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Summary

Brains are optimized for processing ethologically relevant sensory signals. However, few studies 

have characterized the neural coding mechanisms that underlie the transformation from natural 

sensory information to behavior. Here, we focus on acoustic communication in Drosophila 

melanogaster, and use computational modeling to link natural courtship song, neuronal codes, and 

female behavioral responses to song. We show that melanogaster females are sensitive to long 

timescale song structure (on the order of tens of seconds). From intracellular recordings, we 

generate models that recapitulate neural responses to acoustic stimuli. We link these neural codes 

with female behavior by generating model neural responses to natural courtship song. Using a 

simple decoder, we predict female behavioral responses to the same song stimuli with high 

accuracy. Our modeling approach reveals how long timescale song features are represented by the 

Drosophila brain, and how neural representations can be decoded to generate behavioral 

selectivity for acoustic communication signals.

Introduction

A central goal of neuroscience is to understand how the natural sensory stimuli that inform 

behavior are represented by the brain (deCharms and Zador, 2000; Theunissen and Elie, 

2014). To solve this problem, much of the field has focused on optimal coding theory, which 
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posits that sensory neurons encode and transmit as much information about stimuli as 

possible to downstream networks (Fairhall et al., 2001; Sharpee et al., 2006). However, 

these approaches rarely take into account the animal's tasks and goals. This presents a 

problem because, in addition to representing stimuli as faithfully and efficiently as possible, 

nervous systems must also reduce information to facilitate downstream computations that 

inform behavior (Barlow, 2001; Olshausen and Field, 2004). In support of this, many 

sensory codes are often not “optimal” in the classical sense (Salinas, 2006). For example, the 

increase in sparseness observed in many systems can reduce stimulus information but 

greatly simplifies decision-making and learning by making behaviorally relevant stimulus 

features explicit (Clemens et al., 2011; Quiroga et al., 2005). Likewise, the generation of 

intensity or size invariant codes is necessary for robust object recognition but involves a loss 

of sensory information (Carandini and Heeger, 2012; Dicarlo et al., 2012).

The best way, therefore, to understand sensory representations is to link naturalistic sensory 

stimuli, neural codes, and animal behavior. This involves three steps. First, the stimulus 

features and timescales important for behavior must be identified. Second, the the codes the 

brain uses to represent behaviorally relevant stimulus features (‘encoding’) must be 

characterized. Third, the relationship between neural representations and animal behavior 

(‘decoding’) must be defined. Accomplishing all of this is challenging for most natural 

behaviors because it is difficult to recapitulate them in a fixed preparation in which neural 

codes can be recorded. We address this challenge here by using computational modeling as a 

link between natural behavior and neural codes recorded in non-behaving animals.

We focus on the acoustic communication system of Drosophila. The Drosophila brain 

comprises a small number of neurons; this feature combined with genetic tools facilitates 

identifying individual neurons and neuron types for recordings. In Drosophila, acoustic 

communication occurs during courtship: males chase females and produce patterned songs 

in response to dynamic sensory feedback (Coen et al., 2014). Courtship unfolds over many 

minutes, and females arbitrate mating decisions based in large part on features present in 

male courtship songs. Numerous patterns on timescales ranging from tens of milliseconds to 

several seconds are present within song (Arthur et al., 2013); how females process and 

respond to these timescales of auditory information has never before been addressed. We do 

this here using a large behavioral data set of simultaneously recorded song and fly 

movements during natural courtship.

To determine how the brain represents courtship song information, we performed in vivo 

intracellular recordings from auditory neurons in the Drosophila brain. The antennal 

mechanosensory and motor complex (AMMC) is the primary projection area of fly auditory 

receptor neurons (termed Johnston's Organ neurons or JONs) (Kamikouchi et al., 2006). The 

two major populations of sound-responsive JONs terminate in AMMC zones A and B 

(Kamikouchi et al., 2009; Yorozu et al., 2009). Recent studies have mapped several of the 

central neurons that innervate these zones (Lai et al., 2012; Vaughan et al., 2014), and have 

found that most project to a nearby neuropil termed the ventrolateral protocerebrum (VLP). 

Projections from the VLP to other brain regions remain uncharacterized (but see Yu et al. 

(2010)). While genetic tools exist that label many AMMC or VLP neurons (Pfeiffer et al., 

2008), only a handful have been functionally characterized (Lai et al., 2012; Tootoonian et 
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al., 2012; Vaughan et al., 2014). Here we sample a larger population of AMMC and VLP 

neurons and generate computational models that effectively recapitulate responses to 

naturalistic stimuli.

To link neural codes in the AMMC and VLP to the female's behavioral response to song, 

one would ideally record neural activity during behavior. However, recording techniques 

can disrupt the highly dynamical interactions that occur during social behaviors like 

courtship. Moreover, in vivo neural recordings from the Drosophila brain are typically too 

brief in duration to present a large battery of natural song stimuli. We thus use 

computational modeling to infer links between the neural codes for song in the AMMC/VLP 

and female behavior. That is, using our model of stimulus encoding, we generate neuronal 

responses to the song stimuli recorded during natural courtship as a substitute for direct 

recordings. Based on these surrogate neural responses, we predict female behavior using 

simple transformations. Our study reveals an unexpected behavioral selectivity for song 

structure on long timescales in Drosophila females. Using our encoder/decoder approach, 

we find that of the two major computations in AMMC/VLP neurons, only one - biphasic 

filtering - is necessary to explain the female responses to courtship song, while the other - 

adaptation - is dispensable. Finally, we propose a putative circuit that can extract 

behaviorally relevant song features from AMMC/VLP responses and transform them into 

the female behavioral response.

