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Abstract Repetitive behavior refers to a highly heterogeneous set of responses asso-
ciated with a wide range of conditions, including normative development. Treatment
studies for aberrant repetitive behavior are limited although one promising approach
involves conceptualizing such behavior as a generalized inflexibility or lack of vari-
ability in responding. Relatively little is known about the neurobiological mechanisms
that mediate the development and expression of repetitive behavior, information critical
to the design of effective pharmacotherapies, early interventions, and prevention
strategies. We will review clinical findings in repetitive behavior as well as findings
from animal models highlighting environmental factors and the role of cortical-basal
ganglia circuitry in mediating the development and expression of these behaviors.
Findings from animal models have included identification of a specific neural pathway
important in mediating repetitive behavior. Moreover, pharmacological studies that
support the importance of this pathway have led to the identification of novel potential
therapeutic targets. Expanding the evidence base for environmental enrichment-derived
interventions and focusing on generalized variability in responding will aid in address-
ing the broader problem of rigidity or inflexibility.
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Stereotypy

Repetitive behaviors (e.g., stereotypies, compulsions, rituals) are diagnostic for autism
and common in other neurodevelopmental disorders (e.g., fragile X syndrome,
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Prader-Willi syndrome, nonsyndromic intellectual disability; Lewis and Bodfish 1998;
Moss et al. 2009). Indeed, the first report of autism as a disorder in the medical
literature (Kanner 1943) included obsessive desire for sameness, verbal and motor
rituals, obsessive questioning, and rigid adherence to routine as key components of the
clinical presentation. Although our focus here is neurodevelopmental disorders, it is
important to note that repetitive behaviors also manifest in a number of other clinical
disorders including Tourette syndrome, Parkinson’s disease, and frontotemporal de-
mentia (Singer 2013). In addition, repetitive behaviors can develop as a consequence of
early experiential deprivation including congenital blindness and highly impoverished
environments (Fazzi et al. 1999; Rutter et al. 1999). Motor stereotypies persisting
beyond what is developmentally normative have also been reported in children that
do not meet diagnostic criteria for neurodevelopmental or neurological disorders
(Singer 2009). The expression of repetitive behaviors over a number of clinical
disorders and conditions suggests that repetitive behavior likely arises from multiple
etiologies or sources of central nervous system (CNS) insult. As we will suggest,
however, there appears to be a common neural circuitry involved.

Repetitive behavior represents a broad range of responses that include stereotyped
motor movements, self-injurious behavior, repetitive manipulation of objects, compul-
sions, rituals and routines, insistence on sameness, and circumscribed interests (Leekam
et al. 2011; Lewis and Bodfish 1998). These forms of repetitive behavior have been
shown to cluster as either Blower order^ (stereotyped movements, self-injury, repetitive
manipulation of objects) or Bhigher order^ behaviors (compulsions, rituals, insistence
on sameness), the latter category involving more complex behaviors characterized by
rigidity or inflexibility. Other work has provided evidence for a third factor of
circumscribed interests (Lam and Aman 2007). One implication of the range or
heterogeneity of repetitive behavior is that these behaviors are mediated by a complex
circuitry involving multiple brain regions. The more complex the circuitry, the more
vulnerable it may be to a wide variety of alterations or perturbations (e.g., early social
deprivation, gene by environment interactions) that result in repetitive behavior.

Beyond discrete categories or clusters of repetitive behavior in specific clinical
disorders (e.g., hand flapping in autism), research and treatment would benefit from
an expanded conceptualization of repetitive behavior. Such expansion would include at
least two additional components. The first is the recognition that repetitive behavior is
normative in typical development. There is ample evidence that repetitive motor
behavior, compulsions, and rituals are commonly observed in typical children’s devel-
opment (e.g., Evans et al. 1997; Thelen 1979) albeit expressed at lower frequencies or
severity levels than those observed in autism spectrum disorders (ASD; Wolff et al.
2014). As repetitive behaviors are already in the repertoire of the individual, greater
attention should be paid to the developmental timing of the transition from normative to
pathological repetitive behavior. This question has received scant attention (Pietrefesa
and Evans 2007), and little is known about the environmental factors or neurobiological
mechanisms that mediate this transition (Langen et al. 2014). Understanding the timing
and related factors that result in a divergent trajectory of repetitive behavior for an
individual with a neurodevelopmental disorder could have important treatment
implications.

