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We describe a preclinical model that investigates progression of early-stage ductal carcinoma in situ
(DCIS) and report that compromised myoepithelial cell differentiation occurs before transition to
invasive disease. Human breast cancer MCF10DCIS.com cells were delivered into the mouse mam-
mary teat by intraductal injection in the absence of surgical manipulations and accompanying
wound-healing confounders. DCIS-like lesions developed throughout the mammary ducts with full
representation of human DCIS histologic patterns. Tumor cells were incorporated into the normal
mammary epithelium, developed ductal intraepithelial neoplasia and DCIS, and progressed to
invasive carcinoma, suggesting the model provides a rigorous approach to study early stages of
breast cancer progression. Mammary glands were evaluated for myoepithelium integrity with
immunohistochemical assays. Progressive loss of the myoepithelial cell differentiation markers p63,
calponin, and a-smooth muscle actin was observed in the mouse myoepithelium surrounding DCIS-
involved ducts. p63 loss was an early indicator, calponin loss intermediate, and a-smooth muscle
actin a later indicator of compromised myoepithelium. Loss of myoepithelial calponin was specif-
ically associated with gain of the basal marker p63 in adjacent tumor cells. In single time point
biopsies obtained from 16 women diagnosed with pure DCIS, a similar loss in myoepithelial cell
markers was observed. These results suggest that further research is warranted into the role of
myoepithelial cell p63 and calponin expression on DCIS progression to invasive disease.
(Am J Pathol 2015, 185: 3076e3089; http://dx.doi.org/10.1016/j.ajpath.2015.07.004)
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Clinical evidence is compelling for histologic progression
of breast cancer through atypical hyperplasia, ductal car-
cinoma in situ (DCIS), invasive ductal carcinoma, and
metastatic stages.1 Such histopathologic progression
studies and mutational profiling of epithelial cancers2,3

suggest that acquisition of invasive potential is a rela-
tively late event. However, genomic data analyses have
revealed that most tumor cell gene expression changes
occur at the transition from normal to DCIS, with few
additional changes in expression occurring at the transition
from DCIS to overt invasive disease.4,5 These observations
implicate key roles for nonepithelial cells in progression to
invasive disease.6,7 The lack of relevant model systems has
hindered our understanding of the DCIS to invasive
transition.
stigative Pathology.

.

The clinical definition of invasive breast cancer is spread
of malignant tumor cells from the confines of the mammary
duct into the adjacent tissue stroma. In the normal mammary
gland, epithelial ductal and alveolar structures are
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Figure 1 Ductal and myoepithelial cell layer integrity are not compromised
by the intraductal injection method. GFP-labeled MCF10DCIS.com cells were
injected at volumes of 2.5, 5.0, and 10 mL to assess junctional complex and
myoepithelial cell layerdisruptionat24hoursafter injection.Serial sectionswere
stained with GFP to confirm the presence of human tumor cells (brown),
E-cadherin toassessductal epithelial junctional complexdisruption (brown), and
a-SMA to assess myoepithelial cell layer disruption (brown). Images were
scanned with Aperio software; digital resolution Z 0.25 mm per pixel. Scale
barZ 100 mm. GFP, green fluorescent protein; a-SMA, a-smooth muscle actin.

Myoepithelium in DCIS Progression
surrounded by a contractile myoepithelial cell layer that
facilitates milk expulsion during lactation.8 The mammary
myoepithelial cells are also required for normal mammary
gland development, because they influence epithelial cell
polarity, ductal branching, and milk production.8 A hall-
mark of progression from DCIS to invasive cancer is
physical breach of the myoepithelial cell layer and under-
lying basement membrane. For tumor progression, studies
suggest that myoepithelial cells play an active role in tumor
suppression by secreting protease inhibitors, down-
regulating matrix metalloproteinases,9,10 and producing
tumor suppressive proteins such as maspin, p63, Wilms
tumor 1, and laminin 1.11e13 These data support the hy-
pothesis that the tumor suppressive function of myoepi-
thelium is lost with DCIS progression, resulting in the
transition from preinvasive to invasive cancer.14e16

Further studies report that tumor cells adjacent to focally
disrupted myoepithelium can display distinct phenotypes,
including estrogen receptor negativity, genetic in-
stabilities, increased expression of invasion-related genes,
and aberrant E-cadherin expression.17,18 Overall, these
data support an active role for the myoepithelium in sup-
pressing DCIS progression and implicate loss of this
function as critical for the transition to invasive disease.

Invasive potential of human mammary epithelial tumor
cell lines is evaluated primarily by injecting cells into the
mammary fat pads of immune compromised mice. Although
the mammary fat pad is the correct anatomic organ for breast
cancer, mammary fat pad models bypass the requirement for
tumor cells to exit from the location of their initiation, that is,
the mammary ducts. In transgenic models, early-stage dis-
ease is intraductal, and these models display tumor
progression from ductal intraepithelial neoplasia (DIN) to
invasive stages. However, in transgenic models, most
epithelial cells contain the active oncogene; thus, these
models do not replicate cellular transformation as a relatively
rare event. Here, we used an intraductal approach in the
absence of surgery,19 because this approach offers a key
advantage in that cells are directly placed into the mammary
ductal system, which is the site of early-stage disease.
Importantly, this approach permits modeling of disease
progression in the background of a normal mammary
epithelium. Further, our nonsurgical approach permits
co-evolution of tumor progression with myoepithelial cell
changes with minimal wound healing or proinflammatory
induction. With this intraductal model, we observed pro-
gressive loss of the myoepithelial cell differentiation markers
p63, calponin, and a-smooth muscle actin (a-SMA) before
tumor cell breach of the myoepithelium. Further, myoepi-
thelial cell loss of calponin strongly associates with gain of
p63 expression in adjacent epithelial tumor cells, a marker of
basal epithelium. These studies identify compromised
myoepithelial cell function before transition to invasive
disease and suggest that disrupted myoepithelial expression
of calponin may predict DCIS-involved ducts at risk of
progression to invasive disease.
The American Journal of Pathology - ajp.amjpathol.org
Materials and Methods

