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Introduction
There are very few human health or exposure 
data for the majority of the > 80,000 chemi-
cals in commerce (Egeghy et al. 2012; Judson 
et al. 2009). The lack of data poses challenges 
to those looking to mitigate the potential 
risks or evaluate impacts in a comprehensive 
manner. The National Health and Nutrition 
Examination Survey (NHANES) [Centers 
for Disease Control and Prevention National 
Center for Health Statistics (CDC NCHS) 
2010] provides a snapshot of the current 
health status of a representative U.S. popula-
tion. Numerous studies using the NHANES 
and similar data sets have been used to extract 
possible associations between markers of 
exposure to environmental chemicals and 
possible health effects (Patel and Ioannidis 
2014). The nature of the data sets and the 
models used makes it a challenge to compare 
the studies in a systematic way, and conse-
quently leads to an iterative process involving 
multiple individual hypotheses being tested 
over the course of the analysis (Patel and 
Ioannidis 2014). This results in a complicated 
design in which it is impossible to account for 
multiple individual a priori hypothesis tests 
(Patel and Ioannidis 2014). The consequence 
of this is more false positive relationships and 
an overall lack of transparency.

Researchers have conducted large-scale 
analyses of the data sets (Gennings et  al. 
2012; Liu et  al. 2009; Patel et  al. 2010, 
2012a, 2012b), enabling better control for 
the multiple testing effects of running several 
regression models. Patel et al. (2010, 2012a, 
2012b) used FDR (false discovery rate) 
correction in a semi-supervised approach to 
test hundreds of regression models associating 
environmental factors with a specific disease 
outcome in what they coined “environment-
wide association study” (EWAS). This 
approach enables testing of factors that may 
not be implicated in other work as having a 
relationship with the outcome, increasing the 
likelihood that new hypotheses are generated. 
It also makes results more comparable with 
traditional approaches, which may be advan-
tageous when aggregating results of several 
studies. Another approach has been to lump 
variables, combining compounds in a similar 
class or affecting the same pathway. This 
lumping approach helps to limit the number 
of tests run and can provide additional insight 
on how effects might be related. Liu et al. 
(2009) looked at functionally related chemicals 
and their effects on the liver by first prioritizing 
the chemicals of strongest effect based on 
canonical correlation before building regres-
sion models. Gennings et al. (2012) went a 

step further in defining agglomerative markers 
for both health outcomes and environmental 
chemicals. The process of calculating a relative 
weight for the chemicals in a group enables 
identification of the ones having the most 
effect on the outcome, and can help prioritize 
or identify additional confounding variables 
for individual regression models. Because 
one challenge is in defining and assigning the 
negative health outcomes, combined outcomes 
such as general wellness may facilitate model 
development when an exact association is 
still unclear.

Unfortunately, none of these approaches 
address the challenges of missing/sparse data 
and identifying possible confounding variables 
in instances where there is no co-occurrence 
data. Additionally, the regression models 
typically used are impractical for a compre-
hensive survey of all compounds versus all 
relevant health measures in the NHANES 
data. To address these issues as well as to 
enable prioritization of associations, we devel-
oped a workflow based on frequent itemset 
mining (FIM) (Bell and Edwards 2014). This 
approach enables consuming a data set and 
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generating associations that a) describe the 
relative likelihood of an exposure and health 
event not co-occurring by chance, b) enable 
relative ranking for prioritization even in the 
absence of co-occurrence, and c) are generated 
by a simple, transparent format for communi-
cation with subject domain experts.

Here we present the application of the 
FIM approach to a meta-analysis of the 
1999–2010 NHANES cycles. This work 
aims to address the ability of a market 
basket approach to facilitate prioritization of 
chemical/health associations, comparisons 
and reconciliation of prior published works 
that consider only a subset of the data, and 
hypothesis generation for follow-up studies. 
Exploration of the robustness of the approach 
to the different data cycles and confounding 
variables is shown. This approach was evalu-
ated via two case studies, the C8 Science 
Panel’s review of perfluorooctanoic acid 
(PFOA) (C8 Science Panel 2005) and 
a comparison with the multiple regression 
approach presented in the study by Patel 
et al. (2010) looking at type 2 diabetes. Given 
the positive results from this evaluation, we 
propose the use of this FIM workflow to assist 
in interpreting the literature and prioritizing 
chemicals and chemical–health associations 
for further study.