A second critical expansion of our conceptualization of repetitive behavior comes
from the recognition that discrete repetitive behaviors are exemplars of what appears to
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be a larger, generalized pattern of rigid, inflexible behavior or lack of response
variability across multiple behavioral classes (Rodriguez and Thompson 2015). A
striking example of this comes from eye-tracking studies that show a restricted and
repetitive pattern of visual attention to a pictorial array of nonsocial items in children
with ASD compared to typically developing children (Sasson et al. 2008). This pattern
appeared to reflect an inflexible, repeated sequence of visual exploration of the stimuli
presented. A second example is from our work showing that children with ASD exhibit
a more restricted and rigid pattern of engagement with age-appropriate play activities
than typically developing matched control children. Other examples, involving children
with ASD, include greater sequence regularity in random number generating tasks
(Williams et al. 2002; Rinehart et al. 2006) and reduced sequence complexity and use
of fewer colors when placing colored stamps on paper (Frith 1972).

Treatment of Repetitive Behavior

There have been few systematic efforts to develop behavioral or pharmacological
treatments for repetitive behavior in neurodevelopmental disorders. Boyd et al.
(2012) reviewed behavioral interventions for repetitive behavior in individuals with
ASD concluding that the field lacks programmatic research designed to address the full
range of repetitive behaviors characteristic of ASD and related disorders. The rather
small published literature largely reflects behavior analytic approaches, mostly focused
on lower order repetitive behaviors (Rapp and Vollmer 2005). As many forms of lower
order repetitive behavior may involve automatic reinforcement (self-injurious behavior
(SIB) often being an exception), antecedent-based interventions (e.g., modifying the
environment, teaching adaptive incompatible behaviors) are frequently employed.
There is, however, evidence to support both consequence- and antecedent-based
treatment approaches for repetitive behavior (Rapp and Vollmer 2005). Of the smaller
number of studies addressing higher order repetitive behaviors, differential reinforce-
ment of variability and both antecedent- and consequent-based use of restricted or
circumscribed interests have been used (Boyd et al. 2013). There is a need, however, to
establish evidence-based practices to treat higher order repetitive behaviors. One
promising approach is a modification of a systematic desensitization treatment used
successfully in obsessive-compulsive disorder (OCD) called exposure and response
prevention. Boyd et al. (2013) have provided preliminary evidence for its feasibility
and efficacy in children with ASD.

A small but compelling literature has demonstrated empirically that it is possible to
shape variable, flexible behavior using reinforcement procedures (e.g., Neuringer
2004). Promoting the development of flexibility and variability in behavior may be a
more effective and generalizable treatment approach than targeting a particular repet-
itive behavior for modification. Moreover, this approach may have an important impact
on brain and behavior development when conducted with very young children with
neurodevelopmental disorders.

There are few pharmacological interventions with established efficacy for the
treatment of repetitive behavior in neurodevelopmental disorders (Tanimura et al.
2011). Commonly prescribed medications such as selective serotonin reuptake inhib-
itors or SSRIs (e.g., Prozac) have been shown to lack efficacy for repetitive behavior in
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individuals with ASD as well as exhibit significant adverse effects (Carrasco
et al. 2012; King et al. 2009). Similarly, although atypical antipsychotics (e.g.,
Risperdal) have been reported to have some efficacy, FDA approval for the use
of two of these drugs in autism is to treat irritability not repetitive behavior. In
addition, atypical antipsychotics are associated with significant weight gain and,
potentially, metabolic syndrome with little evidence of efficacy for repetitive
behavior.