Cell Culture

Human triple-negative breast cancer MCF10DCIS.com cells
and green fluorescent protein (GFP)-labeled MCF10DCIS.com
cells, generous gifts fromFredMiller andKornelia Polyak,were
cultured as previously described,10 trypsinized, and resuspended
in phosphate-buffered saline immediately before injection. Cells
were used between passages 8 to 22, because passages later than
22 were shown to display a more invasive phenotype.20 T47D,
MCF7, and HCC70 cells were obtained from the University
of Colorado Cancer Center Protein Production/Mab/Tissue
Culture Core and cultured as recommended by the supplier.
Animals and Intraductal Injections for Tumor Studies

Five-week-old female nulliparous severe combined immuno-
deficient mice were obtained from Taconic (Hudson, NY) and
maintained in the Center for Laboratory Animal Care at the
University of Colorado Anschutz Medical Campus. For
intraductal injections of human breast cancer cells, mice were
anesthetized with isoflurane. Depending on experiment, 2.5 to
10 mL of 50,000 MCF10DCIS.com, T47D, MCF7, or HCC70
cells were intraductally injected into anesthetized mice with
the use of a previously described intraductal delivery method
developed for viral delivery.19,21 Briefly, a 25-mL Wiretrol II
disposable glass micropipette (no. 5-000-2050; Drummond
Scientific Company, Broomall, PA) was drawn and fire-
polished into a fine tip of 60 to 75 mm. Sterile cell solution
was back-loaded into the micropipette with a stainless steel
plunger. With the use of a micromanipulator, the pipette tip
was gently inserted directly into the teat canal, and cells were
slowly ejected into the lumens of the third thoracic and fourth
inguinal mammary glands of mice (nZ 3 to 4 injected glands
3077
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Figure 2 Assessment of tumor cell lines injected via the mammary intraductal model. Serial H&E (A) and FISH analyses for human (red) and mouse (green)
COT-1 DNA (B) of nulliparous mouse mammary glands injected with T47D breast tumor cells in the absence of estradiol via intraductal method. H&E images
from MCF7 cells intraductally injected in the presence of estradiol display the solid (C) and comedo (D) characteristics of human DCIS and solid DCIS from
HCC70 tumor cells (E) with high mitotic activity (E, arrows). H&E analysis of MCF10DCIS.com tumor cells injected via mammary intraductal method display
characteristics of human DCIS (solid, F; cribriform, G; papillary, H; comedo, I), and invasive lesions (J, arrow). FISH analysis for human (red) and mouse
(green) COT-1 DNA reveals tumor progression from normal-like ductal structures (K) to DCIS (L) with incorporation of human tumor cells into normal mouse
mammary ducts (white arrows). Serial IHC analyses of E-cadherin (M) (brown) and FISH (N) suggest that E-cadherinebased junctional complexes form
between MCF10DCIS.com cells and mouse ductal epithelial cells (purple arrows) and between neighboring MCF10DCIS.com cells (white arrows). Brightfield
images were scanned with Aperio software; digital resolution Z 0.25 mm per pixel. Scale bars: 80 mm (EeJ); 50 mm (K and L); 20 mm (M and N). DCIS, ductal
carcinoma in situ; FISH, fluorescence in situ hybridization; H&E, hematoxylin and eosin; IHC, immunohistochemical.
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per mouse). Images depicting the intraductal injection tech-
nique were captured with a Canon PowerShot A620 camera
with 4X optical zoom (Canon, Tokyo, Japan). For injections
with T47D andMCF7 cells, anesthetizedmice received a sterile
placebo implant (catalog no. SC-111; Innovative Research of
America, Sarasota, FL) or a 0.72-mg 17b-estradiol slow release
implant (catalog no. SE-121; Innovative Research of America).
The implant insertion area (dorsal side of neck between the
shoulder blades) was shaved and swabbed with chlorhexidine
digluconate solution. Pellets were inserted with a sterilized
10-gauge stainless steel precision trocar (catalog no. MP-182;
Innovative Research of America). To compare intraductal in-
jection techniques, mammary ducts of two anesthetized mice
were surgically exposed as previously reported.22,23 At study
end, mammary tissue was excised from animals euthanized by
carbon dioxide exposure, followed by cervical dislocation.
Excised mouse mammary glands were fixed in 10% neutral
buffered formalin for 24 hours and paraffin embedded for his-
tologic and immunologic analyses. All animal procedures were
approved by the Institutional Animal Care and Use Committee
of the University of Colorado Anschutz Medical Campus
[protocols 72110(07)1E and 72112(08)1E].
Human Tissue Acquisition

Formalin-fixed, paraffin embedded breast tissue obtained from
19 premenopausal women aged 20 to 45 years who underwent
3078
clinically indicated surgical treatment were included in the
study. For each case multiple blocks were reviewed, and a
single representative block was selected for all subsequent an-
alyses. Sixteen of these womenwere diagnosedwith pure DCIS
and three had a diagnosis of invasive ductal carcinoma with
DCIS component. Ten cases were obtainedwith approval of the
Colorado Multiple Institution Review Board under two pro-
tocols. One protocol was a retrospective chart review and tissue
collection-only study deemed exempt from subject consent and
Health Insurance Portability and Accountability Act (HIPPA)
authorization, whereas the other protocol included informed
written patient consent. Nine pure DCIS cases were received
from Oregon Health Science University under institutional
review board protocol with HIPPA waiver. Tissues were
sectioned to 4 mm and adhered to glass slides for subsequent
histologic and immunohistologic analyses. Within these 19
cases, a cumulative number of 234 individual DCIS-involved
ducts were analyzed as described in the following section.
Histologic Assessments

