parameterized by a tuning parameter λ that controls the sparsity of 

the representation. Increasing the sparse parameter makes the solution more sparse. So far, 

all previous sparse network approaches use a fixed parameter λ that may not be optimal. 

Depending on the choice of the sparse parameter, the final statistical results will be different. 

Instead of performing statistical inference at one fixed sparse parameter λ that may not be 

optimal, we introduce a new framework that performs statistical inferences over the whole 

parameter space using persistent homology [12], [17], [18], [27], [32], [46], [47], [67].

Persistent homology is a recently popular branch of computational topology with 

applications in protein structures [64], gene expression [24], brain cortical thickness [18], 

activity patterns in visual cortex [67], sensor networks [23], complex networks [39] and 

brain networks [46], [47]. However, as far as we are aware, it is yet to be applied to sparse 

models in any context. This is the first study that introduces persistent homology in sparse 

models. The proposed persistent homological framework is similar to the existing multi-

thresholding framework that has been used in modeling connectivity matrices at many 

different thresholds [1], [37], [47], [69]. However, such an approach has not been applied in 

sparse networks before. In a sparse network, sparsity is controlled by the sparse parameter λ 
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and the estimated sparse matrix entries. So it is unclear how the existing multi-thresholding 

framework can be applicable in this situation. In this paper, we prove that thresholding the 

sparse parameter is equivalent to thresholding correlations under some conditions. Thus, we 

resolve the unclarity of applying the existing multi-threshold method to the sparse networks.

The main methodological contributions of this paper are as follows. (i) We introduce a new 

sparse model based on Pearson correlation. Although various sparse models have been 

proposed for other correlations such as partial correlations [8], [40], [48] and canonical 

correlations [4], the sparse version of the Pearson correlation was not often studied.

(ii) We introduce persistent homology in the proposed sparse model for the first time. We 

explicitly show that persistent homological structures can be found in the sparse model. This 

paper differs substantially from our previous study [47], which studies the persistent 

homology in graphs and networks. Sparse models and sparse networks were never 

considered in [47].

(iii) We show that the identification of persistent homological structures can yield greater 

computational speed and efficiency in solving the proposed sparse correlation model without 

any numerical optimization. Note that most sparse models require numerical optimization 

for minimizing sparse penalty, which can be a computational bottleneck for solving large 

scale problems. There are few attempts at speeding up the computation for sparse models. 

By identifying block diagonal structures in the estimated (inverse) covariance matrix, it is 

possible to bypass the numerical optimization in the penalized log-likelihood method [55], 

[74]. LASSO (least absolute shrinkage and selection operator) can be done without 

numerical optimization if the design matrix is orthogonal [72]. The proposed method 

substantially differs from [55], [74] in that we do not need to assume the data to follow 

normality since there is no need to specify the likelihood function. Further the cost functions 

we are optimizing are different. The proposed method also differs from [72] in that our 

problem is not orthogonal.

As an application of the proposed method, we applied the techniques to the quantification of 

interregional white matter abnormality in stress-exposed children's magnetic resonance 

images (MRI). Early and severe childhood stress, such as experiences of abuse and neglect, 

have been associated with a range of cognitive deficits [52], [59], [65] and structural 

abnormalities [35], [36], [42]. However, little is known about the underlying biological 

mechanisms leading to cognitive problems in these children [60] due to the difficulties in the 

existing methods that do not have enough discriminating power. However, we demonstrate 

that the proposed method is very well suited to this problem.

II. Methods

A. Sparse Correlations

Correlations—Consider measurement vector xj on node j. If we center and rescale the 

measurement xj such that
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the sample correlation between nodes i and j is given by . Since the data is normalized, 

the sample covariance matrix is reduced to the sample correlation matrix.

Consider the following linear regression between nodes j and k (k ≠ j):

(1)

We are correlating data at node j to data at node k. In this particular case, γjk is the usual 

Pearson correlation. The least squares estimation (LSE) of γjk is then given by

(2)

which is the sample correlation. For the normalized data, the estimated regression 

coefficient is exactly the sample correlation. For the normalized and centered data, the 

regression coefficient is the correlation. Equation (2) minimizes the sum of least squares 

over all nodes:

(3)

Note that we do not really care about correlating xj to itself since the correlation is then 

trivially γjj = 1.

1) Sparse Correlations—Let Γ = (γjk) be the correlation matrix. The sparse penalized 

version of (3) is given by

(4)

The sparse correlation is given by minimizing F(Γ). By increasing λ, the estimated 

correlation matrix Γ̂(λ) becomes more sparse. When λ = 0, the sparse correlation is simply 

given by the sample correlation, i.e., . As λ increases, the correlation matrix Γ 

shrinks to zero and becomes more sparse.

