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Abstract——Voltage-gated calcium channels are
required for many key functions in the body. In this
review, the different subtypes of voltage-gated calcium
channels are described and their physiologic roles and
pharmacology are outlined. We describe the current
uses of drugs interacting with the different calcium
channel subtypes and subunits, as well as specific areas
in which there is strong potential for future drug
development. Current therapeutic agents include drugs
targeting L-type CaV1.2 calcium channels, particularly
1,4-dihydropyridines, which are widely used in the
treatment of hypertension. T-type (CaV3) channels are
a target of ethosuximide, widely used in absence
epilepsy. The auxiliary subunit a2d-1 is the therapeutic
target of the gabapentinoid drugs, which are of value in
certain epilepsies and chronic neuropathic pain. The
limited use of intrathecal ziconotide, a peptide blocker
of N-type (CaV2.2) calcium channels, as a treatment of
intractable pain, gives an indication that these channels
represent excellent drug targets for various pain
conditions. We describe how selectivity for different

subtypes of calcium channels (e.g., CaV1.2 and CaV1.3
L-type channels) may be achieved in the future by
exploiting differences between channel isoforms in
terms of sequence and biophysical properties, variation
in splicing in different target tissues, and differences
in the properties of the target tissues themselves in
terms of membrane potential or firing frequency. Thus,
use-dependent blockers of the different isoforms
could selectively block calcium channels in particular
pathologies, suchasnociceptiveneurons inpain states or
in epileptic brain circuits. Of important future potential
are selective CaV1.3 blockers for neuropsychiatric
diseases, neuroprotection in Parkinson’s disease,
and resistant hypertension. In addition, selective or
nonselective T-type channel blockers are considered
potential therapeutic targets in epilepsy, pain, obesity,
sleep, and anxiety. Use-dependent N-type calcium
channel blockers are likely to be of therapeutic use
in chronic pain conditions. Thus, more selective
calcium channel blockers hold promise for therapeutic
intervention.

I. Introduction

Voltage-gated calcium channels are required for key
functions in excitable cells, including transmitter re-
lease and hormone secretion (Catterall et al., 2013),
excitation-transcription coupling (Wheeler et al., 2012),
and excitation-contraction coupling (Bannister and

Beam, 2013). To determine which calcium channels are
involved in specific processes, we can employ a range of
selective drugs as blockers of the different channels, as
part of the armory of experimental tools. This is particu-
larly important if we are to infer potential therapeutic
uses of selective blockers from such experiments.
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The first voltage-gated calcium channel complex to be
studied was that from skeletal muscle, where it is
present in great abundance in the transverse tubules.
After purification of the complex, it was found to con-
tain five components: a1 (approximately 170 kDa), a2

(approximately 150 kDa), b (approximately 52 kDa),
d (approximately 17–25kDa), andg (approximately 32kDa)
in an approximately stoichiometric ratio (Takahashi
et al., 1987; Tanabe et al., 1987) (Fig. 1). The a1 sub-
unit was found to bind the calcium channel blockers
1,4-dihydropyridines (DHPs), and thus was established
as the pore-forming subunit. From these seminal studies
came the cloning of 10 mammalian a1 subunits, four
b subunits, and four or more a2d subunits. This diversity
provides a wealth of sites for selective pharmacological
modification (Schroeder et al., 2000; Catterall and
Swanson, 2015), which are outlined in Fig. 1. This review
concentrates on the actual andpotential pharmacology of
these voltage-gated calciumchannels throughout thebody.

II. CaV1 Channel Family

A. Genes Encoding CaV1 Pore-Forming a1 Subunits

The CaV1 Ca
2+ channel family is also known as the so-

called L-type Ca2+ channels (LTCCs). In early studies in
cardiac myocytes (Nilius, 1986) and neurons (Carbone
and Lux, 1984; Nowycky et al., 1985), they were desig-
nated “L” due to their long-lasting inward currents
during depolarization, which allowed them to be distin-
guished from rapidly decaying Ca2+ currents, termed
transient or T-type channels (see section IV on CaV3
channels). A feature that distinguishes L-type channels
from all other Ca2+ channels is their high sensitivity
for organic L-type Ca2+ channel blockers (CCBs), also

known as Ca2+ antagonists. These drugs serve not only
as essential pharmacological tools to isolate L-type
current components in vitro, but they have also been
used clinically for decades to treat cardiovascular
diseases. Radioactive derivatives of CCBs were subse-
quently used to reversibly label LTCCs in the brain,
heart, and smooth and skeletal muscle. The density of
L-type channels was an order of magnitude higher in
skeletal muscle than in other tissues, which allowed
purification of the channel complex, biochemical charac-
terization of its subunits, and cloning of its pore-forming
a1 subunit. The skeletal muscle L-type channel, formed
by CaV1.1 a1 subunits, is encoded by theCACNA1S gene
(Catterall et al., 2005). This genetic information subse-
quently allowed homology cloning of CaV1.2 (CACNA1C)
and CaV1.3 a1 subunits (CACNA1D). Much later, human
genetics finally identified the retinal CaV1.4 channel
(CACNA1F) as the fourth member of the LTCC family
(Bech-Hansen et al., 1998; Strom et al., 1998).