Hematoxylin and eosin-stained slides were used to assess the
distribution of tumor emboli, DIN, DCIS, DCIS with micro-
invasion, and invasive lesions for mouse mammary glands and
human breast tissues. For these analyses, hematoxylin and
eosin-stained slides were scanned, and total tumor number and
area quantified with Aperio Spectrum software (Aperio
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Multifocal tumor progression model assessment. Representative H&E images
of intraductal tumor progression reveal the formation of tumor emboli (A, arrows), DIN (B,
arrow), DCIS (C), DCIS with tumor cell escape (D, arrows), and overt invasion (E). Insets in
A and D are enlarged to show detail. Quantification of each type of pathologic lesion shows
tumor progression from mostly tumor emboli at 96 hours after injection, to DCIS at 4 weeks
after injection, to invasive cancer at 10 weeks after injection (F). Images were scanned
with Aperio software; digital resolution Z 0.25 mm per pixel. Scale bar Z 50 mm. DCIS,
ductal carcinoma in situ; DIN, ductal intraepithelial neoplasia; H&E, hematoxylin and eosin.

Myoepithelium in DCIS Progression
Scanscope Console application version 102.0.0.20.44; Aperio
Technologies, Vista, CA). Tumor emboli were defined as one
to five layers of tumor cells within mammary ducts that lacked
direct contact with the murine mammary epithelium. DINs
were described in this study as ducts with two to three layers of
malignant cells.24 DCIS-involved ducts were assessed for
histology subtypes.25 DCIS with microinvasion was
defined as a lesion with small clusters or single tumor cells
outside of the mammary duct in the absence of hematox-
ylin and eosin evidence for myoepithelial cell loss.25

Invasive lesions were defined as lesions with histologic
evidence for loss of myoepithelial cells and tumor cells
infiltrating the mammary stroma.

Fluorescence in Situ Hybridization Analysis

Fluorescence in situ hybridization analyses were performed
with probes for human and mouse Cot-1 DNA, as previ-
ously described,26 by the University of Colorado Cancer
Center Cytogenetics Core.

Immunohistochemistry

For immunohistochemistry (IHC), 4-mm sections of paraffin
embedded mouse mammary gland and human breast tissues
were pretreated with Dako TRS Antigen Retrieval Solution
(TRS) or EDTA Antigen Retrieval Solution (EDTA; Dako
North America Inc., Carpinteria, CA). The primary antibodies
and antibody dilutions were: mouse anti-human E-cadherin
(dilution 1:100; TRS; catalog no. 3195; Cell Signaling,
Danvers, MA), mouse anti-human p63 (dilution 1:200; EDTA;
catalog no. CM163B; BioCare Medical, Concord, CA), CD45
(dilution 1:1000; TRS; catalog no. 550539; BD Pharmingen,
San Jose, CA), mouse anti-human cytokeratin 5 (dilution 1:50;
EDTA; catalog no. CM 234C; BioCare Medical), rabbit
The American Journal of Pathology - ajp.amjpathol.org
anti-human calponin (dilution 1:800; EDTA; catalog no.
ab46794; Abcam, Cambridge, MA), mouse anti-human a-
SMA (dilution 1:200; EDTA; catalog no. M0851; Dako
North America Inc.). Immunoreactivity was detected with
Envision þ system mouse and rabbit secondary antibodies
(catalog nos. K4001 and K4003; Dako North America Inc.)
with 3, 30-diaminobenzidine (catalog no. K3568; Dako North
America Inc.) used as the chromogen for all stains. Estrogen
receptor positivity was assessed according to the Allred scoring
method.27 HER2 positivity was determined with the U.S. Food
and Drug Administration-approved Hercep test for the Dako
Autostainer (catalog no. K5207; Dako North America Inc.).

Immunofluorescent Analysis

Immunofluorescence multiplex staining was performed on pure
DCIS and DCIS lesions from the intraductal mouse model and
human cases with the use of primary antibodies to p63 (dilution
1:200; EDTA; catalog no. CM163B; BioCare Medical),
calponin (dilution 1:800; EDTA; catalog no. ab46794;
Abcam), and a-SMA (dilution 1:200; EDTA; catalog no.
M0851; Dako North American Inc.), and unlabeled
species specific, secondary antibodies (dilution 1:500,
and dilution 1:1000; catalog no. 31,461; Thermo Fischer
Scientific, Rockford, IL).Multiplex stainingwas accomplished
with OPAL 3-Plex Kit (catalog no. KNEL79100IKT; Perkin
Elmer, Waltham MA) for application of Fluorescein Plus,
cyanine-5, and cyanine-3 fluorochromes according to the
manufacturer’s instructions. Nuclei were stained with 0.1
mg/mL DAPI (Sigma-Aldrich, St. Louis, MO).