This sparse regression is not orthogonal, i.e., , the Dirac delta, so the existing soft-

thresholding method for LASSO [72] is not applicable. The minimization of (4) can be done 

by the proposed soft-thresholding method analytically by exploiting the topological structure 

of the problem.

Theorem 1—For λ ≥ 0, the minimizer of (4) is given by the soft-thresholding
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(5)

Proof—Write (4) as

(6)

where

Since f (γjk) is nonnegative and convex, F(Γ) is minimum if each component f (γjk) achieves 

minimum. So we only need to minimize each component f (γjk). This differentiates our 

sparse correlation formulation from the standard compressed sensing or LASSO that cannot 

be optimized in this component wise fashion. f (γjk) can be rewritten as

We used the fact .

For λ = 0, the minimum of f (γjk) is achieved when , which is the usual LSE. For λ 

> 0, Since f (γjk) is quadratic in γjk, the minimum is achieved when

(7)

The sign of λ depends on the sign of γjk. Thus, sparse correlation γ̂
jk is given by a soft-

thresholding of :

(8)

Theorem 1 is heuristically introduced in the conference paper [17]. This paper extends [17] 

with clearly spelled out soft-thresholding rule and the detailed proof. The estimated sparse 

correlation (8) basically thresholds the sample correlation that is larger or smaller than λ by 

the amount λ. Due to this simple expression, there is no need to optimize (4) numerically as 

often done using the coordinate descent learning or the active-set algorithm in compressed 

sensing or LASSO [30], [58]. Note Theorem 1 is only applicable in a separable compressed 

sensing or LASSO type problem.
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Since different choices of sparsity parameter λ will produce different solutions in sparse 

model (λ), we propose to use the collection of all the sparse solutions for many different 

values of λ for the subsequent statistical analysis. This avoids the problem of using an 

arbitrary threshold or identifying the optimal sparse parameter that may not be optimal in 

practice. The question is then how to use the collection of (λ) in a coherent mathematical 

fashion. For this, we propose to apply persistent homology [26], [46], [47] and establish 

Theorem 2.

B. Persistent Homology in Graphs

Using persistent homology, topological features such as the connected components and 

cycles of a graph can be tabulated in terms of the Betti numbers. The Betti numbers β0 and 

β1, which are topological invariants, respectively denote the number of connected 

components and holes in the graph [27]. The network difference is then quantified using the 

Betti numbers of the graph [46], [47]. The graph filtration is a new graph simplification 

technique that iteratively builds a nested subgraphs of the original graph. The algorithm 

simplifies a complex graph by piecing together the patches of locally connected nearest 

nodes. The process of graph filtration is related to the single linkage hierarchical clustering 

and dendrogram construction [46], [47].

Consider a weighted graph with node set V = {1, …, p} and edge weights ρ = (ρjk), where ρjk 

is the weight between nodes j and k. Weighted graph X = (V, ρ) is formed by the pair of node 

set V and edge weights ρ. The edge weights in many brain imaging applications are usually 

given by some similarity measures such as correlation or covariance between nodes [46], 

[51], [56], [57], [68]. Given weighted network X = (V, ρ), we induce binary network (λ) by 

thresholding the weighted network at λ. The adjacency matrix A = (ajk) of (λ) is defined as

(9)

Any edge weight less than or equal to λ is made into zero while edge weight larger than λ is 

made into one. The binary network (λ) is a simplicial complex consisting of 0-simplices 

(nodes) and 1-simplices (edges), a special case of the Rips complex [32]. Then it can be seen 

that (λ1) ⊃ (λ2) for λ1 < λ2 in a sense the vertex and edge sets of (λ2) are contained in 

those of (λ1). Just as in the case of Rips filtration, which is a collection of nested Rips 

complexes, we can construct the filtration on the collection of binary networks:

(10)

for 0 = λ0 < λ1 < λ2 < ⋯. Note that (0) is the complete weighted graph while (∞) is the 

node set V. By increasing the λ value, we are thresholding at higher correlation so more 

edges are removed. Such the nested sequence of the Rips complexes (10) is called a Rips 

filtration, the main object of interest in persistent homology [26]. The sequence of λ values 

are called the filtration values. Since we are dealing with a special case of Rips complexes 

restricted to graphs, we will call such structure graph filtration. Fig. 1 illustrates an example 

of a graph filtration with 4 nodes. Sequentially we are deleting edges based on the ordering 

of the edge weights. Since the graph filtration is a special case of the Rips filtration, it 
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inherits all the topological properties of the Rips filtration. Given a weighted graph, there are 

infinitely many different filtrations. In Fig. 1 example, we have two filtrations (0.0) ⊃ 

(0.1) ⊃ (0.3) ⊃ (0.4) ⊃ (0.5) and (0.0) ⊃ (0.2) ⊃ (0.6) among many other 

possibilities. So a question naturally arises if there is a unique filtration that can be used in 

characterizing the graph. Let the level of a filtration be the number of nested unique sublevel 

sets in the given filtration.

