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Abstract

We introduce QPROT, a statistical framework and computational tool for differential protein 

expression analysis using protein intensity data. QPROT is an extension of the QSPEC suite, 

originally developed for spectral count data, adapted for statistical significance analysis using 

continuously measured protein-level intensity data. QPROT offers a new intensity normalization 

procedure and model-based differential expression analysis, both of which account for missing 

data. Determination of differential expression of each protein is based on the standardized Z-

statistic based on the posterior distribution of the log fold change parameter, guided by the false 

discovery rate estimated by a well-known Empirical Bayes method. We evaluated the 

classification performance of QPROT using the quantification calibration data from the clinical 

proteomic technology assessment for cancer (CPTAC) study and a recently published E. coli 

benchmark dataset, with evaluation of FDR accuracy in the latter.
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Introduction

Mass spectrometry-based proteomics is an essential tool for profiling post-translational 

expression level of genes. With the evolving technology and data analysis pipeline, tandem 

mass spectrometry (MS/MS) has been increasingly applied to proteome-wide investigations, 

not only for protein identification but also quantification [1]. Early quantitative proteomics 

relied on relative quantification based on labelling proteins with stable isotope containing 

compounds [2] or isobaric chemicals [3]. More recently, label-free quantification has 

become a widely used method to generate semi- or fully quantitative measurements.

Spectral counting has been a popular label-free quantification method due to the ease with 

which the data can be obtained by counting the number of peptide-spectrum matches for 

each protein from MS/MS search results. Spectral counting has been shown to correlate well 

with known protein concentrations [4] and regarded as a robust measure of protein 

abundance in the analysis of cell lines as well as tissue samples. However, count data suffers 

from poor resolution in the low abundance range (e.g. proteins detected with a single 

peptide-spectrum match), and there are ambiguities in counting peptides which are shared 

among homologous proteins, requiring careful handling of counts in complex organisms 

such as human [5]. With rapid advances in MS instrumentation and informatics tools for 

data extraction such as MaxQuant [6] and OpenMS suite [7], peptide ion intensities can be 

easily extracted from high resolution MS datasets, providing a measurement accuracy 

superior to spectral counts. More recent development includes data independent mode of 

acquisition of MS/MS spectra, providing a large amount of fragment-level intensities to 

derive peptide/protein intensities with improved accuracy and coverage of proteome [8, 9, 

10, 11], broadening the range of intensity-based quantification.

With the availability of high resolution and high mass accuracy intensity data, it is of 

interest for many experimentalists to have access to an appropriate statistical method to 

detect differentially expressed proteins based on intensity data. For spectral count data, a 

handful of statistical methods for differential expression (DE) analysis had been developed, 

including standard hypothesis testing procedures [12, 13], power law global error model 

[14], QSPEC [15], and Bayesian mixture model-based method [16]. On the other hand, it 

has been generally perceived that DE analysis of intensity data can be performed using the 

methods developed for analyzing gene expression microarray data because the data are in a 

continuous scale, such as simple hypothesis tests or LIMMA [17]. More recently developed 

methods enabled a regression model-based analysis framework that performs peptide-

protein roll-up within the statistical models, such as DANTE [18] and MSstats [19, 20]. 

These methods estimate the fold change parameters from peptide or transition intensity data 

and compute statistical significance scores (p-values) for individual proteins.

While these tools cater to many applications, not all of them are applicable to simple 

comparisons based on protein intensity data from a small number of samples. For instance, 

proteins with poor sequence coverage in the MS/MS data will have few peptides. In 

addition, not all peptides necessarily have high quality peak clusters with clear isotopic 

patterns, hampering consistent quantification across samples (across multiple MS runs). 
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Hence the model-based approaches built for peptide-level intensity data will not be able to 

perform significance analysis unless those values are imputed. The model-based methods 

[18] may offer a treatment of missing data at the peptide-level, but their likelihood-based 

imputation scheme requires more than several samples per comparison group. Hence the 

procedure requires removal of peptides with to few intensity values across different samples, 

which may occur frequently for a large number of low abundance proteins in complex 

samples.