Clinical Neuroscience of Repetitive Behavior

The lack of effective pharmacological treatments for repetitive behavior is due, at least
in part, to the lack of knowledge of the underlying neurobiology. Genetic studies have
provided some, albeit very limited, information. For example, in autism, there is
evidence for the heritability of repetitive behavior based on monozygotic twin data
(e.g., Bailey et al. 1995). In addition, specific genetic syndromes such Prader-Willi
(e.g., skin picking, compulsive eating) and Rett (e.g., stereotypic midline hand
clasping) include specific repetitive behaviors that are a readily identifiable feature of
their clinical presentation. As the genetic loci (e.g., 15q11-13 for Prader-Willi) or gene
(e.g., MECP2 for Rett) for these genetic syndromes is known, this provides important
information about what candidate gene or genes may be involved in repetitive behavior.
Despite this, there has been very limited progress in identifying alterations in specific
genes associated with repetitive behavior. Some exceptions include a neurotransmitter
receptor subtype located on the same region of chromosome 15 that is mutated in
Prader-Willi and Angelman syndromes. This receptor subtype binds the neurotransmit-
ter GABA and was shown to be altered in families sharing high insistence on sameness
factor score (Shao et al. 2003). An association between a subtype of the serotonin
transporter gene (SLC6A4) and repetitive sensory motor behaviors has also been
shown (Brune et al. 2006).

Few studies have attempted to identify neuropathological changes associated with
repetitive behavior using postmortem tissue from individuals with neurodevelopmental
disorders. A notable exception is the postmortem examination of brains from individ-
uals with Lesch-Nyhan disease, all of whom exhibit SIB (Saito and Takashima 2000).
A small number of neuroimaging studies have addressed the association between
regional brain volumetric changes and repetitive behavior. These studies have impli-
cated changes in the basal ganglia (see Fig. 2), particularly the caudate-putamen, brain
regions important in the mediating movement and movement disorders such as
Parkinson’s disease and Tourette syndrome. For example, studies with medication-
naive Tourette syndrome patients have indicated reductions in caudate-putamen volume
(Bloch et al. 2005) although increased (Fredericksen et al. 2002) and similar volumes
(Zimmerman et al. 2000) have also been reported. In addition, smaller caudate volumes
in children predicted increased severity of Tourette symptoms in adulthood (Bloch et al.
2005; Hyde et al. 1995). For OCD, Radua and Mataix-Cols (2009) reviewed 12 MRI
studies which showed increased gray matter volume in the basal ganglia, including the
putamen and caudate. This analysis also indicated a correlation between OCD severity
and the increased magnitude of basal ganglia volume. Volumetric reductions in the left
and right caudate nuclei as well as in frontal white matter have been reported in boys
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with complex stereotypies but no identifiable neurological or psychiatric disorder
(Kates et al. 2005).

In ASD, caudate/putamen volume has been both negatively and positively correlated
with routines, compulsions, and rituals (Sears et al. 1999; Hollander et al. 2005; Rojas
et al. 2006). In two studies using a wider age range (7–25 years) and high-functioning
ASD individuals, Langen et al. (2007, 2009) reported either no significant correlations
with Autism Diagnostic Interview (ADI) repetitive behavior scores or a negative
correlation with the insistence on sameness cluster of ADI scores. In a more recent
work, Langen et al. (2012) found greater growth in the caudate nucleus over a 2.4-year
period in ASD children compared to control participants with caudate growth per year
exhibiting a significant positive correlation with insistence on sameness behavior.

In very young (3–4 years old) children with ASD, Estes et al. (2011) observed no
systematic relationship between caudate volumes and restricted, repetitive behavior.
This is at odds with the results of Wolff et al. (2013) who reported that the compulsive
and ritual subscales of the Repetitive Behavior Scale-Revised were significantly
positively associated with caudate volumes in 3–6-year-old ASD children.

There has been little use of functional neuroimaging (fMRI) or diffusion tensor
imaging (DTI) to determine the neurocircuitry of repetitive behavior in
neurodevelopmental disorders. Only one study (Langen et al. 2012) has related white
matter organization of frontostriatal tracts using DTI measures and found no significant
association with repetitive behavior. The relative paucity of clinical neuroimaging
studies combined with inconsistent findings results in very limited knowledge about
the neurobiology of repetitive behavior.