Theorem 2—For graph X = (V, ρ) with q unique positive edge weights, the maximum level 

of a filtration on the graph is q + 1. Further, the filtration with q + 1 filtration level is unique.

Proof—For a graph with p nodes, the maximum number of edges is (p2 − p)/2, which is 

obtained in a complete graph. If we order the edge weights in the increasing order, we have 

the sorted edge weights:

where q ≤ (p2 − p)/2. The subscript () denotes the order statistic. For all λ < ρ(1), (λ) = (0) 

is the complete graph of V. For all ρ(r) ≤ λ < ρ(r + 1) (r = 1, …, q − 1), (λ) = (ρ(r)). For all 

ρ(q) ≤ λ, (λ) = (ρ(q)) = V, the vertex set. Hence, the filtration given by

(11)

is maximal in a sense that we cannot have any additional level of filtration.

The condition of having unique edge weights is not restrictive in practice. Assuming edge 

weights to follow some continuous distribution, the probability of any two edges being equal 

is zero. Among many possible filtrations, we will use the maximal filtration (11) in the study 

since it is uniquely given. The finiteness and uniqueness of the filtration levels over finite 

graphs are intuitively clear by themselves and are already applied in software packages such 

as javaPlex. [2]. However, we still need a rigorous statement to specify the type of filtration 

we are using.

C. Persistent Homology in Sparse Regression

We introduce a persistent homological structure in sparse correlations now as follows. Let A 

= (ajk(λ)) be the adjacency matrix obtained from sparse correlation (8):

Let (λ) be the graph defined by the adjacency matrix A. Then we have the main result of 

this paper, which relies on the results of Theorem 1 and Theorem 2.
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Theorem 3—For centered and normalized data xj (j = 1, …, p), ρ(1), ρ(2), …, ρ(q) be the 

order statistic of edge weights  (1 ≤ j, k ≤ p, k ≠ j). Then graph (λ) obtained from the 

sparse regression (4) forms the maximal graph filtration

(12)

Proof—The proof follows by simplifying the adjacency matrix A into a simpler but 

equivalent adjacency matrix B = (bjk). From (8), γ̂
jk(0) ≠ 0 if  and 0 

otherwise. Thus, the adjacency matrix A is equivalent to the adjacency matrix B = (bjk):

(13)

Let ℋ(λ) be the graph defined by adjacency matrix B. Graph ℋ(λ) is formed by thresholding 

edge weights given by the absolute value of sample correlations . From Theorem 2, 

such graph must have maximal filtration:

(14)

Since A = B, graph  also must have the identical maximal filtration.

Theorem 3 is illustrated in Fig. 2 with a 4-nodes example. In this study, much larger p = 548 

and p = 1856 nodes will be used. In obtaining the topological structure of a graph induced 

by sparse correlation, it is not necessary to solve the sparse regression by the direct 

optimization, which can be very time consuming. Identical topological information can be 

obtained by performing the soft-thresholding on the sample correlations.

The resulting maximal filtration can be quantified by plotting the change of Betti numbers 

over increasing filtration values [27], [32], [46]. The first Betti number β0(λ) counts the 

number of connected components of the given graph (λ) at the filtration value λ [47]. 

Given graph filtration (λ0) ⊃ (λ1) ⊃ (λ2) ⊃ ⋯, we plot the first Betti numbers β0(λ0) < 

β0(λ1) < β0(λ2) ⋯ over filtration values λ0 < λ1 < λ2 ⋯ (Fig. 1). The number of connected 

components increase as the filtration value increases. The pattern of increasing number of 

connected components visually show how the topology of the graph changes over different 

parameter values. The overall pattern of Betti (number) plots can be used as a summary 

measure of quantifying how the graph changes over increasing edge weights. The Betti 

number plots are related but different from barcodes in literature. The Betti number is equal 

to the number of bars in the barcodes at the specific filtration value. To construct Betti plots, 

it is not necessary to perform filtrations for infinitely many possible λ values. From Theorem 

2, the maximum possible number of filtration level for plotting the Betti numbers is one plus 

the number of unique edge weights. For a tree, which is a graph with no cycle, we can come 

up with a much stronger statement than this.
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Theorem 4—For a tree with p ≥ 2 nodes and unique positive edge weights ρ(1) < ρ(2) < ⋯ 

ρ(p−1), the plot for the first Betti number (β0) corresponding to the maximal graph filtration 

is given by the coordinates

Proof—For a tree with p nodes, there are total p − 1 edges. Then from Theorem 2, we have 

the maximal filtration

(15)

Since all the edge weights are above filtration value ρ(0) = 0, all the nodes are connected, 

i.e., β0(ρ(0)) = 1. Since no edge weight is above the threshold ρ(q−1), β0(ρ(p−1)) = p. At each 

time we threshold an edge, the number of components increases exactly by one in the tree. 