Reflecting this, label-free intensity data summarized up to the protein level are increasingly 

used in proteome-level quantification studies, exemplified by popular methods such as 

iBAQ [21, 22] and “top 3 peptides” approaches [23, 24, 25]. When protein intensity data 

(summed over peptides) are analyzed by standard or advanced statistical tests (e.g. 

LIMMA), the missing data problem arise again for the proteins not quantified in certain 

samples, requiring imputation of those missing data. In this scenario, a reasonable missing 

data treatment is one-time imputation of intensity values, typically chosen as a value smaller 

than the smallest intensity in the sample (e.g. half). However, such an imputation procedure 

does not always represent underlying missing mechanisms and the choice of plug-in value 

for imputation can change the outcome of the statistical tests.

In this work, we developed QPROT, a model-based DE analysis for protein intensity data. 

The new implementation, packaged with the QSPEC method for spectral count data, 

features a new intensity normalization procedure, a hierarchical model for differential 

expression analysis using protein intensity data, and a revised procedure for estimating the 

false discovery rates (FDR) and thus guiding the selection of differentially expressed 

proteins. This extension for intensity data will also have added utility for the analysis of 

continuously re-scaled spectral counts such as exemplified by NSAF [26], APEX [27], and 

SINQ [28], and hence it will be a useful tool for first-pass statistical analysis using protein-

level intensity data.

Materials and Methods

Statistical model

Suppose that we have a matrix data containing log-transformed protein intensities Y = {yij}, 

where yij is the measurement of protein i in sample j for i = 1, 2, . . . , P and j = 1, 2, . . . , N. 

Further, let Yj denote the quantitative data for all P proteins in sample j. We define Tj, a 

binary indicator taking on 0 or 1, as the comparison groups such as control (0) and treatment 

(1). We assume that the data {yij} were log-transformed, and they follow normal distribution

(1)

where di is the magnitude of differential expression in log scale.

Here, note that we model protein level expression data directly, not peptide level data. While 

assuming peptide-level data is an ideal format for intensity analysis in theory, many studies 

rely on protein intensity computed by summing the intensities of all or selected peptides for 

each protein. The peptide to protein roll-up is performed because, in practice, it is not 
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possible to obtain consistent measurement across multiple samples for many peptides. For 

example, a protein can be consistently identified and quantified by multiple peptides in all 

experiments that are being compared, but not necessarily by the same peptides. In these 

cases, analysis based on the average intensity of top 3 most intense peptides per protein has 

been shown to be more effective than methods based on using all peptides in certain 

applications [29].

QPROT also offers an optional intensity normalization step in which all percentile points of 

the observed quantitative values are equalized across the samples. The procedure is 

equivalent to the quantile normalization in microarray data, with the difference that the 

percentiles are normalized accounting for the fact that some proteins have no measurement 

in certain samples / experiments. First, all missing observations are removed to form a 

trimmed set  for each j. Then the 0% to 100% percentile points are computed for each 

sample separately and these points are set to the median values across samples at each 

percentile, and the data are finally normalized by interpolation between two nearest 

percentile points for each protein in each sample.

Furthermore, since not all yij are observed, we treat them as missing data and consider the 

following truncation rules for integrating likelihood over the low abundance range. First, we 

integrate the density over (−∞, ϕi,Tj), where ϕi,Tj denotes the truncation point in the low 

abundance area for protein i in group Tj. ϕi,Tj is set to be the smallest value for protein i if it 

is observed at least in one sample of group Tj. If there are missing values in both groups of 

comparison, we set the truncation points at the minimum of ϕi0 and ϕi1. If values are all 

missing in group 0 and fully observed (i.e. observed across all samples) in group 1, ϕi0 is set 

to the 10 percentile point of all observed values in group Tj, and vice versa. Once the 

truncation point is determined, the likelihood for protein i is defined as follows. Let us 

introduce the following notation for the observed data and missing data:

(2)

where y(o) and y(m) are the observed and missing values, respectively. For protein i, the 

likelihood function is the probability of the observed values, i.e.