Results

Identifying the courtship song features that drive female song responses

Drosophila melanogaster courtship song comprises two modes, sine and pulse, and males 

typically alternate between production of these modes during a song bout (Fig. 1A). During 

courtship, males produce many song bouts prior to copulation with a female; females may 

therefore be sensitive to a range of timescales that characterize courtship song, from the 

short species-specific spacing between pulses within pulse mode, known as the inter-pulse 

interval (IPI), to the long pauses between bouts (Fig. 1B). Previously, we showed that the 

more sine or pulse song a male produces, the more a sexually receptive female slows down 

(thus producing a negative correlation between song amount and female speed) (Coen et al., 

2014). We re-analyzed this dataset of song and simultaneously tracked fly movements from 

315 male-female pairs to examine female responsiveness to various song features and 

timescales (Fig. 1C). This dataset corresponded to ~4000 minutes of courtship between wild 

type males of 8 different melanogaster strains and females genetically-engineered to be both 

pheromone-insensitive and blind (PIBL). This genetic manipulation maximizes the salience 

of song for these females.

We first considered the total amount of song and average female speed within a given time 

window (Fig. 1D, orange, rank correlation(ρ)=−0.22); this correlation began to saturate at 

time windows of ~60 seconds (Fig. 1F, orange), even for non-overlapping windows (Fig. 

S1D). This suggests that song information affects females on timescales much longer than 

the duration of a single song bout. The correlation between song and female speed was 

mostly abrogated by deafening the female (Fig. 1D, blue), which demonstrates this 

relationship is dependent on hearing the male song. While previous studies suggested the 
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importance of IPI for female receptivity (Bennet-Clark and Ewing, 1969; Schilcher, 1976), 

we found no correlation between female speed and IPI (Fig. 1E, ρ=0.01); this was true for 

both short and long time windows (Fig. 1F, black). This suggests that the range of IPIs 

produced by conspecific males (of the 8 geographically diverse strains we examined) is too 

narrow relative to the female preference function for IPI to strongly modulate female speed. 

We next asked whether females are sensitive to other conspecific song features within the 60 

second time window of integration (Fig. S1A). We found that most song features were 

significantly correlated with female speed (Fig. 1G), likely due to correlations between song 

features (Fig. S1B); however, bout duration was most strongly correlated with female speed 

(Fig. 1G-H), and this relationship was independent of other features (Fig. S1C). This 

suggests that melanogaster females evaluate the structure, not just the total amount, of male 

song.

Whole-cell patch clamp recordings from AMMC/VLP neurons in the female brain

To determine how the female brain encodes male song structure, we recorded from a subset 

of neurons innervating the AMMC and VLP neuropils; these neurons represent the first 

relays for processing courtship song in the brain (Fig. 2A). We hypothesized that 

computations within these AMMC/VLP neurons should support the encoding and extraction 

of behaviorally relevant song features like bout duration. To link neural responses with our 

behavioral dataset (Fig. 1), we used a computational modeling strategy (Fig. 2B). We built 

an encoder model that captures the stimulus transformations implemented by AMMC/VLP 

neurons and we used it to predict the responses to natural courtship song from our 

behavioral data set. We then fit a simple decoder model to predict female speed from the 

encoder representation of song.

We first identified genetic enhancer lines that labeled AMMC and VLP neurons by 

screening images of GFP expression from >6,000 GAL4 lines generated by the Dickson lab 

(BJD, unpublished and (Kvon et al., 2014)). Two recent studies identified several of the 

neuron types innervating the AMMC and VLP (Lai et al., 2012; Vaughan et al., 2014). Our 

screen identified some of these neuron types, in addition to several new ones (Table 1). 

Systematic electrophysiological recordings from the full set of identified AMMC and VLP 

neurons are challenging because many of these neurons are not accessible for patch clamp 

recordings in a preparation in which the antennae are intact and motile (Tootoonian et al., 

2012). We therefore recorded from 15 different accessible neuron types (Table 1 and Fig. 

S2) from the pool of genetically-labeled AMMC and VLP neurons; if auditory responses in 

this sample were largely similar between cell types, this would suggest that these neural 

responses are representative of the larger AMMC/VLP population.

We presented a broad range of stimuli during recordings (see Experimental Procedures). 