Thus, we have

For a general graph, it is not possible to analytically determine the coordinates for its Betti-

plot. The best we can do is to compute the number of connected components β0 numerically 

using the single linkage dendrogram method (SLD) [47], the Dulmage-Mendelsohn 

decomposition [16], [61] or existing simplical complex approach [12], [23], [27]. For our 

study, we used the SLD method.

D. Statistical Inference on Betti Number Plots

The first Betti number will be used as features for characterizing network differences 

statistically. We assume there are n subjects and p nodes in Group 1. For subject i, we have 

measurement xij at node j. Denote data matrix as X = (xij), where xij is the measurement for 

subject i at node j. We then construct a sparse network and corresponding Betti number 

 using X. Thus,  is a function of X. Consider another Group 2 consists of m 

subjects. For Group 2, data matrix is denoted as Y = (yij), where yij is the measurement for 

subject i at node j. Group 2 will also generate single Betti number plot  as a function of 

Y. We are then interested in testing if the shapes of Betti number plots are different between 

the groups. This can be done by comparing the areas under the Betti plots. So the null 

hypothesis of interest is

(16)

while the alternate hypothesis is
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This inference avoids the use of multiple comparisons. The null hypothesis (16) is related to 

the following pointwise null hypothesis:

(17)

If the hypothesis (17) is true, the hypothesis (16) is also true (but inverse is not true). Thus, 

testing the area under the curve is related to testing the height of the curve at every point. 

The advantage of using the area under the curve is that we do not need to worry about 

multiple comparisons associated with testing (17). The area under the curve seems a 

reasonable approach to use for Betti-plots. A similar approach has been introduced in [14] in 

removing the multiple comparisons and produce a single summary test statistic.

There is no prior study on the statistical distribution on the Betti numbers so it is difficult to 

construct a parametric test procedure. Further, since there is only one Betti-plot per group, it 

is necessary to empirically construct the null distribution and determine the p-value by 

resampling techniques such as the permutation test and jackknife [15], [17], [28], [47]. For 

this study, we use the jackknife resampling.

For Group 1 with n subjects, one subject is removed at a time and the remaining n − 1 

subjects are used in constructing a network and a Betti-plot. Let X−l be the data matrix, 

where the l-th row (subject) is removed from X. Then for each l-th subject removed, we 

compute , which is a function of λ and X−l. Repeating this process for each subject, we 

obtain n Betti-plots . For Group 2, the l-th row (subject) is 

removed from the original data matrix Y and obtain data matrix as Y−l. For each l-th subject 

removed, we compute , which is a function of λ and X−l. Repeating this process for 

each subject, we obtain m Betti-plots . There are 23 maltreated 

and 31 control children in the study, so we have 23 and 31 Jackknife resampled Betti-plots. 

Subsequently we compute the areas under the Betti-plots by discretizing the integral. The 

area differences between the groups are then tested using the Wilcoxon rank-sum test, which 

is a nonparametric test on median differences [33].

We did not use the permutation test. For the permutation test to converge for our data set, it 

requires tens of thousands permutations and it is really time consuming even with the 

proposed time-saving soft-thresholding method. The proposed method takes about a minute 

of computation in a desktop but ten-thousands permutations will take about seven days of 

computation. Hence, we used a much simpler Jackknife resampling technique. The 

procedure is validated using the simulation with the known ground truth. The MATLAB 

codes for constructing network filtration, barcodes and performing statical inference on are 

given in http://brainimaging.waisman.wisc.edu/~chung/barcodes with the post-processed 

Jacobian determinant and FA data that were used for this study.

1) Simulations—We performed two simulations. In each simulation, the sample sizes are 

n = 20 in Group 1 and m = 20 in Group 2. There are p = 100 nodes. In Group 1, data xij at 

node j for subject i is simulated as independent standard normal N (0, 1) for the both 

simulations.
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2) Study1 (No Group Difference)—In Group 2, we simulated data yij at node j for 

subject i as yij = xij + N (0, 0.052). Small noise N (0, 0.052) is added to perturb Group 1 data 

a little bit. It is expected there is no group difference. Following the proposed framework, 

we constructed the sparse correlation networks and constructed a Betti-plot. Then performed 

the Jackknife resampling and constructed 20 Betti-plots in each group. The rank sum test 

was applied and obtained the p-value of 0.78. So we could not detect any group difference 

as expected.

3) Study 2 (Group Difference)—We first simulate data as yij = xij + N (0, 0.052) 

independently for all the nodes. Then for four nodes indexed by i = 2, 3, 4, 5, we introduce 

additional dependency: yij = 0.5xi1 + N (0, 0.052). We added small noise to perturb the node 

values further. This dependency gives any connection between 1 to 5 to have high 

correlation. Fig. 3 shows the simulated correlation matrix. Following the proposed 

framework, we constructed the sparse correlation networks and constructed a Betti-plot. 