(3)

where , and  is a vector of observed intensities for protein i and φ(x|a, b) 

indicates a normal density with mean a and variance b evaluated at x (the cumulative 

distribution is denoted by Φ hereafter). A more complete modeling would have been of a 

mixture form
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(4)

where δi = P(yij = −∞) is the prior probability of true absence of protein i, and a truncated 

normal distribution is used to model the observed and missing intensity for truly present 

proteins. However, δi varies by samples and is usually not estimable in each data set.

Since our goal is to test differential expression, we are interested in the inference of the 

magnitude of differential expression di. In combination with the likelihood, we specify the 

priors as follows:

(5)

(6)

where IG(·, ·) stands for inverse gamma distribution with shape and scale parameters. For 

posterior inference, we use a standard Markov chain Monte Carlo sampler (Metropolis-

Hastings algorithm [30]) to draw samples of the parameters from the appropriate posterior 

distributions. In this work 10,000 samples were drawn for the burn-in period and 100,000 

samples of each model parameter were drawn for the main iterations. Particularly, the log 

fold change parameter di was recorded for every protein i, denoted by . 

The resulting collection of 100,000 samples of di was used to construct the significance 

statistic Zi later.

Significance statistics

Using the posterior samples of the log fold change parameter, the standardized significance 

statistic of DE for protein i is computed as

(7)

where the numerator and denominator denote the mean and standard error computed from 

the posterior samples of di respectively. The test statistics are conceptually different from 

the statistics based on the “odds” of DE in the existing methods for spectral count data [15, 

16]. Rather, Z-statistics are close to the most intuitive differential expression statistics such 

as t-statistic, where the mean differential di is normalized by the standard error. The 

difference between our Z-statistics and the existing tests is that the former was computed 

accounting for missing data. In our experience with QSPEC, the odds-based statistics such 

as Bayes factor tend to be considerably more sensitive for high abundance proteins due to 

sharp tails of Poisson distributions, whereas the drawback is relatively mitigated in Z-

statistic. This change was motivated by the fact that biologically interesting proteins are 
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equally well populated in the low and intermediate abundance range, where fold change is 

accurately estimated but the odds of DE are often underestimated.

Multiple testing correction by FDR

After calculating (Z1, Z2, . . . , ZP), we proceed to hypothesis testing with a multiple testing 

correction. To achieve this, we fit a semi-parametric mixture model to deconvolute the score 

distributions for the DE proteins and non-DE proteins as follows. In specific, we estimate

(8)

(9)

for all i = 1, 2, . . . , P, where φ denotes the density of normal distribution, γk is the mixing 

proportion of k-th mixture component with mean and variance ( ), and π is the 

proportion of differentially expressed proteins. In addition, we estimate the overall 

distribution f by the non-parametric density estimation with Gaussian kernel [31]

(10)

where φ() denotes the standard Gaussian density. We selected the bandwidth as , 

twice the recommended size for extra smoothness of the curve, where  is the standard 

deviation of observed Z-statistics. Finally, the mixing proportion π by the methodology 

proposed in the Empirical Bayes method proposed in [32], i.e.

(11)

Here K is the number of normal distributions consisting of the null distribution f0, which was 

originally set as K = 1 in the first few releases of QPROT (up to version 1.3.0), under the 

normality assumption in the hypothesis testing framework. In our model, however, we allow 

for situations where the score statistic is not exactly normal but approximately bell-shaped. 

Hence we let the user choose the optimal number of components to capture the null 

component properly. The default value is K = 3 in the current release of the software 

(version 1.3.1), with the last argument to the command line call being the option to specify 

this number. One of the output files, with suffix “_density,” provides the mixture model fit 

across the score range and allows the user to determine the optimal K. The model fit in this 

file can be visualized by an accompanying R script into a pdf file (drawMixFit.R script).

Following the model estimation, the FDR associated with a cuto z* is computed as

(12)
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for the proteins over-expressed in group 1 and vice versa for the proteins over-expressed in 

group 0. We remark that the hypothesis testing framework in QSPEC [15], originally based 

on Bayes factors, has also been replaced by the testing framework based on Z-statistics and 

subsequent FDR estimation as proposed above.