As we outline below, the four LTCC isoforms possess
similar pharmacological properties but differ regarding
their tissue distribution and biophysical properties.
Moreover, they all undergo extensive alternative splic-
ing that can affect their activity and interaction with
other modulatory proteins. This functional heterogene-
ity allows Ca2+ signals to be adjusted to individual
cellular requirements. Human genetic diseases leading
to gain or loss of function have been described for all four
L-type channel isoforms.

B. Physiology of CaV1 Channels

1. Physiologic Roles of CaV1 Calcium Channels.
Tissue expression of CaV1.1 and CaV1.4 is more re-
stricted than that of CaV1.2 and CaV1.3 (Fig. 2). CaV1.1

Fig. 1. Diagram of voltage-gated calcium channel subunit topology. Voltage-gated calcium channel subunit topology showing major drug binding
mechanisms. Channel inhibition can be induced by modification of channel gating (blue arrows, gating modifiers) by interaction with extracellular
regions within one or more of the four voltage-sensing domains (VSDs) (e.g., peptide toxins, such as v-agatoxin IVA; section III.D.2), or within the
activation gates of the pore domain (PD) channel, formed by all four S5–S6 helices together (e.g., DHP LTCC blocker; section III.D). Direct block of the
pore from the extracellular side (by peptide toxins such as v-conotoxin GVIA; section II.D.2) or small molecules (with access from the cytoplasmic side)
can also target regions within the ion conducting pathway and obstruct permeation through the pore (black arrows; pore blockers). Some drugs also act
through both mechanisms (e.g., phenylalkylamine LTCC blockers; section II.D.1). For structural features, also see Fig. 4. The a2d ligands (magenta
arrow) can modify channel trafficking.
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is mainly expressed in skeletal muscle and is essential
for skeletal muscle contraction. CaV1.4 is primarily
restricted to the retina and is required for normal visual
function. CaV1.1 and CaV1.4 a1 transcripts are not
found at significant levels in the brain, although ex-
pression in a limited subset of neurons cannot be
excluded (Sinnegger-Brauns et al., 2009). By contrast,
inmost electrically excitable cells, CaV1.2 and/or CaV1.3
are expressed andboth isoformsare often even expressed
in the same cell, such as in neurons (Olson et al., 2005;
Chan et al., 2007; Dragicevic et al., 2014), adrenal
chromaffin cells (Marcantoni et al., 2010), and sinoatrial
node (SAN) and atrial cardiomyocytes (Mangoni et al.,
2003). Both channels are required for normal brain
function and serve different roles in the cardiovascular
system and in endocrine functions. Transcripts for all
L-type channel isoforms have also been detected in
lymphocytes, although their functional role in these cells
remains unknown.
a. CaV1.1. CaV1.1 is expressed in skeletal muscle

within the junctionalmembranes of the T-tubule system.
CaV1.1 channels interact physically with ryanodine-
sensitive Ca2+ release channels [ryanodine receptors
(RyRs) such as RyR1] in the sarcoplasmic reticulum
(SR), where they trigger rapid Ca2+ release and contrac-
tion (Tanabe et al., 1987). The direct CaV1.1-RyR1
conformational coupling has been shown to involve the
CaV1.1 a1-subunit II–III intracellular loop (Block et al.,
1988; Nakai et al., 1998; Grabner et al., 1999). The
CaV1.1 channel expressed in adult muscle conducts
a very small amplitude, slow-activating Ca2+ current
with a very right-shifted voltage sensitivity, making this
channel a truly atypical Ca2+ channel (for review, see
Bannister and Beam, 2013). Typical intramembrane
charge movements (gating currents), voltage-gated SR
Ca2+ release, and tetrad formation can all be restored
upon reexpression of CaV1.1 a1 subunits in CaV1.1
a1-deficient skeletal muscle myotubes (Tanabe et al.,
1988; Takekura et al., 1994), demonstrating the essential
role of CaV1.1 in skeletal muscle. RyR1 influences
essential properties of skeletal LTCCs and enhances
channel function (Nakai et al., 1996; Avila and Dirksen,
2000). The direct mechanical coupling mechanism and
small amplitude Ca2+ influx can explain the absence of
pharmacological effects of CCBs at therapeutic doses in
muscle. Although these drugs bind to CaV1.1 with nano-
molar affinity (Glossmann and Striessnig, 1990) and can
inhibit Ca2+ inward current in skeletal muscle myocytes
in vitro (Benedetti et al., 2015), they do not efficiently
inhibit the fast voltage-dependent conformational changes
in CaV1.1 a1 subunits that trigger SR Ca2+ release.
b. CaV1.2 and CaV1.3. As outlined above, both iso-

forms are expressed in the heart, brain, and endocrine
cells. Since they differ only slightly in their sensitivity
toward CCBs, their contribution to individual cellular
processes and physiologic functions couldnot be dissected
using pharmacological means but required the generation

of CaV1.2- and CaV1.3-deficient mice (for reviews, see
Striessnig and Koschak, 2008; Hofmann et al., 2014).

i. L-Type Ca2+ Channels in the Heart. CaV1.2 and
CaV1.3 are expressed in the heart but their contribution
to L-type current varies in different regions. In cardio-
myocytes, CaV1.2 predominates and triggers contraction.
By contrast, in the SAN and atrioventricular node
(AVN), CaV1.3 is the predominant LTCC isoform. In
CaV1.3