Then performed the Jackknife resampling and constructed 20 Betti-plots in each group. The 

rank sum test was applied and obtained the p-value less than 0.001. This significance 

corresponds to the horizontal gap between the Betti-plots after the filtration value 0.7 (Fig. 3 

right).

III. Application

A. Imaging Data Set and Preprocessing

The study consists of 23 children who experienced documented maltreatment early in their 

lives, and 31 age-matched normal control (NC) subjects. Additional details on subjects can 

be found in [35], [60]. All the children were recruited and screened at the University of 

Wisconsin. The maltreated children were raised in institutional settings, where the quality of 

care has been documented as falling below the standard necessary for healthy human 

development. For the controls, we selected children without a history of maltreatment from 

families with similar current socioeconomic statuses. The exclusion criteria include, among 

many others, abnormal IQ (< 78), congenital abnormalities (e.g., Down syndrome or 

cerebral palsy) and fetal alcohol syndrome (FAS). The average age for maltreated children 

was 11.26 ± 1.71 years while that of controls was 11.58 ± 1.61 years. This particular age 

range is selected since this development period is characterized by major regressive and 

progressive brain changes [35], [49]. There are 10 boys and 13 girls in the maltreated group 

and 18 boys and 13 girls in the control group. Groups did not differ on age, pubertal stage, 

sex, or socio-economic status [35]. The average amount of time spent in institutional care by 

children was 2.5 years ± 1.4 years, with a range from 3 months to 5.4 years. Children were 

on average 3.2 years ± 1.9 months when they adopted, with a range of 3 months to 7.7 years. 

Table I summarizes the participant characteristics.

T1-weighted MRI were collected using a 3T General Electric SIGNA scanner (Waukesha, 

WI), with a quadrature birdcage head coil. DTI were also collected in the same scanner 

using a cardiac-gated, diffusion-weighted, spin-echo, single-shot, EPI pulse sequence. The 

details on image acquisition parameters are given in [35]. Diffusion tensor encoding was 

achieved using twelve optimum non-collinear encoding directions with a diffusion 

weighting of 1114 s/mm2 and a non-DW T2-weighted reference image. Other imaging 
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parameters were TE = 78.2 ms, 3 averages (NEX: magnitude averaging), and an image 

acquisition matrix of 120 × 120 over a field of view of 240 × 240 mm2. The acquired voxel 

size of 2 × 2 × 3 mm was interpolated to 0.9375 mm isotropic dimensions (256 × 256 in 

plane image matrix). To minimize field inhomogeneity and image artifacts, high order 

shimming and fieldmap images were collected using a pair of non-EPI gradient echo images 

at two echo times: TE1 = 8 ms and TE2 = 11 ms.

For MRI, a study specific template was constructed using the diffeomorphic shape and 

intensity averaging technique through Advanced Normalization Tools (ANTS) [5]. Image 

normalization of each individual image to the template was done using symmetric 

normalization with cross-correlation as the similarity metric. The 1 mm resolution inverse 

deformation fields are then smoothed out with Gaussian kernel with bandwidth σ = 4 mm, 

which is equivalent to the full width at half maximum (FWHM) of 4 mm. Then the Jacobian 

determinants of the inverse deformations from the template to individual subjects were 

computed at each voxel. The Jacobian determinants measure the amount of voxel-wise 

change from the template to the individual subjects. White matter was also segmented into 

tissue probability maps using template-based priors, and registered to the template [9]. For 

DTI, images were corrected for eddy current related distortion and head motion via FSL 

software (http://www.fmrib.ox.ac.uk/fsl) and distortions from field inhomogeneities were 

corrected using custom software based on the method given in [43] before performing a 

non-linear tensor estimation using CAMINO [21]. Subsequently, we have used iterative 

tensor image registration strategy for spatial normalization [44], [78]. Then fractional 

anisotropy (FA) were calculated for diffusion tensor volumes diffeomorphically registered 

to the study specific template.

B. Results: Proposed Sparse Correlation

We thresholded the white matter density at 0.7 and obtained the isosurface. The resulting 

isosurface is not the gray and white matter tissue boundary and it is located inside the white 

matter. We are interested in the white matter changes along the tissue boundary. The surface 

mesh has 189536 mesh vertices and the average inter-nodal distance of 0.98 mm. Since 

Jacobian determinant and FA values at neighboring voxels are highly correlated, 0.3% of the 

total mesh vertices are uniformly sampled to produce p = 548. This gives average inter-

nodal distance of 15.7 mm, which is large enough to avoid spurious high correlation 

between two adjacent nodes (Fig. 4). The isosurface of the white matter template was 

extracted using the marching cube algorithm [53]. The number of nodes are still larger than 

most region of interest (ROI) approaches in MRI and DTI, which usually have around 100 

regions [77]. This resulted in 548 × 548 sample covariances and correlation matrices, which 

are not full rank. We constructed the proposed sparse correlation based network filtrations 

from the soft-thresholding method (Fig. 5). Subsequently, Betti-plots are computed (Fig. 6). 