Animal Models of Repetitive Behavior

Because information about neurobiological mechanisms that mediate repetitive behav-
ior from clinical studies is limited, animal models with the requisite validity provide an
important opportunity to identify the relevant brain circuitry. Bechard and Lewis (2012)
organized animal model studies into four categories. The first includes studies of
repetitive behavior induced by specific brain insults, most of which involved genetic
manipulations such as knocking out a gene. One striking example involved deleting a
gene in mice that codes for a synaptic associated protein (SAP-AP3) important in
stabilizing synaptic connections between the cortex and striatum (caudate-putamen)
(Welch et al. 2007). This gene deletion resulted in mice that groomed excessively, to the
point of removing fur and causing skin lesions (i.e., SIB). A second category of animal
model studies includes repetitive behavior induced by administration of a specific
pharmacological agent. It is well known that drugs like amphetamine and cocaine, in
sufficient doses, will induce repetitive behavior in animals and humans (Cooper and
Dourish 1990). More recently, studies employing administration of selective pharma-
cological agents into specific brain regions to induce or block repetitive behavior have
been useful in identifying key brain regions and neurotransmitters involved in repetitive
behavior (Bechard and Lewis 2012). The third category involves repetitive behavior
observed in specific inbred mouse strains such as the BTBR and C58 strains (Amodeo
et al. 2012; Muehlmann et al. 2012; McFarlane et al. 2008; Ryan et al. 2010). Mice of
these strains exhibit excessive grooming (BTBR) or vertical jumping/backward
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somersaulting (C58) without any perturbation such as a genetic manipulation, drug,
CNS lesion, or other intervention needed. The environment (standard laboratory
caging) in which these behaviors develop and are expressed, however, is likely a key
factor in addition to genetic background. This leads to the fourth category, which
involves repetitive behavior induced by environmental restriction or confinement. As
but one of many examples, deer mice (Peromyscus) exhibit high rates of stereotyped
motor behavior as a consequence of being reared in standard laboratory cages (Powell
et al. 2000). Our work uses both the C58 and deer mouse models so environmental
factors play a particularly important role in the development and expression of repet-
itive behavior as well as correlated brain changes in these animals.

Role of the Environment in Repetitive Behavior

Early experiential deprivation has been strongly associated with the induction of
repetitive behavior in both humans and animals (Lutz et al. 2007; Bechard and Lewis
2012; Devine 2014). For example, almost half of adoptees from Romanian orphanages
exhibited stereotyped body rocking (Beckett et al. 2002). High levels of repetitive
behavior in nonhuman primates were shown to be an invariant consequence of early
social deprivation (Harlow and Harlow 1962). Rearing animals in confined or restricted
environments predictably induces stereotypic behavior across a variety of species
maintained in zoos, farms, and laboratories (Mason and Rushen 2006). We have shown
that deer mice (Peromyscus) as well as C58 mice (Mus) develop high levels of
stereotyped motor behaviors over development as a consequence of being reared in
standard laboratory cages (Muehlmann et al. 2012; Powell et al. 2000; Tanimura et al.
2010a, b).

Compelling evidence for the causative role of environmental restriction in the
induction of repetitive behavior comes from studies of environmental enrichment
(EE). These studies using multiple species have consistently shown that animals reared
in larger, more complex environments show less repetitive behavior than their envi-
ronmentally restricted counterparts (Mason and Rushen 2008). Our work has shown
that EE in both deer mice and C58 inbred mice markedly attenuates repetitive behavior
(Powell et al. 2000; Turner et al. 2002, 2003; Muehlmann et al. 2012). Figure 1 depicts
the enriched environment currently used in our lab.

Findings from Two Mouse Models of Repetitive Behavior

C58 mice exhibit high levels of spontaneous stereotyped behavior in the form of
hindlimb jumping and backward somersaulting (Ryan et al. 2010; Muehlmann et al.
2012). We have found that these behaviors reach frequencies exceeding 10,000 indi-
vidual stereotypic responses during a 12-h dark cycle (active period for nocturnal
animals) by the mouse equivalent of young adulthood (Muehlmann et al. 2012).
Housing C58 mice in an enriched environment from weaning to young adulthood
largely eliminated their repetitive behaviors (Muehlmann et al. 2012).

As discussed earlier, repetitive behaviors in individuals with ASD have been shown
to aggregate into two clusters: repetitive sensory motor behaviors (lower order) and
behaviors that reflect resistance to change or insistence on sameness (higher order; see
Bishop et al. 2013; Mooney et al. 2009). We have assessed whether C58 mice
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demonstrate greater resistance to change relative to C57BL/6 control mice by using
reversal learning and extinction of an appetitive operant nose-poke right-left positional
discrimination task. Moreover, we assessed whether performance of C58 mice during
reversal learning and extinction was related to their rates of repetitive motor behavior.
C58 mice made more perseverative errors during the first session of reversal learning
than did C57BL/6 mice and fewer regressive errors. C58 mice also exhibited a greater
increase in responding during the first session of extinction compared to C57BL/6
mice. We found a positive correlation between stereotyped motor behaviors and the
number of responses required to reach criterion for reversal learning. We also found
positive correlations between repetitive motor behaviors and total errors and persever-
ative errors during the first session of reversal learning. These findings suggest that C58
mice exhibit both higher order as well as lower order repetitive behaviors, which
increases the translational value of this model.