However, 33% (5/15) of the neuron types we recorded did not respond to any of our acoustic 

stimuli; these neurons may be postsynaptic to non-auditory receptors (Kain and Dahanukar, 

2015; Otsuna and Ito, 2006; Yorozu et al., 2009). The 10 neuron types that responded to 

acoustic stimuli included: 1 AMMC local neuron (AMMC-B2), 7 candidate AMMC 

projection neurons (AMMC-VLP AV1-6 and AMMC-AL AAL1)), and 2 VLP local neurons 

(VLP V1-2) (Fig. 2C). We confirmed that all recorded neurons innervated the AMMC 
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and/or VLP via imaging (Table 1, Fig. S2, and Supplemental Movies M1-5). We found that 

auditory activity for almost all responsive neuron types was characterized by graded changes 

in membrane voltage (Vm) and not action potentials (Fig. 2D), as we had shown previously 

for neuron type AMMC-AV6 (a.k.a. A1 (Tootoonian et al., 2012)). Four of the sound-

responsive cell types (AV1, AV3, AAL1 and V2) occasionally produced spikes during 

responses to pulse trains (Fig. 2D and S3A). Whereas the subthreshold responses of AV1 

and AV3 cells were evoked consistently across animals for a given cell type, spikes were not 

(Fig. S3A-E). For neurons that we recorded from long enough to present all of our auditory 

stimuli, we were able to generate frequency and intensity tuning curves (Fig. S3F-H); these 

curves were similar across cell types but were all distinct from the receptor neuron (JON) 

population (Tootoonian et al., 2012), implying that subthreshold responses in AMMC/VLP 

neurons do not simply reflect the tuning of the auditory receptor inputs. These data 

collectively suggest that Vm changes (and not spikes) are likely to represent the “auditory 

code” or output of these neurons. Like frequency and intensity tuning, tuning for IPI was 

also relatively uniform – the cell types we recorded from were either un-tuned for IPI or 

responded more strongly to long IPIs (Fig. 2E). While other subsets of AMMC/VLP neurons 

may possess distinct tuning from the neurons we recorded ((Vaughan et al., 2014) and see 

Discussion), the similarity of auditory responses among the AMMC/VLP neurons in our 

dataset is striking and suggests that our sample of neurons may represent computations 

common to auditory neurons in these two brain areas. To examine these computations 

directly, we next generated models of each recorded cell's response.

A computational model to predict AMMC/VLP neuron responses

We constructed encoder models (see Fig. 2B) to predict the stimulus-evoked Vm changes of 

every recorded neuron (Fig. 3A); these models were first fit to AMMC/VLP responses to 

artificial pulse trains (Fig. 2D) and then tested using a diverse set of stimuli including 

excerpts of recorded courtship song. The model used here is an extension of the standard 

linear-nonlinear (LN) model (Schwartz et al., 2006). Commonly, LN models consist of two 

stages: a linear filter that represents the neuron's preferred temporal feature and a 

nonlinearity that transforms the filtered stimulus into a prediction of the neuronal response. 

Because we observed a prominent response adaptation in almost all of our recordings (Fig. 

2D), we added an adaptation stage to the input of the LN model (Fig. S4A-B), generating 

aLN models. Our implementation of the adaptation stage is based on a model for a 

depressing synapse that can account for multiple adaptation timescales (David and Shamma, 

2013). However, we remain agnostic about the biophysical basis of adaptation in fly 

auditory neurons. All model parameters were fit by minimizing the squared error (see 

Experimental Procedures).

We evaluated model performance by comparing predicted pulse train responses to actual, 

single-trial responses for three types of stimuli: i) pulse trains (of varying IPI) used for 

fitting the model (‘short pulse trains’), ii) a long (10 min) series of 1 second pulse trains 

separated by pauses drawn from the natural distribution present in D. melanogaster 

courtship songs (‘naturalistic pulse trains’), and iii) excerpts of natural courtship song. r2 

values for pulse train response predictions were high for all cell types examined (r2 IQR 

0.78-0.95), and were reduced by 10% when excluding the adaptation stage of the model 
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(Fig. 3B). Moreover, models without the adaptation stage failed to fully reproduce the 

response decrease over a pulse train observed in our recordings (Fig. S5A). aLN models 

were also able to reproduce responses to stimuli containing naturalistic bout structure (Fig. 

3C-D); they reproduced the adaptation observed within and across trains as well as the 

negative (offset) responses at bout ends (Fig. S5). We next compared the performance of 

models estimated using short pulse trains to those estimated using recorded excerpts of 

natural fly songs, which contain mixtures of sine and pulse song (Fig. 3E-F). The 

performance of the latter model constitutes an upper bound for the performance of aLN 

models fitted to artificial pulse trains when tested on recorded courtship songs. In general, 

model performance was not significantly different from that upper bound (Fig. 3F). Overall, 

this suggests that our aLN model captures the major aspects of AMMC/VLP encoding.

Strong similarities in model parameters across cell types would indicate similar response 

properties in the AMMC/VLP and would imply that the AMMC/VLP neurons we sampled 

are likely to be representative of the full population (but see Discussion). We observed no 

strong, qualitative differences in the shapes of linear filters across the 10 sampled cell types 

(Fig. 3G). All filters consisted of a dominant, positive lobe that was as wide or wider than a 

prominent feature of fly song, the IPI (Fig. 3H). Filters of the same cell type were more 

similar than those of different cell types, indicating that filter shape was cell-type specific 

(Fig. S4C). Interestingly, the filter durations of AMMC to VLP PNs (AV1-AV6) tiled a 

wide range between 30 and 300 ms (Fig. 3H) suggesting that the AV neurons act as a filter 

bank with different low-pass cutoff frequencies. 81% of the filters were also biphasic, i.e. 

they exhibited a relatively shallow but long negative component (Fig. 3G, I). Although 

weaker than the positive lobe of the linear filter, the negative lobe strongly affected model 

responses: removing the negative lobe from the filters (setting negative weights to zero) 

diminished adaptation and abolished negative offset responses (Fig. S5C). Re-fitting the 

adaptation and nonlinearity parameters did not fully restore model performance (Fig. S5D-

F). Taken together, these analyses demonstrate that the negative lobe of the linear filters is 

necessary to faithfully reproduce AMMC/VLP responses.