Methods
Data sources and processing. Figure 1 outlines 
the general workflow for the generation and 
use of associations between chemical and 
effects markers based on NHANES data. 
Data from NHANES 1999–2010 (CDC 
NCHS 2010) form the basis of this study. 
For details on the specific variables used, 
including the variable label and a descrip-
tion, see Supplemental Material, File  S1. 
For more information on the variable 
distribution and cutoffs used for discretiza-
tion (along with source), see Supplemental 
Material, File  S2. Variables were classi-
fied as environmental chemicals (E), health 
biomarkers (H), or questionnaire responses 
(Q). Of the 373 possible unique variables, 
the data contained 236 markers for environ-
mental chemicals, 104 of health biomarkers, 
and 33 questionnaire responses. Across all 
cycles only 28, 52, and 24 measures for E, 
H, and Q, respectively, were in all the data 
sets. Data processing and analysis followed 
the approach described by Bell and Edwards 
(2014). Urinary measures for E and H were 
creatinine corrected due to the high level of 
correlation between measures in the absence 
of the correction (Figure 1, Preprocessing). 
Discretization (Figure 1, Discretization) was 
done by identifying values below (if appli-
cable), at, or above (–1, 0, 1, respectively) 
normal, which was defined either by the 
population distribution (< 2.5 percentile or 

> 97.5 percentile) or clinically established 
values (outside of predefined normal range). 
For variables having unclear clinical ranges 
(such as some vitamin and carotenoids), 
population distribution was used. All values 
used for the discretization are recorded in the 
Supplemental Material, File S2, along with 
references for those values derived from clini-
cally established values. Full text descriptions 
of the variables can be found in Supplemental 
Material, File S1. Questionnaire data were 
taken as yes (1) if there was a positive 
response, no (0) or no data (NA) otherwise. 
Two variables were derived from the question-
naire responses. Grade 1 angina, abbreviated 
here as “CDQ99,” is defined based on the 
answers to questions relating to chest pain 
as specified by the CDC (http://www.nber.
org/nhanes/2005_2006/downloads/cdq_d.
pdf). Cardiovascular disease, abbreviated 
here as “CD,” is defined based on grade 1 
angina, self-reported angina, or heart attack 
(i.e., CDQ99  =  1 or MCQ160D  =  1 or 
MCQ160E = 1 or MCQ160C = 1). A large 
portion of the population has diabetes or has 
not been diagnosed as diabetic but the labora-
tory tests indicate a risk (high blood glucose 
and hemoglobin A1c); therefore, a marker for 
diabetes (Dia) was added to include both these 
groups (Dia = DIQ010 = 1 or LBXGLU = 1 
or LBXGH = 1).

Identification of associations. Associations 
(Figure 1, Rule identification) were identi-
fied as described in Bell and Edwards (2014) 

using the FIM approach [see Supplemental 
Material, Files S3 (text version) and S4 (Excel 
version, “Spreadsheet”)]. FIM [also known 
as market basket analysis or association rule 
mining (Agrawal et  al. 1993; Borgelt and 
Kruse 2002; Borgelt 2003, 2012; Hahsler 
et al. 2005)] looks for patterns of frequently 
co-occurring items within a data set. Interest 
measures (Hahsler et  al. 2005; Tan et  al. 
2004) are used to describe the likelihood of 
an itemset or an association rule (X → Y). 
“Support” describes the proportion of the 
transactions (samples, subjects) containing the 
rule (X and Y), whereas “confidence” of a rule 
is the proportion of all transactions having X 
that also have Y. Stated another way: the prob-
ability of finding Y given X. “Lift” measures 
how frequently X and Y co-occur versus the 
expectation that they were independent. Odds 
ratio relates the “risk” of Y when X is present 
relative to when X is not present. 