Our findings with C58 mice have largely recapitulated our earlier results with deer
mice. Deer mice develop the same two forms of repetitive behavior (vertical jumping
and backward somersaulting) with the same general developmental trajectory. As deer
mice are outbred and exhibit greater individual variability, we were able to identify
three discrete developmental trajectory groups (Tanimura et al. 2010b ). Deer mice also
exhibit higher order repetitive behaviors as well. We established this by demonstrating
that high repetitive motor behavior mice showed greater deficits in reversal learning
using a water T-maze task with one arm of the T having a platform which allowed an
escape response. Errors in reversal learning were significantly correlated with frequen-
cy of stereotyped motor behaviors (Tanimura et al. 2008). In addition, EE for a period
of 6 weeks after weaning markedly reduced repetitive behavior in deer mice as it did in
C58 mice (Hadley et al. 2006).

In several studies conducted in our lab, we attempted to determine how EE was
changing the brain to result in attenuation of repetitive behavior in deer mice (Turner
et al. 2002, 2003; Turner and Lewis 2003). These studies, which used a general marker
of activation of neurons as well as neuroanatomical and neurochemical measures of

Fig. 1 Picture of enriched environment kennels used in Lewis lab mouse studies
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neuroplasticity, pointed to changes in areas associated with cortical-basal ganglia
circuitry but not in other brain regions. In addition to evidence for the importance of
cortical-basal ganglia circuitry, these brain changes were evident only in those animals
that Bbenefited^ from enrichment as defined by a significant reduction in repetitive
behavior.

Cortical-Basal Ganglia Circuitry

Cortical-basal ganglia circuitry (depicted in Fig. 2) refers to a set of connections among
brain regions that originates with neurons in specific areas of the cortex sending
projections to the striatum (caudate/putamen). Projections from striatal neurons, in
turn, converge on the basal ganglia nuclei globus pallidus (internal aspect)/substantia
nigra (pars reticulata) otherwise referred to as GPi/SNpr. GPi/SNpr neurons, in turn,
project to the thalamus, and the circuit is then completed by thalamic projections
returning to the cortex (Lewis and Kim 2009). This cortical-basal ganglia circuitry is
thought to be comprised of multiple, parallel loops that although interacting are
anatomically distinct and serve different functions (Alexander et al. 1986; Langen
et al. 2011). Although five loops have been described, three loops are generally
considered to have clear and discrete functional roles: the sensorimotor (motor and
oculomotor cortex), associative (dorsolateral prefrontal cortex), and limbic (lateral
orbitofrontal and anterior cingulate cortex) loops. These loops mediate motor, cogni-
tive, and affective functions, respectively. Of these, the motor circuit has been the most
studied and emerges as the best candidate for mediation of repetitive motor movements.
The limbic loop may be the best candidate for mediation of some higher order repetitive
behaviors, particularly compulsions, and the associative loop may be important for
rigidity.

The motor loop makes use of two distinct basal ganglia pathways in transmitting
information from the striatum to the GPi/SNpr (see Fig. 3). Approximately half of
striatal neurons express the neuropeptide dynorphin as well as D1 dopamine receptors
and A1 adenosine receptors and constitute direct pathway neurons. These neurons send
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Fig. 2 Schematic diagram of cortical-basal ganglia circuitry
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projections from the striatum directly to the GPi/SNpr. Striatal neurons that express the
neuropeptide enkephalin, as well as D2 dopamine receptors and A2A adenosine recep-
tors, constitute indirect pathway neurons. Indirect pathway neurons project to the
external segment of the globus pallidus (GPe) and then to the subthalamic nucleus
(STN) before converging on GPi/SNpr. The classic view has been that the direct
pathway facilitates movement by disinhibition of thalamocortical neurons and thus
increasing excitation of the cortex, whereas the indirect pathway inhibits ongoing
movement via inhibition of thalamocortical neurons and thus decreased excitation of
the cortex (Gerfen et al. 1990). Thus, basal ganglia-mediated behaviors depend on the
balance of activity from these two antagonistic yet dynamically interacting pathways to
regulate initiation and suppression of various motor programs that allow for smooth
selection and execution of planned movements.