Imaging and Quantification

Stained slides were scanned with Aperio and Ariol Scanner
systems (Leica Biosystems, Richmond IL) at �20
3079
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magnification, corresponding to 0.25 mm per pixel
(Aperio) or 0.32 mm per pixel (Ariol), which enables high-
resolution access to the entire tissue section via a virtual
image. Tumor cells were identified on the basis of their
3080
structural characteristics, including nuclear pleomorphism,
irregularity, and multiple nucleoli. For quantitation of
myoepithelial cell differentiation status by IHC, myoepi-
thelial cell expression of a-SMA, calponin, and p63 were
ajp.amjpathol.org - The American Journal of Pathology
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obtained with serial IHC sections from five human cases.
The surrounding normal terminal ductal-lobular units
served as internal positive controls for these myoepithelial
cell differentiation markers. Myoepithelial cell marker
positivity is expressed as an average percentage of
coverage of ducts with DCIS involvement per time point
per group with �25 lesions analyzed per group. Data were
collected by two independent assessments: histology-based
visual assessment and unbiased automated computational
deconvolution algorithm (Aperio Deconvolution 9 algorithm
version 11.2; Aperio Technologies, Leica Biosystems). Inter-
assessment variation was found to be <10%. For immunoflu-
orescent image quantitation, we assessed DCIS-involved ducts
for the percentage of myoepithelial cells positive for p63, cal-
ponin, and a-SMA. Because p63 is a nuclear marker, staining is
intermittent even in cases when 100% of the myoepithelial cells
are p63 positive. Thus, in a subset analysis, we quantified the
percentage of p63-positive nuclei to total myoepithelial nuclei.
Myoepithelial nuclei were defined as small nuclei in cells
positive for a-SMA and/or calponin on triple immunofluores-
cence stained slides (Supplemental Figure S1). These nuclear
count data were compared with the visual assessments for
scoring the percentage of myoepithelial nuclei positive for
p63. Method comparisons showed percentage of coverage
of 64.4% by quantitative nuclear counting compared with
63.7% by qualitative-visual assessments. All subsequent
analyses, performed by a pathologist (S.J.), were evaluated
by the qualitative-visual method.
Statistical Analysis

In the mouse model, mixed effects analysis of variance was
used to compare normal, DCIS, and invasive ductal carci-
noma for each biomarker (a-SMA, calponin, and p63) at 4
and 10 weeks, and to also compare DCIS at 4 weeks versus
10 weeks, and DCIS with microinvasion at 4 weeks versus
10 weeks. Repeated analysis of variance was used to esti-
mate and compare the human DCIS cases. For both mouse
and human cases, there were multiple DCIS-involved ducts
or tumors from a single individual included in individual
analyses. Because DCIS-involved ducts and tumors from
the same individual might share similar characteristic, we
allowed a random mouse effect (random effect with a
normal distribution with mean Z 0 and variance estimated
from the data) to account for the possible correlation during
the modeling process. Similarly, P value justification
for multiple comparisons was performed according to
Figure 4 Progressive loss of myoepithelial cell differentiation markers in the intra
D, and G, brown), CALP (B, E, and H, brown), and p63 (C, F, and I, brown). Normal m
insets are enlarged to show detail of normal ducts. Variable myoepithelial cell marke
with microinvasion (GeI, arrows show tumor cells outside the duct). Gain of p63 b
coverage of myoepithelial cell layer markers surrounding DCIS tumors compared wit
injection. Statistical significance was determined by mixed effects analysis of variance
*P < 0.05. Solid barsZ SEM. Images were scanned with Aperio software; digital res
calponin; DCIS, ductal carcinoma in situ; H&E, hematoxylin and eosin; IHC, immuno
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Bonferroni’s approach. P < 0.05 was considered statistically
significant.
Results

Intraductal Model Preserves Mammary Duct Integrity

To deliver breast cancer cells to the correct anatomic location
for DCIS, we modified a nonsurgical injection model previ-
ously developed for intraductal viral delivery.19,21 In ourmodel,
human triple-negative MCF10DCIS.com cells20 are intra-
ductally injected into an intact teat of nulliparous mice in the
absence of any surgical manipulation (Supplemental Figure S2,
A and B). In a comparison of our intraductal model with one
that surgically exposes the mammary duct, we found lower
infiltrate of CD45þ immune cells in the absence of surgery
(P � 0.029, unpaired t-test) (Supplemental Figure S2, CeE).
This observation suggests that the nonsurgical approach mini-
mizes inflammation as a potential confounder of tumor pro-
gression in intraductal breast cancer models; thus for all
subsequent studies the nonsurgical tumor cell injection model
was used.28e31 Because progression to invasive disease re-
quires disruption of normal epithelial junctional integrity and
loss of the myoepithelial cell layer, we next verified that ductal
integrity was not compromised during intraductal tumor cell
delivery. GFP-labeled MCF10DCIS.com cells were injected at
2.5-, 5.0-, or 10-mLvolumes. The effect of the different injection
volumes 24 hours after injection on the integrity of the epithelial
and myoepithelial cell layers was determined by assessing the
presence of GFP-labeled cells within the mammary stroma and
by IHC detection of ductal epithelial E-cadherin and myoepi-
thelial a-SMA. For all three injection volumes, there was no
evidence of GFPþ tumor cells within the mammary stroma,
no visible signs of disruption of the epithelial E-cadherin
junctional complexes, and no evidence of disruption in the
myoepithelial cell layer (Figure 1). However, whether
junctional integrity is functionally compromised in the
mammary gland via intraductal injection cannot be fully
addressed with IHC. Previous studies have analyzed tight
junction permeability of mammary epithelial cells during
secretory activation by intraductally injecting 14C-sucrose
and measuring its presence in the blood.32 Thus, we
assessed 14C-sucrose permeability in nulliparous glands
and found that, although injected dye volumes of 5mLdo not
appear to compromise ductal integrity, volumes of�10 mLmay
disrupt junctional complexes (Supplemental Figure S2F).
Therefore, for subsequent studies, we elected to use a 5-mL
ductal DCIS model. Serial IHC analysis of myoepithelial cell markers a-SMA (A,
ouse ductal structures show uniform IHC staining of the myoepithelium (AeC);
r coverage is observed in DCIS-involved ducts (DeF) and DCIS-involved ducts
y tumor cells is also apparent (F and I). Quantification of the percentage of
h normal ductal structures at 4 weeks (J) and 10 weeks (K) after tumor cell
and P value justification for multiple comparisons using Bonferroni’s approach.
olution Z 0.25 mm per pixel. Scale bars: 100 mm (AeF); 50 mm (GeI). CALP,
histochemical; MI, microinvasion; a-SMA, a-smooth muscle actin.
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volume of tumor cells for intraductal teat injection into nullip-
arous hosts.