A minimum support value of 10 samples 
was used in conjunction with a minimum 
confidence of 0.1 and lift of 1.0 to account 
for the sparsity of data. For a more detailed 
discussion of setting confidence and support 
measures, see Hahsler et  al. (2005) and 
Megiddo and Srikant (1998). Rules were 
identified with the chemical as the ante-
cedent (Bell and Edwards 2014). Lift interest 
measure (Brin et al. 1997) from the associa-
tion rules was used as a basis for rank compar-
ison across NHANES cycles and data subsets. 
For the rank-based comparisons to look at the 

Figure 1. General workflow using FIM. A brief overview of the workflow from Bell and Edwards (2014) is 
described. Values used in the Discretization step are a key determinant of the generated rules and should 
be reviewed.
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impact of cycle years or confounding variables 
on the rules generated, the top association (by 
highest lift) was numbered 1. Associations not 
found in that particular data set were assigned 
a value greater than the largest number of 
associations for the itemsets compared to 
include them in the ranking. All analyses 
were done in R (version 3.0.3) (R Core Team 
2013) using the arules package (Hahsler et al. 
2005) for generating the association rules. 
All code and input data required to replicate 
this study are available in the Supplemental 
Material, File S5, “Zip.”

Case studies. We compared the list of 
factors examined by the C8 Science Panel 
(2005) with the variable list used in the 
present study to identify common outcomes 
considered. All associations containing PFOA 
and relating to a health outcome from the 
questionnaire data were extracted from 
Supplemental Material, File S3, for consid-
eration (see also Supplemental Material, 
File S4, Worksheet “StrongPFOA”). For any 
outcome where either the C8 panel found a 
probable association or the FIM yielded an 
association with PFOA, the details from the 
C8 panel were considered for potential sources 
of discrepancy to gauge whether there was 
a likely false positive or false negative from 
the FIM. For comparison with the EWAS 
study of diabetes by Patel et al. (2010), asso-
ciations including individuals with elevated 
fasting blood glucose (LBXGLU  =  1; see 
Supplemental Material, File S2), and those 
who had a positive diabetes aggregate marker 
(Dia, described above) were considered. The 
list of significant associations taken from Patel 
et al. (2010) were used to compare with the 
FIM. FIM associations covered NHANES 
cycles 1999–2010, whereas the ones in the 
EWAS study covered each cycle from 1999 
through 2006 individually.

Results
General  data propert ie s .  Indiv idual 
biomarkers of environmental chemicals and 
disease rates showed some changes across 
NHANES cycles (see Supplemental Material, 
Figure S1). Environmental chemicals (see 
Supplemental Material, Figure  S1A–C), 
generally show a slight decrease in recent 
cycles in the average amount per individual 
with notable exceptions (e.g., enterodiol; see 
Supplemental Material, Figure S1A). Disease 
prevalence (based on survey responses) 
tended to increase during this same period 
(see Supplemental Material, Figure S1D–F). 
The number of health outcomes associated 
with a given environmental chemical tended 
to decrease in later cycles (see Supplemental 
Material, Figure  S2). Figure  2 illustrates 
the rules generated using the different data 
stratifications (sex and race/ethnicity), high-
lighting the diversity of the different strata. 

Considering only the associations generated 
from all data (Figure 3), we note that some 
markers for health are more strongly and 
commonly associated with high levels of envi-
ronmental chemicals (for example, vitamin D 
levels, LBDVID), whereas other markers are 
associated with very few chemicals (MCQ053, 
treatment for anemia in previous 3 months) 
(see Supplemental Material, File S1).