By contrast, adaptation parameters were as variable across as within cell types (Fig. S4D). 

The majority of cells had only one or two timescales of adaptation, with the most frequent 

dominant time scale being 2 seconds (Fig. S4E-G). This long time constant suggests that 

adaptation is active during the coding of song bout structure (see Fig. 1B for relevant 

timescales). The nonlinearities in the aLN model were uniform and nearly linear across cell 

type, likely because these cells lack spiking nonlinearities (Kato et al., 2014) (Fig. 3J). Thus, 

the aLN encoder model 1) suggests relative homogeneity for song encoding across a 

morphologically diverse subset of AMMC/VLP neurons, 2) reveals two relatively simple 

computations of all recorded AMMC/VLP neurons (biphasic filtering and adaptation) and 3) 

effectively predicts single-trial responses to courtship song stimuli.

Readouts of AMMC/VLP neurons exceed behavioral tuning for song amount

We next sought to relate the neural representation of song in AMMC/VLC neurons to 

female slowing. To do this, we used the aLN (encoder) model to predict neural responses 

(for each of the 32 recorded neurons) to each of the ~4000 minutes of courtship song stimuli 
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from our behavioral dataset. This produced a total of 127,552 model responses. We then 

built a decoder model to predict recorded female speed from each individual neuron's 

response (Fig. 4A). The decoder integrated neural responses over time windows of one 

minute – it thereby linked computations on the order of hundreds of milliseconds to 

behavioral timescales of tens of seconds. The decoder model serves two goals: i) to reveal 

the computations within AMMC/VLP neurons that underlie female sensitivity for bout 

structure and ii) to suggest computations downstream of AMMC/VLP neurons that generate 

female responses to song.

To incorporate nonlinearities commonly found in neurons, our decoder model started with a 

sigmoidal nonlinearity, which imposed both a threshold and a saturation on the model 

neuron response (Fig. 4A). Threshold and saturation values in our model were chosen 

independently for each cell to optimize the match between that cell's readout and female 

speed. Applying the nonlinearity produced a “transformed neural response”, which when 

integrated, created a predicted female speed that could be compared with the recorded 

female speed (Fig. 4B, compare with Fig. 1D). Including the sigmoidal nonlinearity 

improved correlations with female behavior in all cells (Fig. 4C), which suggests that simply 

integrating the raw predicted AMMC/VLP responses is not sufficient to explain female 

behavior. Notably, all cells outperformed the correlation between song amount and female 

speed when decoded this way (Fig. 4C; all points are above the horizontal dashed line, 

which is the rank correlation between song amount and female speed, Fig. 1D), implying 

that the decoder relies on song features other than just the amount of song.

We next removed from the encoding models either adaptation (generating LN models) or the 

linear filter (generating aN models) (Fig. 4D). Removing the filter, but not adaptation, 

strongly reduced performance. Removing both filtering and adaptation – thereby predicting 

female speed from the raw song traces – further reduced performance (ρ = 0.14). 

Furthermore, the amplification of the negative response components by the sigmoidal 

nonlinearity in the decoder (Fig. 4A, blue) suggests that the negative lobe of the biphasic 

filter plays a major role in creating sensitivity to behaviorally relevant features of song. This 

amplification was not specific to any cell type (Fig. S6A-D). Removing the negative lobe of 

the linear filter (setting all negative weights to zero; “aL+N” models) reduced decoder 

performance as strongly as removing the filter altogether (Fig. 4D). Thus, the decoder model 

predicts female speed and identifies biphasic filtering as essential for reproducing behavioral 

selectivity.

A modified decoder model matches behavioral tuning for bout duration

We next identified the song features (Fig. 1G) most strongly correlated with the decoder 

output. Our decoder model integrates both positive (Fig. 5A, orange) and negative (Fig. 5A, 

blue) response components over one minute of courtship (thus, over several song bouts). 

The positive response component constitutes a faithful, binary representation of bout 

structure without discriminating between pulse and sine; it is thus highly correlated with the 

duration of each individual bout (Fig. 5B, orange) and the integral of the positive response 

over one minute correlates best with the amount of song (Fig. 5C). By contrast, the negative 

offset response is largely invariant to each individual bout's duration (Fig. 5B, blue) and its 
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integral over one minute correlates best with the number of bout onsets (Fig. 5D). Thus, the 

positive and negative response components generated by the biphasic filters in AMMC/VLP 

neurons (Fig. 3) represent two distinct and behaviorally relevant song features – song 

amount and bout number – in a multiplexed code within the Vm of single neurons (see 

Discussion).

Our behavioral analysis identified bout duration as the best predictor of female speed - how 

does the female brain extract this information? Because the decoder integrates over positive 

and negative response components, it relies on the difference of song amount and bout 

number for predicting female speed. However, bout duration is the ratio – not the difference 

– of song amount and bout number, and it can therefore be explicitly decoded by instead 

dividing the integrated positive and negative response components of AMMC/VLP neurons 

within the decoder (Fig. 5E). The readout from this modified decoder more strongly 

correlates with bout duration (compare Figs. 5F and G, p=3e-8, one-sided sign test) and 

better predicts female speed (Fig. 5H); it reads-out responses of single neurons with a near 

perfect match to the behavioral correlation between bout duration and female speed (Fig. 