To investigate the ability of our nonsurgical, intraductal
tumor cell injection protocol to support growth of additional
3082
human breast cancer cell lines, we analyzed tumor forma-
tion and progression of two luminal A cell lines, T47D and
MCF7, and a second triple-negative cell line, HCC70, at 4
weeks after tumor cell injection.33 T47D cells did not form
ajp.amjpathol.org - The American Journal of Pathology
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tumors in the absence or presence of supplemental estradiol;
however, a few viable tumor cells persisted in mammary
lumens at 4 weeks after injection (Figure 2, A and B).
MCF7 cells failed to form tumors in the absence of estradiol,
but they readily formed solid (Figure 2C) and comedo-like
(Figure 2D) DCIS lesions in the presence of supplemental
estradiol. The triple-negative HCC70 cell line formed mostly
solid DCIS with high mitotic activity (Figure 2E). On the basis
of these data, the nonsurgical intraductal model permits the
intraductal growth of estrogen receptor-positive and -negative
breast cancer cell lines.
Histologic Patterns of Tumor Progression

Our histologic analysis ofMCF10DCIS.com intraductal tumors
identified lesions with characteristics of the main human DCIS
subtypes: solid, cribriform, papillary, and comedo (Figure 2,
FeI), observations that corroborate and extend other intraductal
delivery studies.22,23 Further, and as observed by others, we
found that MCF10DCIS.com cells breach the mouse myoepi-
thelial cell layer and locally invade into the adjacent stroma
(Figure 2J). The intraductal MCF10DCIS.com cell lesions use
the endogenous mouse myoepithelial layer (Figure 2, K and L)
and do not generate a human cell-derived myoepithelial cell
layer as observed when this cell line is injected subcutaneous or
into the mammary fat pad.10,20,34,35 Unique to the intraductal
delivery model, we observe that normal ductal structures can be
composed primarily of human MCF10DCIS.com cells
(Figure 2K) and that tumor cells incorporate into the normal
mouse ductal epithelium (Figure 2L), as detected by fluores-
cent in situ hybridization with the use of probes specific
for human (red) and mouse (green) COT-1 DNA. We
next evaluated whether MCF10DCIS.com cells form
E-cadherinebased adherens junctions with neighboring
mouse luminal epithelial cells, suggesting that lesions
reminiscent of early-stage tumors develop in this model.
E-cadherin staining was consistent with MCF10DCIS.com
cells forming E-cadherinebased junctional complexes
with normal mouse epithelial cells and with neighboring
tumor cells, albeit at a lower staining intensity (Figure 2,
M and N). In sum, the intraductal tumor delivery model is
poised for the study of tumor cell escape and/or invasion
from intact mammary ducts.

To investigate disease progression in this model, we quan-
tified the number of intraductal tumor emboli (Figure 3A),
Figure 5 Variable loss of myoepithelial cell differentiation markers in human b
D, brown) (red arrows depicts reactive fibroblast staining for a-SMA), CALP (B and
cells surrounding some DCIS-involved ducts (AeC) and almost no expression in
show differential expression of a-SMA, CALP, and p63 in surrounding myoepithe
a-SMA, CALP, and p63 on 129 DCIS-involved ducts obtained from two cases o
Immunofluorescent multiplex signal quantification of myoepithelial a-SMA, CALP,
(P). Myoepithelial cell expression of a-SMA, CALP, and p63 vary between individu
determined by mixed effects analysis of variance and P value justification for mu
were scanned with Aperio and Ariol software; digital resolutionZ 0.25 mm per pix
CALP, calponin; DCIS, ductal carcinoma in situ; IHC, immunohistochemical; a-SM
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ductal intraepithelial neoplasia (DIN) (Figure 3B), DCIS-
involved ducts without or with microinvasion (Figure 3, C
and D), and overt invasive lesions (Figure 3E) at 96 hours, 4
weeks, and 10 weeks after tumor cell injection. Tumor cell
emboli were predominant at 96 hours after injection,
comprising 70% of the mammary gland lesions, followed by
DIN and DCIS-like lesions (Figure 3F). The distribution of
lesions shifted from emboli toward DCIS and invasive disease
at 4 weeks, with evidence for further progression to invasive
disease by 10 weeks (Figure 3F). This cumulative analysis
shows time-dependent breast cancer progression through a
DCIS stage, demonstrating the capacity of our xenograft model
to serve as a tool to investigate human DCIS progression.
Characterization of Myoepithelial Cells with DCIS
Progression in Intraductal Model