Prioritization of chemical → health asso-
ciations via FIM. A list of 7,848 associations 
between 219 chemicals and 93 markers of 
health (combining questionnaire and health 
biomarkers) was generated using all data 
from 1999–2010 and data strata representing 
sources of known confounding factors, 
sex and race/ethnicity (see Supplemental 
Material, Files S3 and S4, Worksheet “Rules
AcrossVarq=0.025conf=0.1su”). Confidence 
values describe the proportion of associations 
containing the chemical that also contain 
the health marker noted and can be used 
to rank observations for a given chemical. 
Odds ratios provide a measure of the odds 
that the chemical and the health outcome 
are related versus the odds that they are 

independent. These can be used to compare 
within and across chemicals within the same 
association set.

Workflow example using PFOA to identify 
candidates for follow-up. To illustrate use of 
the FIM approach for hypothesis generation 
and prioritization, we present an example 
using PFOA. All associations generated 
across the strata are available in Supplemental 
Material, Files S3 and S4 (“Spreadsheet”). 
Following the workflow outlined in Figure 1, 
rules were generated using different data strati-
fications. All associations with PFOA were 
extracted from the combined data and across 
each stratification (sex and race/ethnicity) 
(Figure 4, panel 1). Initial stratification based 
on sex and race/ethnicity helps target groups 
that could have differential disease prevalence 
for outcomes of interest. Associations with a 
confidence ≥ 0.2 and an odds ratio ≥ 1.1 were 
prioritized as “strong” associations (Figure 4, 
panel 2; see also Supplemental Material, 
File S4, Worksheet “StrongPFOA”).

In viewing the results, findings that are 
consistent among several strata are consid-
ered top candidates for follow-up either by a 

Figure  2. Heat map of associations across the different slices. Colors are based on odds ratio 
of the associations, associations not found or below the threshold are in gray (NA). Abbreviations: 
MexAmer, Mexican American; NHBlack, non-Hispanic black; NHWhite, non-Hispanic white. Color 
labels on the left highlight the different chemical groups for the association. From bottom to top: Light 
yellow = drinking water volatile organic compounds; light green = urinary perchlorate, nitrate, and thio-
cyanate; gray = phytoestrogens; light cyan = phthalates; midnight blue = urinary metals; cyan = current 
use pesticides; salmon = urinary arsenic; tan = smoking; green yellow = environmental pesticides; 
purple = PFC (perfluorinated compound); magenta = PCB; pink = PAH; black = organophosphate pesti-
cides; red = organochlorine pesticides; green = environmental phenols; yellow = DFP (diisopropyl fluoro-
phosphate); brown = carbamates; blue = blood volatile organic compounds; turquoise = blood metals.

All Female Male MexAmer NHBlack NHWhite

Odds ratio across data slices
< 1.28
1.28–1.69
1.69–2.48
> 2.48
NA
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targeted literature search or by more quan-
titative modeling. These include cholesterol 
and hypertension along with arthritis and 
overweight. The second group of candidates 
for further investigation are those with clear 
differences among the different subgroups 
such as self-reported thyroid problems in 
females (MCQ160M) and altered phospho-
rous (LBXSPH) and uric acid (LBXSUA) 
seen in the male and non-Hispanic black 
groups. Characterization of the associations 
is an important part of the work flow. Here 
one looks at the co-associations with other 
chemicals–health outcomes as ways to deter-
mine additional support (multiple associations 
with variables measuring similar states) or 
possible confounding variables. For example, 
no clinical markers for thyroid disruption 
are also associated with PFOA, yet there 
are several clinical markers to accompany 
the self-reported markers for high choles-
terol; this suggests that the overall weight of 
evidence for the cholesterol association with 
PFOA is higher than the thyroid association. 
In looking at the other chemicals associated 
with self-reported thyroid problems in the 

female stratification, there is also an absence 
of clinical markers. Furthermore, when one 
looks at the compounds associated with 
self-reported thyroid problems [PCBs (poly-
chlorinated biphenyls), organochlorine (OC) 
pesticides, PFOA and PFOS (perfluorooctane-
sulfonic acid), TCDD (2,3,7,8-tetrachloro
dibenzo-p-dioxin), and cadmium], there is 
a reasonable basis for co-exposure (Figure 4, 
panel 3; see also Supplemental Material, 
File S4, Worksheet “StrongMCQ160M”). 
Future models looking at the interaction of 
PFOA and thyroid should account for these 
compounds. Similarly the association between 
PFOA and phosphorous and uric acid in the 
male and non-Hispanic black strata could 
result from an underlying relationship with 
diabetes or hyperparathyroidism.