5I). The nonlinearity in the new ratio-based decoder is not strictly necessary to predict 

behavior (Fig. S6E). By contrast, in the original, difference-based decoder, the nonlinearity 

played a major role (Fig. 4C) – there, the weight of song amount and bout number were 

adjusted by compression and amplification, respectively. We thus propose a simple 

algorithm which can extract bout duration based on a few operations: biphasic filtering in 

AMMC/VLP neurons, and rectification, integration and division in downstream neurons. 

Our approach links female selectivity for a particular property of male courtship song – song 

bout duration – and the neural representation of song in the female brain in a physiologically 

plausible way.

Discussion

In this study, we used computational models to link natural stimulus features, neural codes, 

and animal behavior. This approach enabled us to i) identify behaviorally relevant song 

features during natural behavior (Fig. 1), ii) characterize the computations that underlie the 

representation of sounds in early auditory neurons (Figs. 2 and 3), iii) link these 

computations to female behavior (Fig. 4), and iv) propose a simple algorithm for generating 

behavioral selectivity for song features on long timescales (Fig. 5). Similar approaches have 

been successfully applied in other systems, e.g. to link olfactory discrimination behavior 

with neural codes in Drosophila (Parnas et al., 2013) or to study the emergence of object 

recognition in the mammalian visual system (Dicarlo et al., 2012). Our study extends this 

approach to a social behavior like courtship.

Female sensitivity to song structure on long timescales

Drosophila melanogaster courtship song contains features spanning multiple timescales. 

Short timescale features like the inter-pulse interval (IPI) vary across species, and previous 

studies have focused on the IPI in relation to female receptivity (Bennet-Clark and Ewing, 

1969; Schilcher, 1976). When examining timescales of integration > 2 seconds, we failed to 

uncover a strong effect of conspecific IPI range on female speed. Instead, we found that 
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females are most sensitive to long timescale song features like bout duration. Our previous 

study showed that melanogaster females slow down in response to conspecific but not 

heterospecific male song; the major difference between these songs is on short timescales 

(e.g., IPIs), as males of both species shape song bout structure in accordance with the 

female's behavior (Coen et al., 2014). Taken together, our results are most consistent with 

the interpretation that short timescale song features indicate species identity, whereas long 

timescale features (like bout duration) indicate fitness (signaling, for example, a male's 

ability to follow the female) and are used to differentiate between conspecifics. In this 

context, it is worth noting that pheromonal incompatibilities between species typically 

prevent courtship between heterospecifics (Billeter et al., 2009; Fan et al., 2013).

The influence of longer timescale song structure on female speed is non-trivial as indicated 

by three aspects of our behavioral data. First, bout duration was the strongest predictor of all 

single or pairs of song features (Fig. 1G and Fig. S1C). Second, the duration of bouts, but 

not the pauses between bouts, was strongly correlated with female speed (Fig. S1B). This is 

contrary to the expectation if the selectivity for bout duration were a trivial consequence of 

its correlation with song amount, since pause duration negatively correlates with song 

amount. Third, females reduce speed most to song with few bout onsets but many sine 

onsets, while pulse onsets were uncorrelated with her speed. This pattern cannot be 

explained by correlations between these features and song amount. All three points indicate 

that females are not simply accumulating conspecific song, but instead are evaluating song 

bout structure on timescales exceeding that of the IPI. This has implications not only for the 

neural computations underlying song processing (discussed below) but also for evolution 

and sexual selection theories.

AMMC/VLP neurons and the representation of courtship song

To characterize the representation of song in the early auditory centers of the Drosophila 

brain, we recorded from as many different types of AMMC/VLP neurons as possible, and 

we sampled both local and projection neurons. To our surprise, response properties 

quantified through the aLN model (Fig. 3) revealed little qualitative difference between cell 

types. All neurons exhibited long linear filters, showed pronounced adaptation during 

responses to pulse trains, and most produced negative offset responses. The major, 

quantitative difference among AMMC/VLP neurons was the duration of the positive filter 

lobes (Fig. 3H); however, this feature did not impact behavioral predictions (rank correlation 

between duration of the positive lobe and decoder performance ρ=−0.01, p=0.96). The range 

of filter durations may thus serve other aspects of song processing or other acoustically-

driven behaviors (Lehnert et al., 2013; Vaughan et al., 2014). The relative homogeneity in 

response properties in our data set also makes it unlikely that females rely on any single 

neuron type when processing male song. However, a recent study focused on two AMMC 

neuron types not sampled in our study (one cluster of AMMC local neurons (aLN(al)) and 

another cluster of AMMC projection neurons (B1 or aPN1) – both cannot be recorded from 

while keeping the antenna intact and motile in air). They found that neural silencing of 

either cluster in females lengthened the time to copulation (Vaughan et al., 2014). Whether 

these neuron types are also necessary for female slowing in response to courtship song was 

not determined. Additionally, we do not know how the auditory responses of these two 
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neuron types differ from the AMMC/VLP neurons we sampled. Imaging neural responses 

using fast voltage sensors (Cao et al., 2013) should facilitate mapping the auditory codes of 

the full complement of neurons in the AMMC/VLP.