Loss of the myoepithelial cell layer is a hallmark of DCIS
progression to invasive disease.9,10,36e39 However, the question
of whether progressive loss of myoepithelial cell differentiation
markers occurs before invasive disease has not been thoroughly
investigated. Here, we used IHC to assess a panel of myoepi-
thelial cell differentiation markers, a-SMA, the major smooth
muscle contractile protein; calponin, an actin-binding protein
that regulates the power stroke during smooth muscle
contraction40,41; and p63, a transcription factor with putative
tumor suppressor function.10,12,42 In nonetumor-bearing mu-
rine ducts, as expected, evidence was found for uniform
myoepithelial cell expression of a-SMA (Figure 4A), calponin
(Figure 4B), and p63 (Figure 4C). However, even in DCIS-
involved ducts with structural evidence of an intact myoepi-
thelial cell layer, we observed variable expression of these
myoepithelial cell markers (Figure 4, DeF). Evidence for
additional loss in these markers occurred in DCIS-involved
ducts with apparent microinvasion, as defined by the presence
of small tumor cell clusters outside the confines of the duct
(Figure 4, GeI). Quantification of these data shows that all three
markers were expressed in most myoepithelial cells lining the
normal ducts (Figure 4, J and K). However, in DCIS-involved
ducts with a histologically-detected intact myoepithelial cell
layer, at the 4-week time point 15% of the myoepithelium
lacked a-SMA, 30% lacked calponin, and 92% lacked p63 by
IHC detection (Figure 4J), inferring differential loss of these
markers within the myoepithelial cell. Further, coverage of
calponin and a-SMA was significantly decreased in DCIS with
reast cancer. Serial IHC analysis of myoepithelial cell markers a-SMA (A and
E, brown), and p63 (C and F, brown) shows high expression in myoepithelial
other lesions (DeF). Immunofluorescence staining of DCIS-involved ducts
lial cells (GeN). Brightfield IHC signal quantification of myoepithelial cell
f pure DCIS and three cases of invasive ductal carcinoma with DCIS (O).
and p63 on 105 DCIS-involved ducts from 14 cases with pure DCIS diagnoses
al DCIS-involved ducts from the same case (Q). Statistical significance was
ltiple comparisons using Tukey-Kramer approach. ****P < 0.0001. Images
el (AeF); 0.32 mm per pixel (GeN). Scale bars: 30 mm (AeF); 60 mm (GeN).
A, a-smooth muscle actin.
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microinvasion (Figure 4J). Additional evidence to suggest that
myoepithelial cell differentiation is compromised with DCIS
progression was found at the 10-week time point, where marker
coverage for a-SMA and calponin showed trends toward
decreased staining compared with the 4-week time point
(Figure 4, J and K).

Characterization of Myoepithelial Cells with DCIS
Progression in Humans

To determine whether similar trends in myoepithelial cell
marker loss are observed in DCIS-involved ducts in
women, five human cases, three with invasive ductal
carcinoma with DCIS component and two with pure DCIS
with a total of 172 DCIS-involved ducts identified by histo-
logic review, were serially sectioned and singly stained for
a-SMA, calponin, and p63 expression. As observed in our
mouse DCIS model, variable expression of these myoepithe-
lial cell markers was observed; some human DCIS-involved
myoepithelium displayed a high percentage of a-SMA-, cal-
ponin-, and p63-positive cells (Figure 5, AeC) whereas others
had variable or no expression of these markers (Figure 5,
DeF). To confirm and expand these observations of marker
loss within individual myoepithelial cells we performed
multiplex immunofluorescence staining for all three markers in
16 cases of pure DCIS. This analysis confirmed colocalization
of all three myoepithelial cell markers in uninvolved ducts
(data not shown) and revealed similar trends for myoepithelial
cell expression of a-SMA, calponin, and p63 in DCIS-
involved ducts (Figure 5, GeN). Quantitation of the five
human cases stained for brightfield image analysis (Figure 5O)
and the 14 pure DCIS cases stained for fluorescent image
analysis (Figure 5P) showed trends in myoepithelial cell
marker loss similar to that found in our intraductal mouse
model with p63 expression less than calponin (P < 0.0001)
and calponin expression less than a-SMA (P < 0.0001). We
also found myoepithelial cell expression of these three markers
to vary between individual DCIS-involved ducts from the
Figure 6 Loss of myoepithelial cell calponin correlates with gain of p63
in adjacent tumor cells in the MCF10DCIS.com intraductal model. A
representative DCIS lesion serially sectioned and stained by H&E and by
immunohistochemistry for a-SMA, calponin, and p63 (AeD). Magnified
insets on right show DCIS border with myoepithelial a-SMA expression
intact (B), myoepithelial calponin loss (C, black arrow), and gain of p63 in
adjacent tumor cells (D, black arrow). Dual immunofluorescence staining
for calponin (green) and p63 (red) shows representative DCIS lesion with
variable myoepithelial cell calponin and p63 expression (E). A normal duct
with co-localized myoepithelial cell p63 and calponin expression (yellow
signal) serves as an internal positive control for dual staining myoepithe-
lium (E, upper left inset). The epithelial cells comprising the normal duct
are p63 negative. The magnified images of immunofluorescence and H&E
staining on lower right show structural evidence of the tumor cells gaining
p63 expression (arrows) coincident with loss of myoepithelial calponin.
Images were scanned with Aperio and Ariol software; digital
resolution Z 0.25 mm per pixel. Scale bars: 100 mm (left); 50 mm
(right). DCIS, ductal carcinoma in situ; H&E, hematoxylin and eosin;
a-SMA, a-smooth muscle actin.
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Table 1 Intraductal Mouse Model Shows Loss of Myoepithelial
Calponin Correlates with Gain of p63 in Adjacent Tumor Cells
(Figure 6)

Myoepithelial cell expression

Adjacent
tumor
cells
expressing
p63, %

Myoepithelial-
adjacent
tumor
cell pairs
analyzed, n

a-SMAþ Calponinþ p63þ 0.2 519
a-SMAþ Calponinþ p63� 0.03 267
a-SMAþ Calponin� p63� 27.2 154

a-SMA, a-smooth muscle actin.