Comparison of PFOA associations with 
the C8 panel findings. To assess the ability 
of the FIM method to identify associations, 
we compared the C8 Science Panel’s (2005) 
findings on probable link evaluations with 
PFOA. The C8 Science Panel is a group of 
public health scientists commissioned to 
assess whether or not there was support for 

a probable link between exposure to PFOA 
and various health outcomes as part of a class 
action settlement. As part of their work, they 
did an extensive research review to compile 
what was known about health effects of 
PFOA as well as to design and implement 
new research on exposure effects using a 
community in the Mid-Ohio Valley whose 
exposure to PFOA triggered the lawsuit.

Table 1 shows the results of the analysis. 
NHANES variable labels used for the 
comparison are shown in the NHANES 
variable column. Health outcomes studies by 
the C8 panel were omitted if there was no 
comparable information from the NHANES 
subset considered in this paper. Two diseases 
showed a disagreement between FIM and 
the C8 panel. For high blood pressure, the 
measurements used in the studies considered 
by the panel were different from those used in 
the NHANES study, and this likely contrib-
uted to the disagreement. For arthritis, the 
panel concluded that there was no trend with 
increasing exposure. Interestingly enough, 
there was an association with osteoarthritis 
and low doses of PFOA noted in the C8 

Figure 3. Odds ratios for rules generated from all data (first column from Figure 2). Row color labels indicate the chemical groupings as in Figure 2, and column 
labels indicated groupings for the health variables. Gray indicates no rule present for the data set (NA). Column colors (top) from left to right: turquoise = allergies; 
blue = anemia; brown = arthritis; yellow = asthma; green = cancer; red = cardiovascular health; black = complete blood count; pink = diabetes; magenta = iron; 
purple = kidney; green yellow = liver; tan = multiple associations; salmon = parathyroid; cyan = respiratory; midnight blue = thyroid; light cyan = vitamins and 
minerals; gray = weight.

Chemical–health associations
< 1.26
1.26–1.69
1.69–2.42
> 2.42
NA
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study population. This suggests a possible 
relationship at lower exposures.

Comparison of diabetes associations with 
the EWAS findings. Whereas comparison 
of the results from the C8 Science Panel 
(2005) with our FIM approach highlights 
the distinctions between a thorough literature 
review and a survey of NHANES, the original 
EWAS study by Patel et  al. (2010) is the 
closest match to our method in terms of an 
unsupervised mining of the NHANES data. 
A comparison of these results shows that a 
complete survey of the NHANES data using 
the FIM method compares favorably with a 
more targeted mining of data for a specific 
disease outcome via the EWAS approach.

Table 2 shows the number of chemicals in 
each group that had associations with diabetes 
markers. The values for the EWAS study are 
the maximum across all cycles they consid-
ered (see “Methods”), whereas the FIM used 
data from all cycles (1999–2010) in identi-
fying the associations. FIM (fasting blood 
glucose) highlights the number of associations 
for each group of environmental chemicals 
containing elevated blood glucose levels, 
which matches the criteria used by Patel et al. 
(2010). The FIM approach picks up slightly 
more associations for PCBs and OC pesti-
cides, whereas the EWAS study uniquely 
identifies two heavy metal associations. When 
comparing the specific chemicals, our method 
detected 11 of the 18 chemicals (61%) from 
the EWAS study along with 16 not previously 
identified. Of the 7 chemicals missed by our 
method, the 5 nonmetals do not have data 
for cycle years later than 2004. The diabetes 
marker was measured in all cycle years 
and the apparent prevalence has increased 
in later years (see Supplemental Material, 
Figure S1F); this artificially reduces the asso-
ciations seen across all cycle years because 
there is no opportunity for co-occurrence. 
The stronger associations from the EWAS 
study, including the two chemicals identified 
in two separate cycle years, were still detect-
able in our analysis despite this fact. This 
demonstrates that for strong associations the 
method is robust to missing data.