Since each group produces one Betti-plot, the leave-one-out Jackknife resampling technique 

was performed to produce 23 and 31 resampled Bettiplots respectively for the two groups. 

We then computed the areas under the Betti-plots. Using the rank-sum test, we detected the 

statistical significance of the area differences between the groups (p-value < 0.001). The 

Betti-plots for normal controls show much higher Betti numbers at any given threshold.
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1) Biological Interpretation—In the Betti-plots (Fig. 6), we obtain more disconnected 

components for controls than for children in the early stress group for any specific λ value. It 

can only happen if Jacobian determinants have higher correlations in the maltreated children 

across the white matter voxels compared to the controls. So when thresholded at a specific 

correlation value, more edges are preserved in the maltreated children resulting in more 

connected components. Thus, the children exposed to early life stress and maltreatment 

show more dense network at a given λ value. This is clearly demonstrated visually in Fig. 5. 

If the variations of Jacobian determents are similar across voxels, we would obtain higher 

correlations. This suggests more anatomical homogeneity across whole brain white matter 

regions in the maltreated children. Our finding is consistent with the previous study on 

neglected children that shows disrupted white matter organization, which results in more 

diffuse connections between brain regions [35]. Lower white matter directional organization 

in white matter may correspond to the increased homogeneity of Jacobian determinants and 

FA-values across the brain regions. Similar experiences may cause some areas to be 

connected to other regions of the brain at a higher degree inducing higher homogeneity in 

the regions. This type of relational interpretation cannot be obtained from the traditional 

univariate TBM.

C. Comparison Against Sparse Covariance

We compared the performance of the proposed sparse correlation technique to the widely 

used penalized log-likelihood method [6], [7], [30], [41], [55], where the log-likelihood is 

regularized with a sparse penalty:

(18)

Σ = (σij) is the covariance matrix and S is the sample covariance matrix. ‖·‖1 is the sum of 

the absolute values of the elements. The penalized log-likelihood is maximized over the 

space of all possible symmetric positive definite matrices. Equation (18) is a convex 

problem and it is numerically optimized using the graphical-LASSO (GLASSO) algorithm 

[6], [7], [30], [41]. The tuning parameter λ > 0 controls the sparsity of the off-diagonal 

elements of the covariance matrix. By increasing λ > 0, the estimated covariance matrix 

becomes more sparse.

We also performed the graph filtration technique to the estimated sparse covariance matrix 

Σ̂ = (σ̂
ij). Let A = (aij) be the adjacency matrix defined from the estimated sparse covariance:

(19)

The adjacency matrix A induces graph (λ) consisting of κ(λ) number of partitioned 

subgraphs:

(20)
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where Vl and El are vertex and edge sets of the subgraph Gl respectively. Unlike the sparse 

correlation case, we do not have full persistency on the induced graph . The partitioned 

graphs can be proven to be partially nested in a sense that only the partitioned node sets are 

persistent [17], [41], [55], i.e.,

(21)

for λ1 < λ2 < λ3 < ⋯ and all l. Subsequently the collection of partitioned vertex set 

 is also persistent. On the other hand, edge sets El may not be persistent.

From (21), it is unclear if there exists a unique maximal filtration on the vertex set. The 

maximal filtration can be obtained as follows. Let B(λ) = (bij) be another adjacency matrix 

given by

(22)

where ŝij is the sample covariance matrix. It can be shown that the adjacency matrix B 

similarly induces graph ℋ [17], [55]:

(23)

for some edge set Fl(λ). Further, the subgraphs Gl and Hl have identical vertex set but 

different edge sets. Then from Theorem 2, we have maximal filtration on the graph ℋ, 

where the edge weights are given by the sample covariances. Theorem 2 requires the edge 

weights to be all unique, which is satisfied for the study data set. Then similar to Theorem 3, 

the Betti-plots are determined by ordering the entries of the sample covariance matrices. The 

resulting barcode is displayed in Fig. 6. The sparse covariance was also able to discriminate 

the groups statistically (p-value < 0.001). The changes in the first Betti number are occurring 

in a really narrow window but was still able to detect the group differences using the areas 

under the Betti number plots (Fig. 6). However, the sparse correlations exhibit slower 

changes in the Betti number over the wide window, making it easier to discriminate the 

groups.