Within an operant conditioning framework, automatic reinforcement has
been identified via functional analyses as a maintaining variable for repetitive
behavior. Interestingly, recent work has suggested that the direct and indirect
basal ganglia pathways may mediate reward and punishment, respectively
(Kravitz and Kreitzer 2012). For example, it has been shown that mice quickly
learned to contact a touch sensor that resulted in striatal direct pathway
neurons being stimulated, whereas they avoided contact with a touch sensor
that resulted in striatal indirect pathway neurons being stimulated (Kravitz
et al. 2012). As the role of striatal dopamine in reward is well established,
it may be that dopamine release can mediate reinforcement through two
independent basal ganglia pathways: D1 receptor-mediated activation of direct
pathway neurons and D2 receptor-mediated inhibition of indirect pathway
neurons (Kravitz and Kreitzer 2012).

Cortex

Striatum

GPi 

SNpr 

Thalamus 

Direct pathway 

GPe 

STN 

   Indirect pathway 

Fig. 3 Schematic diagram of direct (solid arrows) and indirect (dotted arrows) basal ganglia pathways

BEHAVANALYST (2015) 38:163–178 171



Indirect Basal Ganglia Pathway and Repetitive Behavior

Traditionally, movement disorders (hypokinetic such as Parkinson’s disease and hy-
perkinetic such as Huntington’s disease) reflected an imbalance in the activity of the
direct and indirect basal ganglia pathways. In an early study from our lab using deer
mice, we tested the hypothesis that high levels of repetitive behavior were associated
with such an imbalance (Presti and Lewis 2005). Our findings confirmed this imbal-
ance, but surprisingly, it was reduced indirect basal ganglia pathway activation that was
associated with the expression of high levels of repetitive behavior. We have extended
these findings using different neurochemical methods by demonstrating that neuronal
activation is reduced in key brain regions of the indirect pathway (e.g., STN) in mice
exhibiting high versus low levels of repetitive behavior. Moreover, our measure of
neuronal activation was significantly negatively correlated with the frequency of
repetitive motor behavior (Tanimura et al. 2010a; Tanimura et al. 2011). We have also
shown decreased functioning of the indirect basal ganglia pathway in C58 compared to
C57BL/6 control mice (Muehlmann et al. 2013). C58 mice had significantly less
functional activation of the STN with no significant differences from C57BL/6 mice
in neuronal activation in control brain regions (e.g., hippocampus).

These findings led to the idea that if we could increase indirect basal ganglia
pathway activation, we should be able to reduce repetitive behavior. We decided to
achieve such activation by selecting a drug targeted to a neurotransmitter receptor that
was expressed selectively on striatal indirect pathway neurons. We targeted A2A

adenosine receptors as these are highly enriched in the striatum and expressed on
indirect, but not direct, pathway striatal neurons (DeMet and Chicz-DeMet 2002). Our
efforts to reduce repetitive behavior by administering an A2A agonist were unsuccess-
ful, however. This failure was explained by the work of Karcz-Kubicha et al. (2006),
who showed that an A2A agonist alone did not generally induce activation in striatal
neurons. When they added an A1 agonist to the A2A agonist, they now observed striatal
neuronal activation, and importantly, this activation was seen in indirect but not direct
pathway neurons. This led us to test whether combining a selective A2A receptor
agonist with a selective A1 agonist would attenuate repetitive behavior in deer mice.
As described in Tanimura et al. (2010a), this drug combination selectively and sub-
stantially reduced repetitive behavior in a dose-dependent manner. We have since
extended these findings to the C58 mouse model. By using oil as a vehicle, we have
been able to employ a slow release drug preparation that suppresses repetitive behavior
for up to 6 h.

