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Free-energy landscape is an important quantity to study
large-scale motions of a biomolecular system because it
maps possible pathways for the motions. When the land-
scape consists of thermodynamically stable states (low-
energy basins), which are connected by narrow confor-
mational pathways (i.e., bottlenecks), the narrowness
slows the inter-basin round trips in conformational sam-
pling. This results in inaccuracy of free energies for the
basins. This difficulty is not cleared out even when an
enhanced conformational sampling is fairly performed
along a reaction coordinate. In this study, to enhance the
inter-basin round trips we introduced a virtual state that
covers the narrow pathways. The probability distribu-
tion function for the virtual state was controlled based
on detailed balance condition for the inter-state transi-
tions (transitions between the real-state basins and the
virtual state). To mimic the free-energy landscape of a
real biological system, we introduced a simple model
where a wall separates two basins and a narrow hole is
pierced in the wall to connect the basins. The sampling
was done based on Monte Carlo (MC). We examined
several hole-sizes and inter-state transition probabilities.
For a small hole-size, a small inter-state transition prob-
ability produced a sampling efficiency 100 times higher
than a conventional MC does. This result goes against
ones intuition, because one considers generally that the
sampling efficiency increases with increasing the transi-
tion probability. The present method is readily applica-
ble to enhanced conformational sampling such as multi-
canonical or adaptive umbrella sampling, and extendable
to molecular dynamics.
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Computer simulation is now widely used to explore the

biomolecular conformational space. Free-energy (or energy)

landscape is an important quantity obtainable from the sim-

ulation. The landscape provides distribution of thermody-

namically stable states (low-energy basins) and pathways

connecting the stable states. When the sampling is achieved

in a wide conformational space, the landscape can be a

road map for large-scale motions such as protein folding or

protein-ligand binding1–5. Figure 1 shows schematically the

landscape, where the conformation passes through regions

circled by broken lines, when an inter-basin transition occurs.

To accurately estimate the free-energy difference between

the low-energy basins, the conformational sampling should

substantialize a number of transitions among the low-energy

basins. However, when narrow pathways (bottlenecks) con-

nect the low-energy basins, the frequency of transitions de-

creases, and the conformational sampling takes a long com-

puting time to estimate accurately the probability (free

energy) of each basin. Thus, generally, the computing time

for the accurate free-energy estimation increases with nar-

rowing the bottlenecks because the bottlenecks prevent inter-

basin traveling. This difficulty lies in many sampling prob-

lems of biomolecular systems.

A generalized ensemble (GE) method, such as multi-

canonical sampling6–10 or adaptive umbrella sampling11,12,

generates an even (i.e. flat) probability distribution along a

reaction coordinate. The flatness ensures that the conforma-

tional space is sampled widely along the reaction coordi-

nate. In other words, the sampling is enhanced along the reac-

tion coordinate. Thus, one may imagine that the GE method
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can cause the passing through the bottlenecks effectively.

However, we have shown that a fairly performed GE

method provides even worse sampling efficiency than a

conventional method when the conformational space on the

reaction coordinate becomes narrow where the entropy sud-

denly decreases (i.e., the bottleneck appears on the path-

way)13. Even the reaction coordinate is well designed so that

the conformational changes along the reaction coordinate

provide natural passage through the bottleneck, the confor-

mation may be sluggish for long time in a basin before

detecting the bottleneck.

In this study, we introduce a virtual state in the conforma-

tional space to ease passing the bottlenecks. Although this

method is developed for sampling the biological systems,

here we apply it to a simple system, which consists of two

basins connected by a bottleneck. Because of the simplicity

of the system, the free energies of the basins are computable

analytically. We perform two Monte Carlo (MC) simula-

tions called a “real-state MC” and a “virtual-state coupled

MC”. The real-state MC is a conventional sampling method

without the virtual state. In the virtual-state coupled MC,

the virtual state covers the bottleneck. We show that the vir-

tual state considerably enhances the inter-basin round trips.

Methods

Figure 1 is a scheme for the free-energy landscape of a

biological system: See also Figure 1b of Ref. 3, which is

the free-energy landscape of a β-hairpin peptide in explicit

water. Thus, to increase the accuracy of the free energies for

the low-energy basins, frequency of passing through the bot-

tlenecks should be increased. To develop a useful method,

we introduce a simple model explained below. A benefit of

the simple model is that one can estimate analytically the

free energies of the basins. We impose an important require-

ment on the model: a transition among the low-energy basins

occurs through a narrow pathway. By varying the narrow-

ness of the pathway, we can assess how our method is effec-

tive.