Myoepithelium in DCIS Progression
same case (Figure 5Q). Cumulatively, these data suggest
sequential loss of expression of p63, calponin, and a-SMA can
occur in DCIS-involved ducts before overt loss of the myoe-
pithelium and are consistent with the notion that myoepithe-
lium cell function is compromised before the transition of
noninvasive to invasive breast cancer.

With the use of our murine, intraductal DCIS model, we
next investigated whether loss of the myoepithelial markers
p63, calponin, or a-SMA correlated with predicted markers
of tumor cell progression. Loss of epithelial cell polarity
contributes to acquisition of an invasive phenotype in models
of human breast cancer43; thus, we evaluated the expression
of GM130, a Golgi epithelial cell polarity marker whose
expression is frequently lost in breast cancer.44 IHC analysis
of GM130 did not show differences in localization between
normal epithelium or DCIS tumor cells regardless of myoe-
pithelial cell marker expression, nor were differences in
E-cadherin staining observed (data not shown). However,
IHC staining of calponin and p63 suggested an inverse
relation between myoepithelial cell expression of calponin
and gain of p63 expression in adjacent tumor cells (Figure 6,
AeD). Dual immunofluorescence staining for calponin
(green) and p63 (red) confirmed a striking correlation
between loss of calponin expression in myoepithelial cells
and gain of p63 expression in adjacent tumor cells in the
MCF10DCIS.com intraductal model. Normal myoepithelial
cells dual stain for both calponin and p63, and they serve as
internal controls (Figure 6E). Within these normal ducts, the
adjacent epithelium is p63 negative as expected. Further, at
earlier time points, tumor cells within DCIS-involved ducts
are p63 negative; whereas at 10 weeks after tumor cell in-
jection, 27% of DCIS tumor cells adjacent to calponin-
negative myoepithelial cells expressed p63 (Figure 6E and
Table 1). This increase in tumor cell p63 expression in tumor
cells adjacent to calponin-negative myoepithelium is
approximately 130-fold compared with tumor cells adjacent
to calponin-positive myoepithelial cells (Figure 6E and
Table 1). Of note, increases in tumor cell p63 expression
were not observed when adjacent myoepithelium had lost
p63 expression but retained calponin (Table 1). The gain of
p63 expression in tumor cells suggests up-regulation of a
basal cell differentiation pathway in response to calponin
The American Journal of Pathology - ajp.amjpathol.org
loss, data consistent with the transition of indolent tumor
cells to a more invasive phenotype.45,46

Discussion

Our intraductal mouse model of human DCIS provides a
rigorous approach to study early events in human breast cancer
progression from DIN to breach of the myoepithelial cell
layer. An intraductal approach described by Harrell et al47 also
offers advancement, because this model supports lymph node
metastasis. In their model, 200 mL of tumor cells are deposited
within the surgically exposed lactiferous duct. Our data, using
epithelial cell tight junction disruption as a marker for loss of
epithelial integrity, suggest that the normal ductal networks
within the mammary gland of nulliparous mice are likely
disrupted with injection volumes exceeding 10 mL. Thus
larger-volume intraductal methods may not permit the inves-
tigation of early changes in the myoepithelial cell layer that
occur with DCIS progression. Another published intraductal
model injects a small volume of tumor cells into surgically
exposed lactiferous ducts, thus preserving duct integrity.22,23

We find that similar surgical procedures induce localized
wound-healing and inflammatory programs that have been
shown to be tumor promotional in other contexts.28e31 Here,
we describe a nonsurgical intraductal model that minimizes
wound-healing programs and inflammation, which we propose
may uniquely permit the evaluation of DCIS progression. A
limitation to the method described here, and all human breast
cancer mouse models, is the requirement for immune-deficient
animals. The application of our intraductal approach to
isogenic models would permit investigation of DCIS pro-
gression in an immune-competent host.

Our data demonstrate that DCIS-involved ducts with a
physically intact myoepithelial cell layer can display pro-
gressive loss of specific myoepithelial cell markers and
suggest that the myoepithelium is compromised before DCIS
progression to overt invasive disease. We focused our studies
on three myoepithelial cell markers: a-SMA, calponin, and
p63, loss of which are commonly used to identify DCIS
progression to invasive disease in women.37e39 In our murine
model, a-SMA positivity surrounding DCIS-involved ducts
remains relatively stable even at 10 weeks after intraductal
injection (Figure 4K), suggesting that the actin cytoskeletal
fibers are a stable feature of differentiated myoepithelial cells.
However, gain of a-SMA staining in adjacent cancer-
associated fibroblasts limits the usefulness of a-SMA in the
diagnosis of DCIS.48,49 Calponin, an important actin-myosin
regulator in smooth muscle cells,40,41 shows more frequent
loss within myoepithelial cells, being largely present in lesions
4 weeks after injection and lost by 10 weeks after injection.
Our data suggest that myoepithelial cell loss of calponin oc-
curs before loss of a-SMA, but after loss of p63, which occurs
by 4 weeks after tumor cell injection in our murine model. A
critical function of p63 is the development and maintenance of
stratified epithelial tissue, including breast; p63�/� mice
completely lack mammary epithelial tissue and p63þ/� mice
3085
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are highly susceptible to spontaneous tumor formation in
multiple organs.50 p63 is also an important regulator of
terminal differentiation and polarity of both epidermal and
myoepithelial cells, and disruption of these processes was
shown to promote progression of DCIS to invasive cancers.5,51

In human breast DCIS-involved ducts, we found similar trends,
with loss of p63 > calponin > a-SMA. These data are not
consistent with experience of current clinical pathology, where
losses of thesemyoepithelial cellmarkers are equated to absence
of myoepithelial cells and thus progression to invasive disease.