An additional FIM metric (diabetes 
marker, Dia) considers high hemoglobin A1C 
or whether the subject reported being diag-
nosed as a diabetic in addition to the blood 
glucose measurement. Using this variable 
increased the total number of associations 
from 27 to 107 (Table 2). For a broad survey 
of this nature with very sparse responses, this 
aggregate marker helps to capture lower-
strength associations. For example, all but two 
of the chemicals from the Patel study (Patel 
et  al. 2010) are identified using the FIM 
method when this more inclusive diabetes 
metric is used. Because the goal of this work 
is to identify possible associations for more 

detailed follow-up, the argument for using 
a more restrictive marker such as glucose 
seems less compelling. However, because our 
results include both metrics, along with the 
other individual components included in the 
combined marker, this decision can be left 
to the user.

Discussion
Findings from the case studies. In both the C8 
panel comparison and the EWAS comparison, 
most of the relationships identified were 
recovered using the FIM approach. In the 

first case study (Table 1), discrepancies were 
attributable to the evidence under consider-
ation by the C8 panel. In the case of high 
blood pressure, the precise measurements 
used were different, and the choice of which 
measurement is most appropriate should be 
made in the context of the specific question 
being asked. In the case of arthritis, the expert 
panel considered dose trends, which are a key 
consideration when determining causality. 
This case study highlights that broad surveys 
such as the FIM mining of the NHANES data 
presented here should never be considered a 

Figure 4. Sample workflow using PFOA. The general workflow for data processing (Figure 1) was 
employed leveraging additional data strata to obtain a set of rules. Screenshots are generated using 
Supplemental Material, File S4 (“Spreadsheet”). Ex., example. Rules containing PFOA were extracted 
(panel 1) then those meeting criteria for strong associations were filtered out (panel 2). Use of additional 
filters (panel 3) helps to identify and prioritize the relationships for further follow-up.
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replacement for an expert review of the scien-
tific literature. The data presented, however, 
could provide an ideal starting point for such 
a panel because all of the diseases identified by 
the panel were flagged in the FIM survey.

The second case study demonstrated that 
the results from this comprehensive survey 
of NHANES are comparable with a more 
targeted study focused on a single disease 
end point. The slight increase in findings 
for FIM compared with EWAS for compa-
rable markers (Table 2) was not surprising 
given the additional cycles investigated and 
potentially less stringent criteria due to the 
intentionally low confidence level used in 
FIM. The use of an aggregate marker such as 
the diabetes marker (Table 2), which is less 
sensitive to variability of spot measurements 
in individual variables, captures many more 
potential associations than either method 
using a single marker; but prudent follow-
up should include consideration of the asso-
ciations seen with each marker individually. 
Together, these results suggest that the results 
from the FIM represent an ideal starting 
point for either evaluating diseases potentially 
associated with a given chemical or chemicals 
that may be associated with a given disease. 
By providing a comprehensive list of asso-
ciations from NHANES, the relative strength 
of association can be considered rather than 
attempting to interpret p-values in light of the 
extensive multiple testing inherent with this 
data set (Sobus et al. 2015).

In general, it appears that the changing 
prevalence of both disease and volume of 
environmental chemicals had an effect on the 
associations found for the different cycles (see 
Supplemental Material, Figures S1 and S2). 
Using set criteria instead of a distribution-
based cutoff for identifying “presence” of the 
environmental chemical or using a range of 
cutoffs for determining when an individual 
is “exposed” (Bell and Edwards 2014) may 
be desirable to adjust the false nondiscovery 
rate (Genovese and Wasserman 2002; Sarkar 
2002; Storey 2003). For example, serum 
lead < 20 μg/dL in adults is considered to be 
within the threshold for a clinically normal 
range (MedlinePlus 2013), though acceptable 
levels in children are well below this value. 
The cutoff for the NHANES variable used 
in the analysis (LBXBPB) was 6.02 μg/dL 
(see Supplemental Material, File S2), which 
was based on the population distribution. 
Most of the NHANES individuals used in 
this analysis had levels far below this (see 
Supplemental Material, Figure  S1), and 
the median level declined each cycle. As a 
result, use of the population distribution for 
each cycle independently would result in 
different cutoffs over time with potentially 
drastic impacts on the associations seen 
when looking at 1999–2000 cycle versus 