2/2 mice, resting heart rate is reduced and ar-
rhythmic, spontaneous SAN pacemaker frequency is
slowed and irregular, and diastolic depolarization is
prolonged (Zhang et al., 2002; Mangoni et al., 2003). In
humans, normal pacemaking function also requires
CaV1.3 channels because loss-of-function mutations in
the CaV1.3 a1-subunit gene (CACNA1D) also lead to
bradyarrhythmia in humans (Baig et al., 2011). They work
in a complex pacemaker network of sarcolemmal electro-
genic molecules—including CaV3.1, the hyperpolarization-
activated cyclic nucleotide-gated channels (HCNs) HCN-4
and HCN-2, delayed rectifier K+ channels, and the
Na/Caexchanger—and in conjunctionwith intracellular
rhythmic sarcoplasmic Ca2+ oscillations (supported by
SR Ca2+ release through RyRs and SR Ca2+ uptake
through sarcoplasmic/endoplasmic reticulum calcium
transport-ATPase -2) (for a recent review, see Striessnig
et al., 2014). Therefore, knockout or pharmacological
inhibition of CaV1.3 alone reduces heart rate and
induces irregular SAN action but does not completely
prevent pacemaking (Striessnig et al., 2014).

SAN cells are an excellent example to demonstrate
why both CaV1.2 and CaV1.3 channel isoforms are
required for proper function. Differences in their bio-
physical properties as well as subcellular localization
enable them to support SAN activity during different
time points of the action potential cycle. CaV1.3 chan-
nels activate at more negative membrane potentials
than CaV1.2 in SAN (and other) cells (Lipscombe, 2002;
Mangoni et al., 2003, 2006; Marcantoni et al., 2010;
Bock et al., 2011; Christel et al., 2012). They can
therefore sustain Ca2+ entry at threshold potentials
and during the diastolic depolarization phase. CaV1.3
also closely colocalizes with sarcomeric RyRs (Christel
et al., 2012), which may allow it to contribute to RyR-
mediated Ca2+ release during diastolic depolarization
(Lakatta and DiFrancesco, 2009). CaV1.2 activates at
more positive potentials and colocalizes less with sar-
comeric RyRs (Christel et al., 2012). It therefore seems
to contribute little to this intracellular Ca2+ release.
However, its biophysical properties allow CaV1.2 to
support the SAN action potential. CaV1.3 is also the
prominent L-type channel in AVN cells and contributes
to AVN conduction and pacemaking (Platzer et al., 2000;
Marger et al., 2011b).

In the working myocardium, the CaV1.2 channels
predominate. They tightly associate with signalingmol-
ecules involved in cAMP and protein kinase A (PKA)
signaling (Balijepalli et al., 2006) and mediate cardiac
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Fig. 2. The most important physiologic functions of the different LTCC isoforms. Except for skeletal muscle Ca2+ channels (a complex of CaV1.1 a1
associated with b1a, a2d-1, and g1 subunits) and the working myocardium (CaV1.2 a1 associated with primarily b2 and a2d-1 subunits), their subunit
composition is not known for other tissues. These sites represent actual and potential sites for action of selective LTCC blockers. DA, dopamine; IHC,
inner hair cells; OHCs, outer hair cells.
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inotropy (Sinnegger-Brauns et al., 2004). No CaV1.3
expression is found in ventricular muscle and only low
expression is found in the atria. CaV1.2 activation
supplies Ca2+ to trigger Ca2+-induced Ca2+ release from
the SR RyRs for contraction. CaV1.2 a1-subunit knock-
out mice die in utero (Seisenberger et al., 2000); there-
fore, homozygous loss-of-function mutations are likely
lethal in humans as well. As shown in knockout mice,
even a less than 50% reduction of ICa can lead to heart
failure and enhanced lethality (Goonasekera et al.,
2012). Cardiac disease can result not only from perma-
nent loss of CaV1.2 activity but also from enhanced
CaV1.2 activity. In transgenic mice overexpressing ac-
cessory b subunits, the sustained increase in Ca2+ cur-
rent amplitude (without major kinetic changes) induces
cardiac hypertrophy (Chen et al., 2011). As discussed
below, de novo mutations in the CaV1.2 a1 gene
(CACNA1C) or its auxiliary subunits also cause human
cardiac disease.
ii. L-Type Ca2+ Channels in the Brain. Fast pre-

synaptic neurotransmitter release in neurons depends
on the close coupling of presynaptic CaV2 channels to
the release machinery. By contrast, CaV1.3 and CaV1.2
are located postsynaptically predominantly on the cell
soma and in the spines and shafts of dendrites in
neurons (Di Biase et al., 2008; Jenkins et al., 2010).
There they shape neuronal firing and activate Ca2+-
dependent pathways involved in control of gene expres-
sion, termed excitation-transcription coupling (Ma
et al., 2013). By supporting neuronal plasticity, they
participate in different forms of learning and memory,
drug addiction, and neuronal development (for review,
see Striessnig et al., 2014). Channel-bound calmodulin
(CaM) and calmodulin kinase II (CaMKII) are essential
biochemical elements decoding voltage-induced alter-
ations in channel activity (Wheeler et al., 2008; Christel
and Lee, 2012; Ma et al., 2013). Approximately 90% of
the LTCCs in the brain are CaV1.2 and only 10% are
CaV1.3 (Hell et al., 1993; Sinnegger-Brauns et al., 2009),
and they often reside within the same neuron (Olson
et al., 2005; Chan et al., 2007; Dragicevic et al., 2014).
Studies of the role of CaV1.2 and CaV1.3 in different