Linking computations in the auditory pathway with female behavior

Of the two main computations in our aLN encoder model - biphasic filtering and adaptation 

- only biphasic filtering influenced the full model's (encoder + decoder) ability to predict 

female behavior. In principle, adaptation should contribute to tuning for song features given 

that it acts on long - and behaviorally relevant - timescales and is known to affect temporal 

coding (Benda and Herz, 2003). We posit that in Drosophila AMMC/VLP neurons, 

adaptation may mainly serve as a gain control mechanism to preserve auditory sensitivity 

and conserve energy across the large range of intensities likely encountered by the female 

during courtship. The decoder model also revealed an important role for the weak, long 

negative lobe of the biphasic filter, which produces negative offset responses after the end of 

song bouts in 81% of the neurons recorded. This negative response is independent of bout 

duration and thus forms the basis for counting the number of bouts through integration. 

Since the decoder integrates over long time windows, as the female does in evaluating male 

song, the negative lobe of the filter leads to a signal that is clearly different from noise and 

hence can be used by the decoder. Note that in a noiseless system, the amplification of the 

weak negative response components is not strictly necessary to match behavior (Fig. S6E). 

However, amplification ensures robustness to noise – it is therefore desirable to place it as 

early as possible in the neural pathway, as occurs in our decoder (Fig. 5E). The negative 

lobe's biophysical basis may be slow inhibition or activation of hyperpolarizing currents 

after depolarization (e.g. Ca++-dependent K+ channels underlying AHPs).

Similar biphasic filters have been found in numerous other systems (Hart and Alon, 2013; 

Kato et al., 2014; Nagel and Doupe, 2006); there they are proposed to support efficient 

coding (Atick and Redlich, 1990; Zhao and Zhaoping, 2011). Here, we add another aspect 

that makes biphasic filters advantageous: the two lobes correspond to two neuronal response 

features - tonic and phasic – and signal distinct song features - song amount and bout 

number. This representation thus constitutes a multiplexed code, in which multiple features 

are encoded in different aspects of a single data stream (Blumhagen et al., 2011; Ratte et al., 

2013). Since the tonic and phasic components occur sequentially, they can be easily de-

multiplexed using rectification, an essential component of the decoder model (Fig. 5). The 

decoder further provides evidence that females evaluate bout duration, independent of our 

behavioral analysis, because we only considered the neuronal response patterns and female 

speed values (not song parameters) when optimizing the original (non-ratio-based) decoder's 

sigmoidal nonlinearity. Nonetheless, its output was strongly correlated with bout duration (ρ 

= 0.89).

Given that our knowledge of higher-order auditory neurons in the Drosophila brain is 

limited (Lai et al., 2012; Zhou et al., 2014), the utility of our decoder model is that it posits 

simple algorithms for transforming the auditory codes of AMMC/VLP neurons into 

behavioral responses to courtship song. We propose that an AMMC/VLP neuron is read out 

by two downstream neurons. One of these neurons positively rectifies the AMMC/VLP 
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response and encodes bout structure in a binary way. Alternatively, this neuron could get its 

input from one of the AMMC/VLP neurons in our data set that lacked a sufficiently strong 

negative lobe (Fig. 3I). The other downstream neuron reads out the phasic response 

components at the end of each bout. This could be implemented through release from 

inhibition (cf. (Liu et al., 2015)). To improve the signal-to-noise ratio, these phasic 

responses could be amplified by voltage-dependent conductances (Engel and Jonas, 2005; 

González-Burgos and Barrionuevo, 2001). The output of these two downstream neurons 

would then be integrated, for example through recurrent connectivity, intracellular 

molecules like calcium, or extracellular molecules like neuropeptides (Durstewitz et al., 

2000; Flavell et al., 2013; Major and Tank, 2004). Finally, the two integrated values are 

combined by divisive inhibition to yield an output that is used to control female speed 

(Gabbiani et al., 2002; Silver, 2010).

Our decoder model, like female behavior, computes average bout duration, not the duration 

of single song bouts, suggesting that individual Drosophila neurons do not encode bout 

duration explicitly. This contrasts with other systems, where duration-tuned neurons have 

been found (Aubie et al., 2012). In the case of processing echolocation signals or speech, 

knowing the duration of individual calls is likely essential. However, for the female fruit fly, 

the duration of an individual bout may carry little information about male fitness. This 

highlights a general property of the integration processes associated with decision-making or 

behavioral control (Brunton et al., 2013; Clemens et al., 2014; DasGupta et al., 2014): some 

features of the sensory environment may be available to the animal only in the form of 

averages or summary statistics (Clemens and Ronacher, 2013; McDermott and Simoncelli, 

2011; Freeman and Simoncelli, 2011). This has consequences for the search for neural 

correlates of behavior, in that explicit neuronal selectivity for behaviorally relevant features 

may never arise until after decision-making stages.

Experimental Procedures

Flies

Details regarding all fly stocks and genotypes can be found in Supplemental Experimental 

Procedures.

Behavioral Analysis

We used a previously published data set of natural courtship song and accompanying male 

and female movements, from pairs of wild type males (of 8 geographically diverse strains) 

and PIBL (pheromone-insensitive and blind) females (Coen et al., 2014). Definitions of song 

features and details of all analyses can be found in Supplemental Experimental Procedures.