the 2009–2010 cycle. The aggregate analysis 
using the full population across all cycle years 
to establish “exposed” or a fixed level is likely 
to decrease this effect.

Figure  2 shows there is good overall 
correlation between the rules generated using 
all the subgroups and those where subsets 
based on sex or race were used; however, it 
also highlights associations that are obtained 
only by looking at a subset of the data. This 
suggests that depending on the relationship 
or populations of interest, it may be desirable 
to consider associations mined from these 
subsets separately, as recommended in the 
workflow (Figures 1 and 4). The association 
table (see Supplemental Material, Files S3 and 
S4 (Workbook “RulesAcrossVarq=0.025con
f=0.1su”) generated using the FIM approach 
easily facilitates such additional considerations 
as shown in Figure 4. Further subgroups of 
interest can be easily incorporated into the 
workflow for consideration.

Advantage of using FIM to prioritize and 
control for multiple testing. One use of the 
proposed method is to aid in prioritization of 
associations. For example, when evaluating 
several separate studies all linking a single 
health outcome to multiple chemicals, these 
results can provide a common association 
metric for comparison among the chemicals. 

When one is evaluating a single report of a 
chemical association with a health outcome, 
these results can provide an indication of 
how the strength of that association compares 
with other chemicals and/or what other 
chemicals might need to be considered in a 
cumulative risk context. Alternatively, these 
results can be used prospectively to identify 
putative chemical–outcome relationships or 
possible co-occurring compounds for more 
detailed analysis.

Using the EWAS approach, Patel et al. 
(2010, 2012a, 2012b) presented a strategy 
to associate environmental factors from 
the NHANES surveys to a specific disease. 
Using multiple logistic regression models and 
controlling for multiple testing, they were 
able to generate a list of statistically signifi-
cant associations between the environmental 
chemicals and a health measure, such as 
the type 2 diabetes example described here 
(T2D, defined as fasting serum glucose ≥ 126 
mg/dL) (Patel et al. 2010). This approach 
has distinct advantages over more ad hoc 
approaches: They can compare multiple 
relationships; and the model is relatively 
transparent with respect to why given rela-
tionships were considered. The FIM strategy 
extends this further by investigating all 
chemical–health relationships simultaneously 

Table 1. Comparison of FIM results to the C8 panel findings.

Disease C8 finding of probable link FIM association NHANES variablea

High blood pressure No Yes BPQ020 
BPQ030 

BPQ040A
High cholesterol Yes Yes BPQ080 

BPQ090D
Coronary heart disease No No CDQ99, MCQ160B-F
Kidney No No KIQ022
Liver No No MCQ160L
Osteoarthritis and rheumatoid No Yes MCQ160A
Asthma No No MCQ010
Thyroid Yes Yes MCQ160M
Cancer Yesb Yes MCQ220
Type II diabetes No No DIQ010
aNHANES variables that best matched the end points considered by the C8 panel were used for comparison. Full 
descriptions of these variables can be found in Supplemental Material, File S1, except for CDQ99 (see “Methods”). 
bKidney and testicular cancer only.

Table 2. Comparison of the number of associations found for diabetes.