Figure 2 is the simple model, where the inner cavity of a

rectangular cylinder is divided into two regions by a wall,

and a narrow hole (circular cylinder-shaped hole) is pierced

at the center of the wall (see Fig. 2A and B). The two wide

regions, denoted as “state v1” and “state v2” in Figure 2C,

resemble the low-energy basins, and the narrow hole does

the bottleneck. A particle Pa is confined inside a rectangular

cylinder and moves during a simulation to estimate free

energies of the states v1 and v2. Thickness of the wall and

radius of the hole are denoted as rW and rH, respectively (see

Fig. 2B). We define a cartesian coordinate system (see Fig.

2) so that the x-axis is the rectangular cylinder axis. The y-

axis is parallel to one side of the basal planes of rectangular

cylinder and the z-axis to the other side: The origin is set at

the body center of the hole (i.e., the body center of the wall).

The basal planes for states v1 and v2 are defined by x=−x1

(x1>0) and x=−x2 (x2>0), respectively. The position of Pa is

referred as to r= [x, y, z]. For simplicity, we set the potential

energy to be constant in the movable region of Pa. There-

Figure 1 Schematic drawing for free-energy (or energy) land-
scape. Three low-energy basins are shown with iso-free-energy con-
tour lines, and broken-line circles indicate bottlenecks that connect the
low-energy basins.

Figure 2 (A) Overview of system. Winding line illustrates motion
of particle P

a
. (B) Intersection of the system (panel A) on the x-y

plane. (C) Location of the virtual state v
3
.
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fore, the free-energy barrier caused by the hole is purely an

entropic barrier.

First, we performed a conventional MC simulation and

estimated numerically the volumes of the states v1 and v2,

which are denoted Vv1 and Vv2, respectively. We call this

sampling “real-state MC”. Since the potential energy is con-

stant, Pa can move unconditionally in the movable region.

To count the round trips of Pa between v1 and v2, we intro-

duced two regions, HR1 and HR2 (see netted areas in Fig.

1B), expressed by inequalities x≤−x0 and x≥x0 (x0>0),

respectively. After Pa visits HR1 (or HR2), we wait till Pa

returns to HR1, during which Pa visits HR2 at least once.

We count this move as a round trip. When Pa has returned to

HR1 without visiting HR2 (even with visiting state v2), this

move is incomplete as a round trip. Then we wait further

till Pa returns after visiting HR2. We denote the number of

round trips from a long simulation as NRT.

Analytical values for Vv1 and Vv2 are given as:

= + , (i= 1, 2) (1)

where S is the area of the bases planes. The free-energy dif-

ference between v1 and v2 is: ΔF=Fv2−Fv1=−ln[ ].

We did not involve temperature in this expression by setting

as kBT=1, because the potential energy is always constant in

the movable region (i.e., Vv1 and Vv2 are independent of tem-

perature). To check the convergence of sampling, we intro-

duce a quantity, volume-ratio convergence, as:

C(t)= , (2)

where  is the numerically estimated volume for state vi

using a partial simulation trajectory from 0 to t steps. We

denote a partial trajectory from t1 to t2 steps as I [t1, t2]. Prac-

tically,  is replaced by the number of snapshots where Pa

exists in vi in I [0, t].

Next, we introduce a spherical state v3 centered at the

coordinate origin with radius of rV (Fig. 1C), where the left

half (x<0) of v3 overlaps with v1, and the right half (x≥0)

with v2. Therefore, v3 is not a substantial state separated from

v1 and v2 but a virtual state. Here, we introduce a virtual-

state coupled MC simulation as follows: Suppose that Pa

starts from a position in state v1. During an interval I [0, Δt],

we confine Pa to stay in v1: When Pa is passing the v1−v2

boundary, this move is rejected, although Pa can pass the v1−

v3 boundary freely. If Pa is inside of the v1−v3 boundary at

the last step of I [0, Δt], Pa may transition to v3 with a transi-

tion probability of p1→3 (the actual values for the transition

probability is given later). Note that this inter-state transi-

tion alters the attribution of Pa (i.e. the state specifier) from

v1 to v3 without changing the position of Pa in the rectangu-

lar cylinder. If Pa is outside the v1−v3 boundary at the last

snapshot, no transition occurs. The particle Pa is confined

again in v1 during the next interval I [Δt, 2Δt], and the state

transition is examined at the last step of I [Δt, 2Δt].