brain functions in vivo are complicated by the fact that
LTCC blockers preferentially act on vascular rather
than neuronal LTCCs in vivo, and supratherapeutic
doses may be required to effectively inhibit brain
channels (see below) (Helton et al., 2005). The quanti-
fication of L-type current components is difficult due to
the substantial contribution of CaV2 channels to total
Ca2+ current in most neurons. Even more complexity is
introduced by the fact that CaV1.2 and CaV1.3 a1
subunits can associate with all four b subunits (Pichler
et al., 1997) and undergo alternative splicing (Bock
et al., 2011; Huang et al., 2013b); CaV1.3 can also
undergo RNA editing (Huang et al., 2012). At anti-
hypertensive doses, organic CCBs (e.g., nimodipine,
isradipine, or diltiazem) do not affect brain function in

humans during chronic treatment. However, subtle cen-
tral nervous system (CNS) effects of LTCC blockers can
be detected in experimental clinical studies in healthy
volunteers as changes in corticospinal metaplasticity
(Wankerl et al., 2010). Unfortunately, experimental in
vivo doses used in animal experiments are usually very
high and cause pronounced CaV1.2-mediated cardiovas-
cular effects, which seriously compromises the interpre-
tation of behavioral outcomes of such studies (Waltereit
et al., 2008; Busquet et al., 2010).

Genetically modified mice have been instrumental in
revealing the physiologic role of the two brain LTCC
isoforms (Striessnig andKoschak, 2008; Hofmann et al.,
2014; Striessnig et al., 2014). Hippocampal function
depends mainly on CaV1.2. This isoform is required for
hippocampal spatial memory formation (Moosmang
et al., 2005a; White et al., 2008) for protein synthesis-
dependent, NMDA receptor–independent late-phase
long-term potentiation (LTP) in CA3-CA1 synapses,
and for activation of the microtubule-associate protein
kinase/cAMP/calcium response element binding protein
(CREB) signaling cascade (Moosmang et al., 2005a). In
contrast with CaV1.2, CaV1.3 does not contribute to
CA3-CA1 hippocampal LTP and the spatial memory
encoding in the Morris water maze appeared normal in
CaV1.3-deficient mice (McKinney and Murphy, 2006).

These two LTCCs also contribute in different ways to
other types of memory, such as fear memory andmemory
associated with drug-taking behaviors. CaV1.3 is not
required for acquisition and extinction of conditioned
contextual fearmemory (Moosmang et al., 2005a;Busquet
et al., 2008) but is required for its consolidation (McKinney
et al., 2009). Impaired consolidation in CaV1.3

2/2 mice
was associated with significantly reduced LTP in the
basolateral amygdala synapse receiving input from
the entorhinal cortex and enhanced excitability of
basolateral amygdala neurons (McKinney et al., 2009).
CaV1.2 seems to carry most of the measurable L-type
current in lateral amygdala neurons and their acute
pharmacological inhibition reduces thalamolateral
amygdala LTP and auditory cued fear memory acquisi-
tion (Langwieser et al., 2010).

CaV1.2 and CaV1.3 deficiency also affects anxiety-
and depression-like behaviors. Reduced CaV1.2 activity
in mouse forebrain enhances anxiety-like behaviors
(Lee et al., 2012a). In one study, enhanced anxiety
was only observed in females (Dao et al., 2010) and was
associated with an antidepressant phenotype in both
sexes. CaV1.3 deficiency induces antidepressant-like
behaviors not explained by deafness (Busquet et al.,
2010). Conversely, selective stimulation of CaV1.3
channels in vivo by the LTCC activator BayK8644
(1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)
phenyl]-3-pyridinecarboxylic acid methyl ester) induces
depression-like behavior (Sinnegger-Brauns et al.,
2004). Genetic defects resulting in enhanced activity
of Cav1.2 (CACNA1C gene mutations) cause Timothy
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syndrome (TS), which is characterized not only by
severe cardiac arrhythmias but also by neurologic
and neuropsychiatric abnormalities (see section II.C
below).
Neuronal plasticity associated with drug dependence

involves signaling cascade controlled by CaV1.2 and
CaV1.3 LTCC activity in a differentmanner.When using
locomotor sensitization as a model for psychostimulant-
induced long-term plasticity, CaV1.3 mediates the devel-
opment of sensitization, whereas CaV1.2 is responsible
for expression of the sensitized response (Giordano et al.,
2010). Signaling pathways involved in acute psychosti-
mulant treatment and activated during development of
sensitization have been identified (Schierberl et al.,
2011; Striessnig et al., 2014).
LTCCs also appear to contribute to the high vulner-

ability of substantia nigra pars compacta (SNc) dopa-
mine neurons to cell death in Parkinson’s disease (PD)
(Surmeier et al., 2011). In these permanently active
neurons, they mediate activity-dependent dendritic Ca2+

transients that contribute to oxidative stress. Transcripts
for both CaV1.2 and CaV1.3 have been detected in these
cells (Chan et al., 2007; Dragicevic et al., 2014). LTCCs
appear to have only aminor stabilizing role for pacemaking
itself (Guzman et al., 2009; Dragicevic et al., 2014), but
CaV1.3 Ca2+ channels regulate SNc firing rates through
dopamine D2 autoreceptors activated by dendritic dopa-
mine release in a negative feedback loop through activa-
tion of G protein–coupled K+ channels (GIRKs) such as
GIRK2 (KCNJ6) (Dragicevic et al., 2014).
CaV1.3 LTCCs also play a role inmaintenance of normal

synaptic connectivity. On D2 receptor–expressing striato-
pallidal medium spiny neurons, they are required for
synaptic pruning induced by dopamine depletion (Olson
et al., 2005; Fieblinger et al., 2014). A role for CaV1.3 in
synaptic refinement has been described in the auditory
pathway during development (Hirtz et al., 2012). Together
these data point to an important role of CaV1.3 for the
generation and maintenance of neuronal connectivity.
iii. L-Type Ca2+ Channels in Endocrine Cells.