Experimental Design: Independent sample comparison versus paired sample comparison

Although we do not fully demonstrate it here using real datasets, we note that the probability 

model for both QSPEC and QPROT now provide two experimental design options, namely 

independent sample comparisons versus paired sample comparisons. Most experiments are 

performed in the independent sample comparisons, where the two groups of samples are 

either biological replicates or biologically unrelated samples. In some experiments, however, 

the same samples are analyzed in different conditions or across time points. In this case, the 

basal protein concentrations will be more correlated within each biological sample, and 

therefore such correlation can be incorporated in the model, just as the statistical tests for 

paired samples do (e.g. paired t-test). The “paired design” option in QSPEC and QPROT 

accommodates this experimental designs with proper ordering of the paired samples in the 

input file (see the software manual).

Experimental Data sets

We obtained the processed quantification data for the Clinical Proteomic Technology 

Assessment for Cancer (CPTAC) data [33, 34] from the author of the latter publication. In 

this study, 48 proteins from an equimolar Universal Protein Standard (UPS1) sample were 

spiked into a 60ng yeast lysate background in five different concentrations (each differing 

by three fold) and run without pre-fractionation. Proteins were quantified using both spectral 

count data and intensity data processed through MaxQuant [6], as well as various forms of 

counting-based quantification methods such as NSAF [26], empai [35], and SINQ [28].

We also used another benchmark dataset from Shalit et al [36], who quantified E. coli digest 

spiked into a HeLa digest in four different concentrations (1.5 fold to 5 fold). Supplementary 

Table 3 of the paper contained the protein intensity data processed by Expressionist software 

(Expressionist), and all the E. coli proteins and human proteins were considered as 

differentially expressed and non-differentially expressed proteins respectively.

Results and Discussion

CPTAC data

We first applied QPROT to the analysis of intensity and continuously normalized spectral 

count data from the CPTAC study [33, 34]. In the CPTAC study, 48 UPS1 proteins were 

spiked into the background of yeast cell lysate (~1,000 proteins) with varying concentrations 

ranging from 0.74 to 20 fmol differing by 3 fold differences. Three biological replicates 

were generated for each concentration. Since there are four different concentration levels, 

one can perform 6 pairwise comparisons where 48 DE proteins are differentially expressed 

by 3, 9, or 27 fold, and therefore this provides an opportunity to assess the sensitivity and 

specificity of DE methods.
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We evaluated the classification performance of QPROT in terms of the receiver-operating 

characteristic using MaxQuant intensity data and SINQ data, a normalized measure 

incorporating both MS and MS/MS data [34]. For reference purposes, we also compared the 

performance to QSPEC and a Bayesian mixture model approach of [16] using the spectral 

count data. As a more relevant alternative, we also compared QPROT to LIMMA [17] using 

the MaxQuant intensity and SINQ data, which implements an empirical Bayes method 

calculating moderated t statistics without special treatment of missing data. For LIMMA 

analysis, we imputed half the minimum observed intensity for missing observations in each 

sample, since the software package requires some positive number for log scaling. In group 

comparisons with 3, 9, and 27 fold differences, we recorded the number of UPS1 proteins at 

a fixed proportion of non-UPS1 background proteins to estimate the sensitivity at a fixed 

type I error rate.

Using the MaxQuant intensity data, QPROT tended to capture as many or more UPS1 

proteins than LIMMA analysis at fixed false discovery proportion, i.e. fraction of non-UPS1 

proteins across all comparisons (Figure 1). QPROT recovered ~ 40 UPS1 proteins at 5% 

background proportion (95% specificity) across all datasets with 3 fold difference, and 

selected 4 to 6 more UPS1 proteins (out of 48) at 93% to 97% specificity regions in 9 and 27 

fold data, slightly improving LIMMA analysis. Meanwhile, QPROT analysis of SINQ data 

also showed comparable or better performance than LIMMA analysis of SINQ data with the 

exception of 0.74/6.7fmol comparison, and both analyses were also superior to all other 

analyses using spectral count data (QSPEC, BayesMix, and NSAF; data not shown as they 

were inferior or less comparable to SINQ). This result indicates that the intensity-based 

analysis with QPROT has the potential to improve upon the widely used LIMMA method in 

these data. Nevertheless, further investigation should be performed in datasets with more 

missing data, since there were too few missing observations in the CPTAC datasets overall. 