Once the inter-state transition (v1→v3) has been accepted

at the end of I [0, Δt], then Pa is confined in v3 during the

interval of I [Δt, 2Δt]. Now, Pa can pass the v1−v2 boundary

freely. However, moves toward outside of the v1−v3 and v2−

v3 boundaries are rejected. At the last step of I [Δt, 2Δt], the

state transition is examined as follows: Pa may return back to

v1 with a probability of p3→1 when Pa is in the region of x<0.

On the other hand, Pa may transition to v2 with a probability

of p3→2 when Pa is in the region of x>0. Suppose that Pa has

transitioned to v2. Then Pa is confined in v2 during the interval

of I [2Δt, 3Δt], where Pa can pass the v2−v3 boundary freely,

but moves passing the v1−v2 boundary are rejected. At the

last step of I [2Δt, 3Δt], Pa may transition to v3 with a transi-

tion probability of p2→3 when Pa is in the region of r≤rV,

where r= [x2+y2+z2]1/2. Otherwise, Pa stays in v2 for the next

interval I [3Δt, 4Δt]. By this way, the inter-state transition is

examined at steps nΔt (n=1, 2, ...).

Since the motion of Pa from r to r' within vi is uncondi-

tionally accepted, a long simulation yields an equation:

P(r, vi)=P(r', vi)= cons , (3)

where P(r, vi) is the probability distribution function of Pa at

position r in vi. An inter-state transition from vi to vj at a

position r is controlled by a transition probability pi→ j . Then,

the long simulation yields an equation:

Combining Eqs. 3 and 4, the probability distribution func-

tion satisfies the following equation:

where r1 and r2 are arbitrary positions in v1 and v2, respec-

tively. Equation 5 indicates that the states v1 and v2 are indi-

rectly linked via the virtual state v3.

We note that Eq. 5 is not an equation to determine the

absolute values for the inter-state rate constants. Equation 5

can be rewritten as:

where the inter-state transition probabilities are redefined as:

p'i→ j = kpi→ j , (7)

where the coefficient k is any positive value. With increas-

ing k, the rate constant increases, and the simulation length

to reach equilibrium becomes short. In MC scheme, then,

the largest rate constant (the quickest convergence) may be

result from pi→ j=1. The parameter Δt also changes the rate

constants: the larger the Δt, the longer the simulation length
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to obtained an equilibrated probability distribution function.

Based on the above discussion, the parameter set of

[pi→ j, Δt]= [1, 1] may be the best to speed up the round trips.

Note that this parameter set is similar with the simulation

condition of the real-state MC (i.e., the conventional MC).

In fact, we show below that the smaller the Δt, the quicker

the convergence. However, against our better instincts, the

larger the pi→ j, the worse the sampling efficiency for a

narrow-hole system.

Results and discussion

We set the system parameters (non-dimensional quanti-

ties) as: S=2.02=4, rW=0.2, x1=1.0, x2=2.0 and x0=0.5.

Quantities rH, Δt, and pi→ j are specific to the virtual state.

We examined several values for rH and Δt: rH={0.005, 0.01,

..., 0.16}={d×20, d×21, ..., d×25} where d=0.005, and Δt=

{1, 10, ..., 100000}={100, 101, ..., 105}. For simplicity, the

transition probabilities from the virtual state to the real states

are set to a single value pt, and those from the real states to

the virtual state to 1.0: I.e., p3→1=p3→2=pt (0<pt≤1) and

p1→3=p2→3=1.0. We examined ten pt values as: pt={2−9, 2−8,

..., 2−1, 1}. The size of the virtual state rV was set to 0.3. The

total MC length (number of trials to move Pa) is 5×1011

steps for all simulations.

In the real-state MC, NRT rapidly decreased with decreas-

ing rH (Fig. 3A). Figure 3B demonstrates the volume-ratio

convergence C(t) for rH=0.16 and rH=0.005. The conver-

gence was quick for rH=0.16 and slow for rH=0.005.

Current study presents a recipe to enhance the sampling

by introducing the virtual state for a narrow-hole system.

The pt−NRT relation (Fig. 4A) for the narrowest-hole system

(rH=0.005) at various Δt manifests that the virtual state

enhances the sampling because NRT is larger than that from

the real-state MC (broken line). The only exception was

found at [pt, Δt]= [1, 105]. For Δt≤104, NRT increased mono-

tonically with decreasing pt. The highest efficiency was found

at pt=2−9, where NRT was about 100 times larger than that

from the real-state MC. Figure 4B plots C(t) from [pt, Δt]

= [2−9, 1] and [1, 1]. The convergence was quick for pt=2−9

and slow for pt=1. The mechanism for the enhancement is

simple: With decreasing pt, the probability P(r, v3) of Pa in

the virtual state increases, and accordingly the hole-passing

chance increases.