LTCCs are present in many endocrine cells but are best
characterized in pancreatic islet cells, adrenal chromaf-
fin cells, and aldosterone-producing cells in the adrenal
cortex. In mouse pancreatic b cells, CaV1.2 LTCCs
control the fast phase of insulin secretion (Barg et al.,
2001; Schulla et al., 2003; Sinnegger-Brauns et al.,
2004). b-cell–specific ablation of CaV1.2 impairs insulin
secretion and glucose tolerance (Schulla et al., 2003).
In mice, the CaV1.3 channels do not couple to insu-
lin secretion (Barg et al., 2001; Sinnegger-Brauns
et al., 2004) but are required for b-cell proliferation
and maintenance of normal b-cell number (Namkung
et al., 2001). In contrast with mice, CaV1.3 transcripts
seem to predominate in human b cells (Rorsman and
Braun, 2013). Therefore, species differences with re-
spect to isoform expression cannot be excluded. In mice,
the late phase of insulin secretion is more dependent on

CaV2.3 (Jing et al., 2005). Glucagon-secreting a cells
express both CaV1.2 and CaV1.3, in addition to CaV2
channels (Vignali et al., 2006). High doses of CCBs
(achieved during intoxication) reduce insulin secretion
and cause hyperglycemia, supporting the important
role of LTCCs for insulin secretion in humans (Levine
et al., 2007). However, the therapeutic (vasodilating)
plasma concentrations of DHPs that lower blood pres-
sure do not cause a clinically relevant inhibition of
pancreatic LTCCs or hormone secretion in the endocrine
pancreas.

In mouse chromaffin cells, CaV1.2 and CaV1.3 to-
gether carry about 50% of the total Ca2+ current, each
isoform contributing equally to the L-type current com-
ponent. Although CaV2 and CaV3 channels are also
present (Marcantoni et al., 2010), LTCCs are those
coupled most tightly to catecholamine secretion during
long depolarizing stimuli (Marcantoni et al., 2010).
Although non-LTCCs contribute about one-half of the
total inward Ca2+ current during square pulse depola-
rizations, they only contribute about 20% of the total
Ca2+ charge during a train of action potentials (Vandael
et al., 2012). The lower activation voltage range of
CaV1.3, compared with CaV1.2, allows them to be active
at threshold voltages and sustain a pacemaker current
responsible for the spontaneous activity of chromaffin
cells (Marcantoni et al., 2010). CaV1.3 channels also
engage in a complex coupling to Ca2+-activated large
and small conductance Ca2+-activated potassium chan-
nels. Accordingly, these K+ currents are reduced in
CaV1.3-deficient cells, resulting in changes in the cell’s
firing properties. CaV1.3 not only drives action potential
pacemaking but also serves as a brake for mouse
chromaffin cell firing by activating small conductance
Ca2+-activated potassium channels and inducing
spike frequency adaptation. This could be of physiologic
significance upon high-frequency stimulation of chro-
maffin cells during stress responses (Vandael et al.,
2012).

A recent surprising discovery was that CaV1.3 Ca2+

channels can play a central role for aldosterone secre-
tion in humans. Primary aldosteronism is a common
cause of secondary hypertension. In most cases it is
attributable to either unilateral aldosterone-producing
adenoma (APA) or to bilateral adrenal hyperplasia.
Several steps of aldosterone synthesis are controlled
by intracellular Ca2+ (Azizan et al., 2013). Therefore,
mutations in different ion channels and ATPases, which
directly or indirectly increase intracellular Ca2+ signal-
ing, enhance aldosterone production in APAs. These are
somatic mutations in the plasmamembrane Ca2+ pump
PMCA3 (ATP2B3) (Beuschlein et al., 2013), or muta-
tions that depolarize the cell and activate LTCCs. This
also includesmutations in GIRK4K+ channels (KCNJ5)
(Choi et al., 2011) and in the Na+/K+-ATPase (ATP1A1)
(Azizan et al., 2013; Beuschlein et al., 2013). Many
recurrent mutations were also found in the pore-forming
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a1 subunit of CaV1.3 (CACNA1D) (Azizan et al., 2013;
Scholl et al., 2013; Fernandes-Rosa et al., 2014). All of the
functionally tested CaV1.3 a1 mutations exhibit a clear
gain-of-function phenotype (Azizan et al., 2013; Scholl
et al., 2013). This provided direct evidence that CaV1.3
plays a major role for APA-induced aldosteronism. In the
human adrenal cortex, CACNA1D transcripts are the
most abundantCa2+ channel subunits (Scholl et al., 2013),
suggesting that CaV1.3 channels are also important for
regulation of physiologic aldosterone secretion. Despite
this important role of LTCCs, CCBs lower blood pressure
but do not effectively lower plasma aldosterone levels in
most patients with primary hyperaldosteronism (Stimpel
et al., 1988; Carpenè et al., 1989). This may be explained
by the contribution of other Ca2+ channels to aldosterone
secretion, as recently reported for T-type channels in
humans (Scholl et al., 2015) and rodents (Hu et al., 2012).
iv. L-Type Ca2+ Channels in Auditory and Vestibular