At most 95 observations were missing (1.3%) in the comparison between 0.74fmol versus 

2.2fmol, in which the frequency of missing data was the highest.

E. coli spike-in dataset

Next we evaluated QPROT using the E. coli spike-in dataset, with 227 E. coli proteins and 

1,824 human proteins representing differentially expressed and non-differentially expressed 

proteins, respectively [36]. Since the E. coli proteins were spiked in four different 

concentrations, we performed all 6 pairwise comparisons using both QPROT and LIMMA. 

We explored the analysis with and without normalization, but the overall performance 

remained about the same, and hence we present the analysis outcome using the version with 

the normalization step.

Figures 2A and 2B show that both QPROT and LIMMA yield good classification 

performance in this data, distinguishing differentially spiked E. coli proteins from the 

background HeLa proteome. The only analysis in which both methods performed poorly 

was the comparison between 10μg spike-in and 5μg spike-in, where the intensity values 

were indeed equivalent across many proteins. In the comparison between 5μg spike-in and 

3μg spike-in, QPROT demonstrated superior sensitivity to LIMMA, and we thus 

investigated the proteins that were called significant by QPROT but not by LIMMA 
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(Supplementary Table 1). QPROT selected 40 E. coli proteins and 19 human proteins more 

than LIMMA at the same threshold. Many of the E. coli proteins uniquely captured by 

QPROT were those that had at least one missing value in either or both comparison groups 

(red color, Supplementary Table 1). Meanwhile, the human proteins captured by QPROT 

were mostly low abundance proteins but the estimated fold change was at least over 50% in 

half of them.

Related to this observation, Figures 2C and 2D illustrate that QPROT slightly overestimated 

the FDR in some comparisons (excluding 15μg vs 3μg) when benchmarked against the false 

discovery proportion based on the proportion of human proteins, whereas the q-values 

derived from the p-values reported by the empirical Bayes model in LIMMA showed a 

variable degree of accuracy against the benchmark depending on the fold difference and the 

data quality of each concentration. However, we noticed that most E. coli proteins with 

modestly large fold changes (2 fold or more) were mostly selected at score thresholds 

associated with very low FDR by both methods in this benchmark dataset, and thus it was 

difficult to conclude one method has better FDR accuracy than the other.

Conclusion

In this work, we presented a protein DE analysis software QPROT, implementation of 

flexible statistical models for the two major types of quantitative proteomics data and proper 

treatment of missing values for the low abundance proteins in the intensity and continuously 

normalized count data. QPROT also offers a flexible semi-parametric mixture model-based 

FDR estimation routine, which is powerful for differentiating the differential expression of 

even a minor effect size due to its adaptive property. Overall, our new development in this 

work should be immediately useful for many proteomics laboratories analyzing label-free 

quantitative datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

QPROT is a statistical framework with computational software tool for comparative 

quantitative proteomics analysis. It features various extensions of QSPEC method 

originally built for spectral count data analysis, including probabilistic treatment of 

missing values in protein intensity data. With the increasing popularity of label-free 

quantitative proteomics data, the proposed method and accompanying software suite will 

be immediately useful for many proteomics laboratories.
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Figure 1. 
Classification performance (receiver operating chracteristic) of QPROT and LIMMA 

applied to the MaxQuant intensity and SINQ data for the CPTAC dataset in all 5 

comparisons between 4 different concentrations. The comparison between 10μg versus 5μg 

spike-in data was omitted due to lack of differences between the two.

Choi et al. Page 13

J Proteomics. Author manuscript; available in PMC 2016 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Classification performance (receiver operating chracteristic) and FDR evaluation of QPROT 

and LIMMA applied to the Expressionist protein quantification data in the E. coli 

benchmark dataset. False discovery proportion in the y-axis of panels C and D indicates the 

proportion of human proteins among the selected proteins at each score threshold.
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