Group
EWAS: maximum 

across 99-06 cycles
FIMa: fasting blood glucose  
(direct matches with EWAS)

FIMb: diabetes marker 
(direct matches with EWAS)

Organochlorine pesticides 2 5 (1) 8 (2)
Polychlorinated biphenyls 11 19 (9) 24 (10)
Heavy metals 2 0 23 (2)
Dioxins and furans 3 3 (1) 13 (2)
Volatile compounds 0 0 7
Other pesticides 0 0 1
Phenols 0 0 9
Phthalates 0 0 6
Dialkyls 0 0 1
Hydrocarbons 0 0 9
Perchlorate 0 0 1
Polyflouro-chemicals 0 0 5
aTotal number of associations for LBXGLU using FIM across 1999–2010. bTotal number of associations for Dia using FIM 
across 1999–2010.
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with relatively little computational overhead. 
Thus, for a given chemical–health relation-
ship, one can identify not only other chemi-
cals that possibly relate to that health state, 
but also other health states related to each 
chemical along with the relative strength 
of association as described in the example 
workflow. Because both multiple regression 
models and FIM have distinct advantages and 
disadvantages, as discussed below, they should 
be considered complementary approaches to a 
complex problem.

Most EWAS studies reported previously 
have used some form of regression model. 
These models fit into a hypothesis-testing 
framework allowing for specific calculation of 
type 1 and type 2 error and can control for 
confounding variables (e.g., sex, race/ethnicity, 
smoking status). The FIM method (Bell and 
Edwards 2014) provides a comprehensive 
description of relationships for the entire data 
set, providing the information needed for 
generating hypotheses. Although it does not 
facilitate control over confounding variables 
aside from data stratification, it does compre-
hensively report all associated variables that 
were included in the study. This could be used 
in conjunction with more traditional regression 
models to avoid missing potential confounders, 
as suggested in the follow-up options provided 
in Figures  1 and 4. The NHANES study 
design results in variables that are never 
measured together in an individual (e.g., some 
urinary chemicals). These are impossible to 
combine in a regression model. The FIM 
method cannot give any information on the 
interactions among these variables; however, it 
can be used to identify possible confounding 
chemicals/diseases even if the data set does not 
include any co-occurring measures.

Furthermore, the FIM method enables a 
quick relative comparison with other measures 
on either side of the relationship. Comparing 
the confidence values, one can easily priori-
tize the health outcomes most likely associ-
ated with a particular chemical. Using odds 
ratios, one can see how likely an outcome is 
to be associated with other chemicals. The 
FIM can also be used to extract chemical–
chemical or health–health associations just as 
the chemical–health associations are extracted. 
This can give better insight to highly related 
variables within the data set, indicating 
possible common co-exposures or redundant 
markers (Bell and Edwards 2014).

Follow-up of the associations is a key part 
of the workflow because an association is only 
describing the data set. If using the associa-
tions to prioritize or put into context literature 
findings, then the ranked lists are sufficient. If 
the end goal is hypothesis building, then the 
associations can be used to help guide a struc-
tured literature search and provide guidance in 

properly parameterizing a model to decrease 
multiple testing. One benefit of using asso-
ciation rules is that it is very quick and easy to 
obtain relationships between various chemicals 
and heath markers because the data are already 
processed. The nature of the rules lends itself 
nicely to a graphical exploration as well which 
can be helpful in integrating other informa-
tion sources in the hypothesis-building phase 
(Bell and Edwards 2014).

Conclusions
As demonstrated, the FIM approach enables 
prioritization and comparison of associations 
found in the NHANES data set. The list of 
chemical–health associations can be used to 
identify those health metrics that are most 
likely to occur for a given chemical as well 
as the chemicals most likely to associate with 
a given health metric. This allows prioritiza-
tion of follow-up studies to evaluate possible 
causal relationships. Because the method 
is computationally efficient (< 30 min on 
a standard laptop), it allows for a compre-
hensive analysis of all chemicals and health 
metrics, not just a subset of chemicals or a 
single health outcome. This allows the 
resulting list to be used for the evaluation of 
previously published associations because they 
can now be compared with all other asso-
ciations for the chemical–health outcome in 
question. We expect that this approach can be 
extended to similar data sets and can provide 
a framework for researchers and risk managers 
in interpreting these types of studies.
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