Hair Cells. CaV1.3 channels play an essential role for
hearing and CaV1.3 deficiency leads to deafness in both
mice (Platzer et al., 2000) and in humans (Baig et al.,
2011). Whereas CaV2 channels form part of the pre-
synaptic active zones of neurons, CaV1 channels are
associated with the specialized presynaptic structures
providing highly localized Ca2+ signals for neurotrans-
mitter release at ribbon synapses in sensory cells, such
as cochlear inner hair cells (CaV1.3) and photoreceptors
(mainly CaV1.4). Patch clamp recordings in CaV1.3

2/2

hair cells revealed that these channels carry 80% to
.90% (depending on the hair cell position along the
longitudinal axis of the cochlea) of the total Ca2+ cur-
rent in both inner and outer hair cells (for review, see
Koschak et al., 2013).
c. CaV1.4. In the retina, immunoreactivity for

CaV1.4 a1 has been localized in the synapses of the
outer and inner plexiform layer, as well as on photore-
ceptor cell bodies (Morgans, 2001; Regus-Leidig et al.,
2009; Busquet et al., 2010; Mercer and Thoreson, 2011).
These channels are predominantly expressed at release
sites located in close vicinity to the typical horseshoe-
shaped ribbon synapses. Retinal photoreceptors are
highly specialized, light-sensing cells. Sustained release
of glutamate from their ribbon synapses is Ca2+ de-
pendent and LTCCs serve as the predominant source
for Ca2+ entry. Heterologously expressed CaV1.4 cur-
rents show rapid activation, open at more negative
membrane potentials compared CaV1.2, and inactivate
slowly. These properties allow the channel to conduct
sustained Ca2+ currents at voltages negative to240 mV
(for review, see Koschak et al., 2013). Whereas only
a minor fraction of channels might be available at
this potential (approximately 10%–15% at 235 mV), the
resultingCa2+ influx is expected to be sufficient to trigger
neurotransmitter release. Like CaV1.3, CaV1.4 is slightly
less sensitive to block by DHP CCBs than CaV1.2 at
negative holding potentials (see also section II.D below).
This intermediate DHP sensitivity of CaV1.4 and CaV1.3

is in good accordance with data obtained in retinal cells,
in which relatively high concentrations of DHPs are
required to efficiently block L-type Ca2+ currents (Wilkinson
andBarnes, 1996). In some individuals, nifedipine altered
the so-called “light rise” of the electro-oculogram pre-
sumably by inhibiting LTCCs (most likely CaV1.3) on the
basolateral surface of the retinal pigment epithelium,
thereby preventing the slow rise in intracellular Ca2+

required to generate the light rise (Constable, 2011). Thus
far, there have been no reports of obvious visual dysfunc-
tion in patients receiving CCB medication. Some LTCC
blockers have been reported to delay the progression of
visual deficits in degenerative retinitis pigmentosa
(Barabas et al., 2010; Nakazawa, 2011). However, these
findings were not reproduced in all studies, and it
remains unclear whether this potential photoreceptor-
protective effect is due to block of retinal LTCCs.

2. CaV1 Family Splice Variants. Alternative splic-
ing is a key mechanism for regulating both the func-
tional properties of Cav1 channels as well as their
subcellular targeting to specialized cellular structures.
Best understood is the C-terminal splicing of CaV1.3 a1
subunits, which gives rise to fundamentally different
channels. These “long” and “short” CaV1.3 channels
differ with respect to not only their Ca2+- and voltage-
dependent gating properties (Bock et al., 2011; Tan
et al., 2011) but also their association with modulatory
signaling scaffolds (Olson et al., 2005). Some of the
splicing-induced effects influence CaV1.3 channel mod-
ulation by CaM (Liu et al., 2010; Bock et al., 2011). CaM
preassociates with all CaV1 and CaV2 a1 subunits, even
at low intracellular Ca2+ concentrations (Ben Johny
et al., 2013). Calcium-induced conformational changes
allowCaM to promote inactivation [i.e., Ca2+-dependent
inactivation (CDI)], which involves interaction with C-
and N-terminal effector sites (for review, see Christel
and Lee, 2012; Simms et al., 2014). CDI and voltage-
dependent inactivation during depolarization involve
conformational rearrangements of the intracellular
channel mouth (Tadross et al., 2010). By restraining
Ca2+ influx through the channel, CDI prevents exces-
sive Ca2+ influx. Several mechanisms regulate the
strength of CaM binding and therefore the effectiveness
of CDI. Among those are competing CaM-like Ca2+