Sound Delivery and Electrophysiology

Patch clamp recordings were performed and auditory stimuli were delivered as described 

previously in (Tootoonian et al., 2012). We recorded from 15 different cell types with 

projections in the AMMC/VLP (see Table 1). For details see Supplemental Experimental 

Procedures.
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Analysis and Modeling of Electrophysiological Data

Tuning curves for frequency, intensity and inter-pulse interval were constructed from the 

baseline subtracted membrane voltage (Vm). The Vm response was predicted using an 

adaptive linear-nonlinear (aLN) model, in which the stimulus envelope was pre-processed 

by a divisive adaptation stage, before being filtered and nonlinearly transformed to the 

predicted Vm. See Supplemental Experimental Procedures for details on analyses, model 

parameters and fitting procedures.

Behavioral Model

For predicting the female behavioral response to song, we used aLN models fitted to the 

electrophysiological data. We generated model neural responses for the courtship song 

recorded in the behavioral assay. We then predicted female speed using a decoder, which 

consisted of a sigmoidal nonlinearity and an integration stage. See Supplemental 

Experimental Procedures for details on the decoder model and variants tested.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Song features driving female behavioral responses
A Structure of Drosophila melanogaster courtship song. Song bouts consist of alternations 

between pulse (red) and sine (blue) modes; bouts are interleaved with pauses. Pulse song 

consists trains of pulses, separated by species-specific inter-pulse intervals (IPI).

B Courtship song is structured on multiple timescales. Left: The fraction of one minute of 

courtship that consists of pulse song, sine song, and bouts. Middle: The number (per one 

minute of courtship) of pulse songs, sine songs, and bouts. Right: The duration of IPIs, 

pulse songs, sine songs, bouts, and pauses. All plots show median and inter-quartile range. 

We analyzed song from 3896 minutes of courtship between females and wild type males 

from 8 geographically diverse strains.

C Behavioral assay for recording male song and male/female movements (Coen et al., 

2014).

D, E Behavioral preference function (see Experimental Procedures) for the amount of song 

(D) or IPI (E). We grouped the data into ~100 minute bins (sorted by x-value), and plotted 

the mean +/− s.e.m. for each bin. Both female speed and song amount or IPI are z-scored for 

each male strain. To quantify the strength of association between song features and female 

speed we calculated rank correlations (ρ) from the raw, unbinned data. The correlation 

between song amount and female speed is strongly reduced for deaf females (D, blue trace).

F Absolute rank correlation between female speed and the amount of song (orange) or IPI 

(black) for varying time windows. Rank correlation with IPI is weak for all window 

durations (all abs. ρ<0.03). The curve for amount of song begins to saturate at ~60s. We 

therefore analyzed correlations between female speed and song features in 60s windows for 

all subsequent analyses.

G Rank correlation between 11 song features and female speed (see Experimental 

Procedures for definitions of song features). Song amount (orange) negatively correlates 

with female speed while IPI (black) is uncorrelated. Bout duration (green) is most strongly 

associated with female speed.
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H Behavioral preference function for bout duration.

See also Fig. S1.
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Figure 2. Auditory responses in the AMMC/VLP
A Left: Projection areas of auditory neurons in the fly brain. Auditory receptor neurons 

project to the antennal mechanosensory and motor center (AMMC, green). From there, 

AMMC neurons project to different parts of the ventrolateral protocerebrum (VLP) – the 

wedge (red), anterior VLP (aVLP, cyan) and posterior VLP (pVLP, blue). Right: Skeletons 

of neurons in our dataset; skeletons come from the FlyCircuit database of single neuron 

morphologies (Chiang et al., 2010) and were identified based on our fills of recorded 

neurons.

B To reveal the neural computations linking song processing with female behavior, we 

model the female nervous system using an encoding and decoding stage. The decoder is 

trained using the natural courtship data (song and associated female speed) to reproduce 

female behavioral responses to song from encoder responses.

C Skeletons of individuals neurons from our study (compare with A). We were not able to 

identify the V2 neuron in the FlyCircuit database, but the fill of this neuron reveals diffuse 

arborization throughout the VLP (Supplemental Movie S1).

D Baseline subtracted responses (changes in membrane voltage) of 10 types of AMMC/VLP 

neurons to synthetic pulse trains with IPIs of 30ms (black) or 120ms (gray). Vertical bar (for 

each trace) corresponds to Vm scale (ranging from 0-1 mV).
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E IPI tuning turves (see Experimental Procedures). Plots show mean +/− s.e.m. Number of 

recordings per cell type indicated in each panel.

See also Fig. S2 and S3, and Supplemental Movies S1—S5
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Figure 3. Adaptive linear-nonlinear (aLN) models reproduce AMMC/VLP responses
A Structure of the aLN model; inputs were short pulse train stimuli of varying IPI (see Fig. 

2D). The stimulus envelope s(t) is processed by an adaptation stage (a). The adapted 

stimulus s’(t) is then transformed by a standard LN model with a filter (F) and an input-

output function or nonlinearity (N) to yield a prediction of the membrane voltage (green).

B Adding adaptation to the model improves performance for all cells. Coefficient of 

determination r2 for aLN models = 0.92 (0.11) median(IQR) and for LN models (without the 

adaptation stage) =.0.84 (0.21), p=7×10−12, sign test, N=36 neurons.
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C An aLN model fitted to naturalistic pulse train stimuli effectively predicts neuronal 

responses. The stimulus (bottom trace) is a 10 minute sequence of 1 second pulse train bouts 

(IPI=40ms) with a natural distribution of pauses between trains. AV1 neuron response 

(black) and aLN prediction (green) for same recording as in A, r2=0.88.