D. Comparison Against Fractional Anisotropy in DTI

For children who suffered early stress, white matter microstructures have been reported as 

more diffusely organized [35]. Therefore, we predicted less white matter variability in both 

the Jacobian determinants and FA-values. The DTI acquisitions were done in the same 3T 

GE SIGNA scanner; acquisition parameters can be found in [35]. We applied the proposed 

persistent homological method in obtaining the filtrations for sparse correlations and 

covariances in the same 548 nodes on FA values (Fig. 4). The resulting filtration patterns 

show similar patterns of a rapid increase in disconnected components for sparse correlations 

(Figs. 5 and 6). The Jackknife resampling followed by the rank-sum test on the area 

differences shows a significant group difference for sparse correlations (p-value < 0.001). 

These results are due to a consistent abnormality among the stress-exposed children that is 
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observed in both MRI and DTI modalities. The stress-exposed children exhibited stronger 

white matter homogeneity and less spatial variability compared to normal controls in both 

MRI and DTI measurements. However, the covariance results fail to discriminate the groups 

at 0.01 level (p-value = 0.043) indicative of a poor performance compared to the sparse 

correlation method.

E. Robustness on Node Size Changes

Depending on the number of nodes, the parameters of graph vary considerably up to 95% 

and the resulting statistical results will change substantially [29], [34], [77]. On the other 

hand, the proposed method is very robust under the change of node size. For the node sizes 

between 548 and 1856 (0.3% and 1% of original 189536 mesh vertices), the choice of node 

size did not affect the pattern of graph filtrations, the shape of Betti-plots, or the subsequent 

statistical results significantly. For example, the graph filtration on 1856 nodes shows a 

similar pattern of dense connections for the maltreated children (Fig. 5). The resulting Betti-

plots also show similar pattern of the group separation (Fig. 6). The statistical results are 

also somewhat consistent. For both the Jacobian determinant and FA values, the group 

differences in Betti-plots obtained from sparse correlations and covariances are all 

statistically significant (p-value < 0.001) in both 548 and 1856 nodes except one case. For 

the case of the 548 nodes covariance on FA values, we did not detect any group differences 

at 0.01 level (p-value = 0.043). On the other hand, we detected the group difference for the 

1856 nodes case at 0.001 level. The proposed framework is very sensitive, so it can detect 

really narrow but very consistent Betti-plot differences.

F. Effect of Image Registration

We checked how much impact image registration has on the robustness of the proposed 

method. Anatomical measurements across neighboring voxels are highly correlated within 

white matter so we do not expect image misalignment will have much effect on the final 

results. To determine the variability associated with the image registration, the displacement 

vector fields from the template to individual brains were randomly perturbed by adding 

Gaussian noise N(0, 1) to each component. This is sufficiently large noise and causes up to 4 

mm misalignment for some nodes. Then following the proposed pipeline, the Jacobian 

determinants are correlated across 548 nodes and Betti-plots are computed. Fig. 7 shows five 

perturbation results. The thick line is without any perturbation. The perturbed Betti-plots are 

very stable and close to the Betti-plots without any perturbation (thick lines). Th height 

differences in the perturbed Betti-plots are less than 4.4% in average, which is negligible in 

the subsequent statistical analysis. In fact, the resulting p-values are similar to each other 

and all the perturbed results detected the group difference (p-value < 0.001). Thus, we 

conclude that the proposed topological framework is robust under image misalignment.

IV. Conclusions and Discussions

By identifying persistent homological structures in sparse correlations, we were able to 

exploit them for drastically speeding up computations. A procedure that takes 56 hours was 

completed in few seconds without utilizing additional computational resources. Although we 

have only shown how to identify persistent homology in the sparse Pearson correlation, the 
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underlying principle can be directly applicable to other sparse models and image filtering 

techniques. These include the least angle regression (LARS) implementation in more 

general LASSO [13], heat kernel smoothing [19], and diffusion wavelets [45], which all 

guarantee the nested subset structures over the sparse parameters and kernel bandwidth. We 

will leave the identification of persistent homology in other models for future studies.

We found that Betti-plots on correlations can visually discriminate better than Betti-plots on 

covariances. In Fig. 6, almost all topological changes associated with the covariance occur 

in really small range between 0 and 0.1. However, unlike covariances, correlations are 

normalized by the variances so the topological changes are more spread out between 0 and 

1. This has the effect of making the Betti-plots shape differences spread out more uniformly 

and wide in the unit interval. This is most clearly demonstrated in the covariance vs. 

correlation on FA (second column). The Betti-plots of covariances are difficult to 

discriminate visually because the Betti-plots are squeezed into small range between 0 and 

0.1 but the Betti-plots of correlations are more discriminative since the Betti-plots are more 

spread out. The visual discriminative power comes from the normalization associated with 

the Pearson correlation. The change in the metric affects the filtration process itself since it 

is based on the sorted edge weights. Subsequently, the shape of Betti-plots and the statistical 

inference results also change.

While massive univariate approaches can detect signal locally at each voxel, the proposed 

network approach can detect signal globally over the whole brain region. Even though the 

information obtained by the two methods are complementary, they are somewhat exclusive. 