binding proteins, which do not support CDI (Yang
et al., 2006; Cui et al., 2007) and RNA editing (Huang
et al., 2012). CaV1 channels also contain a modulatory
domain within the C terminus itself. In CaV1.3 and
CaV1.4 channels, a C-terminal modulatory structure
(CTM) is formed by noncovalent interaction of a proxi-
mal and a distal C-terminal regulatory domain (PCRD
and DCRD, respectively) and putative a helices (Singh
et al., 2006, 2008). This structure can competewithCaM
binding (Liu et al., 2010). It thereby weakens CDI,
reduces open probability, and also shifts the voltage
dependence of channel activation to more positive
voltages (Singh et al., 2006, 2008). As discussed below,
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this C-terminal intramolecular interaction is also con-
served in CaV1.2 channels and is a target for channel
modulation by PKA. Proteolytic processing has not yet
been reported in CaV1.3, but alternative splicing creates
multiple short splice variants that lack the DCRD and
therefore allow robust modulation by CaM (Bock et al.,
2011; Tan et al., 2011). Accordingly, “short” channel
variants exhibit much more pronounced CDI, a more
negative activation range, and higher open probability
(Bock et al., 2011). Almost completeC-terminal inhibition
of CDI also occurs in CaV1.4 (Singh et al., 2006) and
thereby enables permanent Ca2+ influx underlying pho-
toreceptor signaling (Singh et al., 2006).
Alternative splicing can also affect the pharmacolog-

ical properties of LTCCs. Extensive alternative splicing
outside the C-terminal tail has been described for
CaV1.2 a1 subunits. As outlined below, tissue-specific
splicing occurs. Arterial smooth muscle variants can
activate and inactivate at more negative membrane
potentials than splice variants predominantly found in
cardiomyocytes (Liao et al., 2009). Alternative splicing
may also change in disease states. For example, this has
been reported in hypertrophied rat and human failing
hearts, in rat myocardial infarction models, and in
human atherosclerotic blood vessels (for an extensive
review, see Liao and Soong, 2010).
In CaV1.1 a1 subunits, only 4 of 13 splice variants

are likely to encode functional channels (Perez-Reyes
et al., 1990; Tuluc et al., 2009). However, one variant is
abundantly expressed in mouse and human myotubes
but is not in differentiated muscle and may therefore
play a special role in developing and regenerating
muscle (Tuluc et al., 2009). This variant differs from
the adult variant only in the length of the domain IV
S3–S4 linker due to skipping of exon 29 (CaV1.1D29)
(Tuluc et al., 2009). Upon expression in dysgenic myo-
tubes, the CaV1.1D29 splice variant is normally tar-
geted into triads and supports skeletal muscle type
excitation-contraction coupling, but there is a drasti-
cally increased voltage sensitivity and open probability
of the channel (Tuluc et al., 2009). Interestingly, the
pathogenesis of myotonic dystrophy (DM) types 1 and
2 (DM1 and DM2, respectively)—an autosomal domi-
nant disorder characterized by skeletal myopathy,
cardiac arrhythmia, cataracts, hypogonadism, hyper-
somnolence, insulin resistance, and other symptoms—
has been related to the aberrant splicing of several
genes, including CaV1.1 (Tang et al., 2012). A marked
repression of exon 29 in DM1 and DM2 patients was
found. In DM1, the extent of exon 29 skipping was also
correlated with muscle strength of the patients. Small
interfering RNA studies in mice suggested that two
splicing factors previously implicated in DM1, MBNL1,
and CUGBP1 (Philips et al., 1998; Lin et al., 2006),
regulate exon 29 splicing. Together these findings
indicated that DM-associated splicing defects alter
CaV1.1 function, with a potential for exacerbation of

myopathy. Differences in intracellular Ca2+ entry ob-
served for myotubes fromDM1 and DM2 patients might
at least in part be related to changes in the expression of
the embryonic mRNA isoform lacking exon 29 (Santoro
et al., 2014).

In CaV1.4 a1 subunits, a transcript scanning ap-
proach identified 19 alternative splice variants (Tan
et al., 2012). It is currently unclear how, and to what
extent, these naturally occurring alternative splice
variants add to the properties of native CaV1.4 currents
(Von Gersdorff and Matthews, 1996; Rabl and Thoreson,
2002) or whether their expression is differentially regu-
lated under pathophysiological conditions in the retina.
However, one of the splice variants found in 14% of the
full-length transcripts screened can be predicted to affect
CaV1.4 channel gating. It is generated by inclusion of
an alternative exon 43* and inserts a stop codon that
truncates the C terminus. This mutation would remove
its CTM, which prevents CaV1.4 from undergoing CDI,
(see above, Singh et al., 2006). This could lead to expression
of channel species undergoing more pronounced inactiva-
tion. Overall, alternative splicing in the C terminus was
shown to produce at least four splice variants resulting in
different lengths of the C-terminal tail (Tan et al., 2012).

C. CaV1 Channel Pathophysiology

1. CaV1.1.
a. Hypokalemic Periodic Paralysis. Hypokalemic pe-

riodic paralysis (HypoPP) is an heterogeneous autosomal
dominant disorder, with missense mutations of a Ca2+

channel (CaV1.1, HypoPP-1) or a sodium channel (NaV1.4,
HypoPP-2) accounting for 60% and 20% of cases, re-
spectively (Jurkat-Rott et al., 2002). HypoPP symptoms
generally manifest around the second decade of life, and
they are characteristically exhibited with hypotonia as
well as attacks of local or generalized skeletal muscle
weakness or paralysis. Muscle fibers of HypoPP patients
show a paradoxical, long-lasting depolarization in re-
sponse to low extracellularK+,which leads toNa+ channel
inactivation, loss of membrane excitability, and paralysis,
independent of whether Na+ or Ca2+ channels are affected
(Jurkat-Rott et al., 2000; Ruff, 2000). S4 arginine muta-
tions of NaV1.4 associated with HypoPP induced a hyper-
polarization-activated cationic leak through the voltage
sensor of the skeletal muscle NaV1.4 (Sokolov et al., 2007;
Struyk et al., 2008), referred to as gating pore current or
omega current (Jurkat-Rott et al., 2012). Recently, fibers
from a mouse model for HypoPP carrying the mutation
CaV1.1 R528H also elicited a small anomalous inward
current at the resting potential (Wuet al., 2012), similar to
observations in aNaV1.4HypoPPmousemodel (Wu et al.,
2011). Therefore, the gating pore current may be a com-
mon mechanism for paradoxical depolarization and sus-
ceptibility to HypoPP arising frommissense mutations in
the S4 voltage sensor of either Ca2+ or Na+ channels.