Striatal neurons of both direct and indirect pathways express complexes of neuro-
transmitter receptors that are structurally and functionally linked (Fuxe et al. 2010).
Indirect pathway neurons express a receptor complex that includes D2, A2A, and
mGluR5 receptors. We evaluated the effects of drugs that target this receptor complex
to elucidate their individual and combined roles in modulating repetitive behavior. As
stated previously, we knew that stimulating the A2A receptor alone would be insuffi-
cient to reduce repetitive behavior. We also knew from other work that the A2A and D2

receptors are functionally antagonistic or negatively coupled, whereas the A2A and
mGluR5 receptor are positively coupled. We, therefore, tested whether an A2A agonist,
a D2 antagonist, and an mGluR5 agonist, in combination, would reduce repetitive
behavior by presumably maximizing stimulation of the indirect pathway. Consistent
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with our hypothesis, we found that this three drug combination or cocktail substantially
and selectively reduced repetitive behavior. Administration of any of these drugs alone
or any combination of two drugs had no significant effects on repetitive behavior.
These findings were clearly demonstrated in both the deer mouse and C58 mouse
models of repetitive behavior.

One important question posed by our biochemical and pharmacological findings is
whether decreased indirect basal ganglia pathway plays an important role in repetitive
behavior beyond our two mouse models. Happily for us and for the translational value
of our work, the short answer is yes. For example, the enhanced motor movements
characteristic of Huntington’s disease have been attributed to the differential degener-
ation of indirect pathway striatal neurons (Deng et al. 2004; Starr et al. 2008). Deep
brain stimulation (DBS) applied to the STN, a key relay station in the indirect pathway,
reduced symptom severity in previously treatment refractory OCD patients (Burdick
et al. 2009). Grabli et al. (2004) have reported that stereotyped and self-injurious
behavior (e.g., licking and biting of fingers) was induced in monkeys when a GABA
receptor antagonist was injected into the external aspect of the GPe, also a brain region
that is part of the indirect pathway. This repetitive behavior was reduced by DBS
applied to STN (Baup et al. 2008), further supporting a role for the indirect pathway. It
should be stressed, however, that there is no evidence yet for mediation of repetitive
behavior in neurodevelopmental disorders by the indirect basal ganglia pathway.

Implications

We believe there are important implications of our work with animal models for
persons with neurodevelopmental disorders exhibiting repetitive behaviors. First, we
can develop animal models that exhibit robust lower order and higher order repetitive
behaviors. This is critical if we are to try to understand the neurobiology of the broad
range of repetitive behavior. Second, we have shown in two different models that
environmental factors or early experience plays a critical role in the development and
attenuation of repetitive behavior. Understanding how such experience affects brain
structure and function will inform development of more effective or targeted early
interventions. A very promising example of this, although not directed specifically at
repetitive behavior, comes from the work of Woo and Leon (2013). In this study,
sensorimotor enrichment, analogous to our use of EE in mice, was shown to be
effective in ameliorating some of the symptoms of autism in children.

Our work identifying the role of the indirect pathway is hopefully of translational
value in several ways. It provides evidence of a delineated brain pathway that mediates
repetitive behavior in an animal model relevant to autism and related disorders. Based
on this and other work, there is reason to think that alterations in this pathway may be
clinically important. This generalization could be explored using sophisticated neuro-
imaging techniques such as DTI which allows visualization and quantification of brain
pathways.

Our pharmacological studies here are important in at least two ways. First, the results
of these experiments provide strong evidence to support the hypothesis that repetitive
behavior is mediated by reduced indirect pathway activation. Second, these studies
provide novel potential therapeutic targets that can be utilized in drug development.
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This is particularly important as there are currently no clinically available medications
that effectively treat repetitive behavior in neurodevelopmental disorders. Successful
development of medications of proven efficacy will more likely come from Bbottom-
up^ efforts that delineate the underlying neurobiology. This work will identify novel
potential therapeutic targets, which will then provide the basis for drug development
efforts that will hopefully culminate in safe and effective medications to treat repetitive
behaviors.

We have shown in two different models that environmental factors or early experience
plays a critical role in the development and attenuation of repetitive behavior.
Understanding how such experience affects brain structure and function will inform
development of more effective or targeted early interventions. Thus, expanding the
evidence base for the effectiveness of EE-derived interventions for both lower order and
higher order repetitive behaviors in children with neurodevelopmental disorders will be
critical. In addition, continued translation into clinical practice of studies that conceptualize
variability as an operant and differentially reinforce response variance (e.g., Miller and
Neuringer 2000) will provide a behavioral technology to address effectively the broader
problem of generalized rigidity or inflexibility.
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