The proposed approach tabulates the changes of the number of connected components in the 

thresholded networks via Betti-plots, which cannot be done at individual node level. There is 

no easy straightforward way of combining or comparing the results from the two methods. 

The Betti-plots is a global index that is defined over a whole graph so it is not directly 

applicable to node-level analysis. However, just like any global graph theoretic indices such 

as small-worldness and modularity [10], [63], it can be applied to subgraphs around a given 

node. This is the beyond the scope of the paper and we left it as future research.
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Fig. 1. 
Schematic of graph filtration. We start with a weighted graph (top left). We sort the edge 

weights in an increasing order. We threshold the graph at filtration value λ and obtain 

unweighted binary graph (λ) based on rule (9). The thresholding is performed sequentially 

by increasing λ values. Then we obtain the sequence of nested graphs such as (0.0) ⊃ 

(0.1) ⊃ (0.3) ⊃ ⋯. The collection of such nested graph is defined as a graph filtration. The 

dotted lines are thresholded edges. The first Betti number β0, which counts the number of 

connected components, is then plotted over the filtration.
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Fig. 2. 
Comparison between the sparse correlation estimation via numerical optimization (top) and 

the proposed soft-thresholding method in Theorem 3 (bottom). The direct numerical 

optimization makes the graph sparse by shrinking the edge weights to zero. Nonzero edges 

form binary graph . The persistent homological approach thresholds the sample 

correlations at given filtration value and construct binary graph ℋ. The both methods 

produce the identical binary graphs, i.e.,  = ℋ. If the methods are applied at two different 

parameters λ = 0.3, 0.4, we obtain nested binary graphs (0.3) ⊃ (0.4) and ℋ(0.3) ⊃ 

ℋ(0.4). Theorem 3 generalizes this example.
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Fig. 3. 
Simulation study 2. Left: the simulated correlation matrix for Group 2, where the first 5 

nodes are connected (white square). Group 1 has no connection. Middle: The resulting β0-

plot showing group differences. Right: Leave-one-out Jackknife resampled β0-plots of 

Group 1(solid line) and Group 2 (dotted line). The rank-sum test is performed on the area 

differences under β0-curves between the groups (p-value < 0.001). The statistically 

significant result corresponds to the horizontal gap in the Betti numbers after filtration value 

0.7.
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Fig. 4. 
548 uniformly sampled nodes along the white matter surface where the sparse correlations 

and covariances are computed. The nodes are sparsely sampled on the template surface to 

guarantee there is no spurious high correlation due to proximity between nodes. Color scales 

are the Jacobian determinant of a subject. The same nodes are taken in both MRI and DTI 

for comparison between the two modalities.
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Fig. 5. 
Networks (λ) obtained by thresholding sparse correlations for the Jacobian determinant 

from MRI and fractional anisotropy (FA) from DTI at different λ values (λ = 0.6, 0.7, 0.8) 

for 548 nodes (left three columns) 1856 nodes (right three columns). The collection of the 

thresholded graphs forms a filtration. The children exposed to early life stress and 

maltreatment show more dense network at the given λ value. Since the maltreated children 

are more homogenous in the white matter region, there are more dense high correlations 

between nodes. The over all pattern of dense connections in the maltreated children is 

similar between the networks of different node sizes and across the different imaging 

modalities.
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Fig. 6. 
The Betti-plots on the sparse covariance and the proposed sparse correlation for Jacobian 

determinant (left column) and FA (right column) on 548 (top two rows) and 1856 (bottom 

two rows) node studies. Unlike the sparse covariance, the sparse correlation seems to shows 

huge group separation between normal and stress-exposed children visually. However, in all 

7 cases except top right (548 nodes covariance for FA), we detected statistically significant 

differences using the rank-sum test on the areas under the Betti-plots (p-value < 0.001). The 

shapes of Betti-plots are consistent between the studies with different node sizes indicating 

the robustness of the proposed method over changing number of nodes.
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Fig. 7. 
The displacement vector field from the template to individual brain is randomly perturbed. 

Then the Jacobian determinants are correlated across 548 nodes and Betti-plots are 

subsequently produced. The process is repeated five times to produce five perturbed Betti-

plots. The thick line is without any perturbation. The perturbed Betti-plots are very stable 

and close to the Betti-plots without any perturbation (thick lines). The proposed topological 

framework is very robust under sufficiently large image misalignment. Right figure is the 

enlargement of the left figure.
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TABLE I

Study Participant Characteristics

Maltreated Normal controls

Sample size 23 31

Sex (males) 10 18

Age (years) 11.26 ± 1.71 11.58 ± 1.61

Duration (years) 2.5 ± 1.4 (0.25 to 5.4)

Time of adoption (years) 3.2 ± 1.9 (0.25 to 7.7)
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