D Assessment of the fits of the aLN model to naturalistic pulse train stimuli (r2=0.78(0.18) 

median(IQR), N=12).

E aLN models predict responses to natural courtship song. Song envelope (bottom trace) 

and membrane voltage of an AV1 neuron (black, top trace) or prediction from an aLN 

model fitted to short pulse trains (green trace).

F Performance of aLN models fitted to natural song (r2 = 0.59+/−0.19) vs. the performance 

of aLN models fitted to artificial short pulse trains and tested with natural song (r2 = 0.52+/

−0.11) p=0.50, sign test, N=20.

G Linear filters for all cells in the dataset. Color scheme for different cells is also used in H 

and J.

H Width of the positive filter lobe for all cells (measured at half-maximal height, log scale). 

Interquartile range of conspecific IPIs for melanogaster is indicated.

I Ratio of the integral of the positive and negative lobes of the linear filters (0.11(0.06), 

median(IQR)).

J Nonlinearities from aLN models.

See also Fig. S4 and S5.
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Figure 4. Decoding neuronal responses to predict behavior
A AMMC/VLP responses to 1 minute segments of natural courtship containing song (left 

below) are predicted using the aLN encoder. The predicted neural responses (middle below, 

cell type AV1) are then transformed (right below) and integrated to yield a prediction of the 

average female speed for that courtship segment. The sigmoidal nonlinearity is optimized 

for thematch between predicted female speed and actual female speed (see panel B). 

Positive responses are strongly compressed (orange) and negative responses at bout ends are 

amplified (blue) by sigmoidal NL (see Fig. S6A-D).

B For all 3896 courtship windows, actual female speed versus predicted speed (from 

decoding a single AV1 neuron), ρ=−0.40. Although the original rank correlation between 

decoder output and female speed is positive, we inverted the curve to match the plots in Fig. 

1.

C Rank correlations for actual versus predicted female speed for all 32 cells in the dataset. 

The sigmoidal NL improves the correlation for all cells (w/ sigmoidal NL ρ=0.38(0.04) 

(median(IQR)), w/o sigmoidal NL ρ=0.19(0.02), p=0, sign test). Dashed lines correspond to 

the absolute rank correlation between song amount and female speed (ρ=0.22; see Fig. 1D). 

The decoder outperforms the correlation with song amount for all cells (p= 5×10−6, sign 

test) and most cells (29/32) perform worse than this correlation when decoded linearly 

(p=3×10−6, sign test).

D Biphasic filtering - but not adaptation - is necessary for good predictions of female speed. 

aLN = full encoding model; LN = model lacking adaptation; aN = model lacking filtering; 
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aL+N = all negative weights of the linear filter set to zero. aLN vs. LN p = 0.08, aLN/LN vs. 

aN/aL+N p<1×10−4, sign test, p-values Bonferroni-corrected for 4 comparisons. The dashed 

line shows the absolute rank correlation between song amount and female speed.

Black circles in C and D indicate the performance values for the example neuron shown in 

B.
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Figure 5. Modified decoder model predicts female responses to bout duration
A Separation of the transformed neural response (Fig. 4A) into positive (orange) and 

negative (blue) response components by half-wave rectification at base line. Trace is from 

the same neuron in Fig. 4A.

B Correlation between bout duration and positive (ρ=0.99, p=0) or negative (ρ=0.20, 

p=0.49) response components.
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C Absolute rank correlation between positive response components (averaged over one 

minute, not for each individual bout as in B) and song features for all cells. The rank 

correlation with song bout amount is highest (all p<2×10−8, one-sided sign test).

D Same as (C) but for negative response components. The rank correlation with bout onsets 

is highest (all p<1×10−6, one-sided sign test).

E Alternative decoder based on reading out positive and negative response components 

separately and then combining via subtraction (equivalent to the original decoder, Fig. 3A) 

or division (ratio-based decoder).

F Same as (C) but for the original decoder (Fig. 4A). There is no single feature that 

correlates most strongly with this decoder readout. However, the output of this decoder has a 

strong correlation with bout duration (ρ=0.89(0.13), median(IQR))

G Same as (C) but for the ratio-based decoder. Its ouput correlates most strongly with bout 

duration (ρ=0.93(0.04), all p<1×10−3, one-sided sign test).

H The ratio-based decoder outperforms the original subtraction-based decoder for all cells 

and reaches the correlation values achieved between the female behavior and bout duration 

(original decoder: ρ=0.38(0.04), ratio decoder: rank ρ=0.42(0.02), p=3×10−8, sign test).

I Comparison of female speed preference function for bout duration from behavioral data 

(black, reproduced from Fig. 1H) and from the ratio decoder for one AV1 cell (purple) – 

rank correlations are the same (p<1×10−13).

N=32 cells for (C) and N=26 cells for (D, F, G) since 6/32 cells did not exhibit a detectable 

negative response component. All tuning curves and correlation values based on 3896 one 

minute segments of song. All p-values in C,D,F,G are Bonferroni corrected for 55 

comparisons between all song features. See also Fig. S6.
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