The black solid line (Δt=105) of Figure 4A had different

behavior from the other lines (Δt≤104): NRT had a peak at

pt=2−7. Let us consider a situation that pt falls to zero

(pt→0). In this extremity, NRT should decay to zero (NRT→0)

because Pa cannot escape from v3 once Pa is trapped in

v3. Then, we get two inequalities: dNRT/dpt| pt=0>0 and

dNRT/dpt| pt=1<0. These inequalities result in that NRT has a

peak. The NRT showed no peak for Δt≤104 because the peak

position is below pt=2−9. Here, one may raise a question:

Why does the peak position for Δt=105 was larger than

those for the other Δt? This is because increment of Δt

decreases the inter-state transitions (the rate constants). In

this regime, a large pt (transition probability from v3 to v1 or

v2) plays a role of enhancer for inter-state transitions.

Accordingly, the peak position shifts positively.

The positive shift of the peak position is clearly shown

for a middle hole rH=0.02 (Fig. 5A): All curves had a peak,

and the peak position shifted positively with increasing Δt.

Figure 5B demonstrates the pt−NRT relation for the largest

hole (rH=0.16), where the peak position was merge into the

edge of pt (pt=1) for Δt≥104.

The virtual-state coupling is readily applicable to GE meth-

ods, such as multicanonical or adaptive umbrella sampling.

The GE enhances the sampling along a reaction coordinate

x with introducing an effective potential energy Eeff=E+kBT

ln[Pc(x, T)], where E is the original potential energy, Pc(x, T)

a canonical distribution of x at temperature T, and kB the

Boltzmann constant. The reaction coordinate is a function of

Figure 3 Real-state MC. (A) Relation between r
H
 and N

RT
, and

(B) volume-ratio convergence, C(t), for two r
H
 values.
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position (or conformation) r: x=x(r). The positional transition

probability from r1 to r2 is simply given by exp[−ΔEeff /kBT],

where ΔEeff =Eeff(x(r2))−Eeff(x(r1)). The phase point fluc-

tuating in the entire conformational space may spend a long

time before running into the narrow bottleneck8. One can set

the virtual state covering the bottleneck, where the virtual

volume is larger than the bottleneck size. Then, the chance

that the phase point finds the bottleneck increases. In the vir-

tual state, the phase point can find bottleneck readily because

the phase point is confined in the virtual state for a while.

We note that the current method is expandable readily to

molecular dynamics (MD) by computing an effective force

 acting on atom i as: fi=−grad[Eeff(x, T)]9. With intro-

ducing the virtual state, a canonical MD simulation at tem-

perature T with  becomes virtual-state coupled multi-

canonical or adaptive umbrella sampling. Conformational

changes in each time interval Δt are done by MD scheme,

and the inter-state transitions examined at the end of time

intervals (t=nΔt) are achieved by MC scheme.

In the present study, the bottleneck position in the confor-

mational space is known in advance. However, the bottle-

neck position is generally unknown a priori. Then, before

introducing the virtual state, pre-sampling is required, which

may be a “real-state” multicanonical or adaptive umbrella

sampling. In general, shape and volume of the virtual state

are arbitrary depending on the system.

The current model (Fig. 2) was defined in the three-

dimensional space. Then, one may doubt if the current

method is useful for biological systems, because the bio-

logical systems are defined in a high-dimensional space.

Figure 4 Virtual-state coupled MC for r
H
=0.005. (A) Relation

between p
t
 and N

RT
 at the various Δt. Broken line represents N

RT
 from

real-state MD. (B) Volume-ratio convergence, C(t), from simulations
with [p

t
, Δt]= [2−9, 1] and [1, 1].

f i

eff

Figure 5 Relation between p
t
 and N

RT
 for r

H
=0.02 (A) and

r
H
=0.16 (B).

f i

eff
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However, as shown in all-atom model of polypeptides1–5,

the bottlenecks are well identified by projecting the high-

dimensional distribution in a low-dimensional (2D or 3D)

conformational space.

Last, we note that the virtual state acts as a lens to view

the probability distribution function at the bottleneck. To

increase the events passing through the bottleneck, we set pt

to be small, which makes the probability distribution for the

virtual state large. Thus, the virtual-state coupled sampling

can be used to estimate both free energies of major basins

and the bottlenecks (i.e., free-energy barriers).
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