The clinical focus on identifying areas of micro-
invasion, rather than correlation of multiple myoepithe-
lial biomarkers as we have performed in this study,
could hinder identification of myoepithelial cells that
express a subset of markers. Further, our investigations
into multiple myoepithelial cell markers in human DCIS
was highly informed by data obtained from our pre-
clinical model, where progressive loss of myoepithelial cell
markers was observed over time in the context of a true
time course study. The insight from our animal model
facilitated investigation of differential loss of myoepithelial
biomarkers in human DCIS. Further, our observations are
not unprecedented, because previous publications have
reported variable detection of the myoepithelial biomarkers
a-SMA, p63, and calponin within the same cells and
interpreted the results as differential robustness of the IHC
antibodies.37,52e55 Other studies have interpreted variable
expression of myoepithelial biomarkers as evidence of
injured myoepithelial cells, a conclusion similar to those we
draw in our study.36,52,56

A limitation of our human DCIS study, in which
myoepithelial markers were evaluated from single biopsy
specimens, is the lack of time course data. Thus, it is
only possible to infer progressive loss of p63 and cal-
ponin in a-SMAþ myoepithelium in women. Demon-
stration of progressive loss of myoepithelial cell markers
will require sequential time point biopsies. Further, it is
also important to evaluate myoepithelial cell marker
integrity in the context of genomic and transcriptomic
alterations.7

Surprisingly, in our mouse model of human DCIS, we
found that myoepithelial cell loss of calponin correlated
with gain of intratumoral p63 expression, whereas myoe-
pithelial cell loss of p63 did not. Tumor cell expression of
p63 indicates acquisition of basal-like attributes, and
expression of other basal markers, including cytokeratin 5
and cytokeratin 14, correlate with a more invasive pheno-
type.57,58 Recently, it was shown that basal epithelial genes
CK14 and p63 are required for collective invasion of breast
tumor cells in three-dimensional cultures.46 Further, the
predominant p63 isoform, dNp63a, can function as an
oncogene in epithelial cells.59 Collectively, these and other
studies suggest that tumor cell acquisition of p63 within
DCIS may support transition to invasive disease. Our pre-
clinical data support a myoepithelial cell centric mechanism
for DCIS progression whereby compromised myoepithelial
3086
cell function, possibly mediated through calponin loss,
regulates the acquisition of p63 within adjacent tumor cells.
Others have suggested that intratumoral p63 leads to sub-
sequent decrease in p63 in myoepithelial cells,60,61 indi-
cating bidirectional cross talk between myoepithelium and
intraductal tumor cells contributes to DCIS progression.
The role of calponin in tumor progression remains poorly

understood. Calponin is an integral component of a-SMA
where it regulates myosin binding to actin and modulates
the power stroke during smooth muscle contraction.40,41 In
addition, calponin has an identified signaling function,
because calponin knockout results in 25% to 50% loss in
actin gene expression in smooth muscle cells.40 Because
both of these calponin-dependent functions are anticipated
to contribute to structural integrity of the myoepithelium,
calponin down-regulation is consistent with compromised
myoepithelium and possible tumor cell escape. However,
these identified smooth muscle functions of calponin do not
readily explain the gain in p63 we observed in intraductal
tumor cells adjacent to calponin-negative myoepithelial
cells. Other calponin studies suggest tumor suppressive
function. In a global gene expression study, the loss of
calponin was identified as 1 of 17 genes that predicted risk
of metastasis in patients diagnosed with small, stage I pri-
mary breast tumors.62 In human leiomyosarcoma, calponin
inhibits signaling pathways important for cell growth,
adhesion, and motility.63e65 Further, expression of calponin
was shown to reduce tumorigenesis and cell motility in
osteosarcoma, fibrosarcoma, aggressive adenocarcinoma,
and melanoma cell lines.63 With further research efforts,
expression of myoepithelial cell calponin may potentially
serve as a useful marker for risk of DCIS progression and a
therapeutic target for the prevention of DCIS progression to
invasive cancer.
Our evidence that myoepithelial cells surrounding

DCIS-involved ducts can lose expression of specific dif-
ferentiation markers before overt invasion may provide
insight into DCIS progression that could be harnessed for
risk assessment. In the United States, approximately 1.6
million breast biopsies are performed each year, with
232,340 new cases of breast cancer and 64,640 cases of
DCIS estimated in 2014 (American Cancer Society; http://
www.cancer.org/cancer/breastcancer/detailedguide/breast-
cancer-key-statistics, last accessed July 21, 2015).66,67

Approximately one-third of DCIS cases are predicted to
progress to invasive disease if left untreated, highlighting their
clinical significance.68,69 To date, standard treatment for DCIS
involves surgery, radiation, and/or chemotherapy, and there
are no clinical tests to identify patients at high risk of devel-
oping invasive disease. Clinical use of specific risk bio-
markers, possibly in combination with newly developed
molecular tests,70 has the potential to balance either over-
treatment or undertreatment of DCIS by improving individ-
ualized treatment options. With the use of our preclinical
intraductal mouse model of human DCIS, we identified
myoepithelial cell calponin expression as a candidate inhibitor
ajp.amjpathol.org - The American Journal of Pathology
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of DCIS progression. The utility of myoepithelial calponin
expression to serve as a risk marker for DCIS progression in
women and a novel therapeutic target deserves further
investigation.
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