b. Malignant Hyperthermia. Malignant hyperther-
mia (MH) is a potentially fatal pharmacogenetic disorder
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in which susceptible individuals experience a life-
threatening hypermetabolic reaction of skeletal muscle
after exposure to certain anesthetics or skeletal muscle
relaxants (e.g., succinylcholine). This uncontrolled in-
crease in the concentration of free myoplasmic Ca2+

released from the SRCa2+ stores underlies this phenotype
(Jurkat-Rott et al., 2002). Up to 70% of all MH cases are
caused by mutations in RyR1 (MHS1), whereas only ap-
proximately 1% of cases result from CaV1.1 a1 mutations
(MHS5). For deeper insights into both CaV1.1 structure/
function and the pathophysiological mechanisms of MH
from the functional analysis of CaV1.1 mutants, see
Yarotskyy and Dirksen (2013).
2. CaV1.2.
a. Timothy Syndrome. TS is an autosomal dominant

condition caused by de novo gain-of-function mutations
in the pore-forming a1 subunit of CaV1.2 [CACNA1C;
Online Mendelian Inheritance in Man (OMIM) number
601005]. It is a multiorgan disease characterized by
both cardiac and extracardiac symptoms. The underly-
ing mutations reduce voltage-dependent inactivation
(Splawski et al., 2004; Barrett and Tsien, 2008). This
enhances Ca2+ influx and delays cardiomyocyte repo-
larization with increased risk of severe ventricular
arrhythmias. Lethal tachycardias are the primary
cause of death and of reduced average life expectancy
(2.5 years). Typical extracardiac features include dys-
morphic facial features, syndactyly, and mental retar-
dation (Marks et al., 1995; Splawski et al., 2005; Gillis
et al., 2012). Older patients are likely to develop autism
(Splawski et al., 2005). TS mutations are located in the
S6 segment of the first homologous repeat (IS6; Fig. 1),
which forms part of the activation gate. This segment is
alternatively spliced (exon 8, 8a). Classic TS type 1
results from a recurrent de novo CACNA1C mutation,
G406R in exon 8a. An atypical form (TS type 2) is caused
by mutations in G406R or G402S in exon 8. In two
patients reported thus far, the G402S mutation shows
a stronger cardiac phenotype but without syndactyly
(Splawski et al., 2005; Hiippala et al., 2015). Since the
original publications of the typical TS mutations in IS6,
a number of other CACNA1C mutations have been
identified in constitutively expressed exons showing
a gain-of-function phenotype with enhanced current am-
plitudes or slowing of voltage-dependent inactivation
and/or enhanced inward currents at negative voltages
(Fukuyama et al., 2014; Hennessey et al., 2014; Boczek
et al., 2015;Wemhöner et al., 2015). Intriguingly, most of
themwere identified in patients presentingwith longQT
and arrhythmias without obvious extracardiac symp-
toms (Fukuyama et al., 2014; Hennessey et al., 2014;
Hiippala et al., 2015; Wemhöner et al., 2015). On the
other hand, patients withmutations outside IS6 (I1166T
and A1473G in the repeat III and IV activation gates,
G1911R in the long C-terminal tail) (Gillis et al., 2012;
Hennessey et al., 2014; Boczek et al., 2015) showed ad-
ditional extracardiac symptoms (e.g., seizures, craniofacial

features, developmental delay, microcephaly, dentition ab-
normalities), including syndactyly in A1473G. CACNA1C
mutations can also underlie sudden unexpected infant
death (Hennessey et al., 2014). Despite the finding of
a CaV1.2 gain of function, CCBs are not established as
therapy for TS. The TS type 1 mutation is less sensitive
to block by DHPs than wild-type channels (Splawski
et al., 2004).

Loss-of-function (missense) mutations in CaV1.2 a1
(CACNA1C), CaV1.2 b2 (CACNB2), and CaV1.2 a2d-1
(CACNA2D1) genes have also been associated with dif-
ferent types of cardiac arrhythmias, including Brugada
syndrome (Napolitano and Antzelevitch, 2011; Fukuyama
et al., 2014). Together these data indicate that cardiac
CaV1.2 must operate within a narrow activity range to
ensure normal cardiac excitability.

The role of CaV1.2 dysfunction for extracardiac de-
velopmental and neurologic symptoms of TS has also
been studied. Craniofacial abnormalities and syndac-
tyly in TS patients can be explained by a role of CaV1.2
during development. For example, CaV1.2 is expressed
in pharyngeal arches within the subset of cells that
give rise to jaw primordia. Ca2+ influx through CaV1.2
regulates jaw development and affects cellular hypertro-
phy and hyperplasia in the mandible (Ramachandran
et al., 2013).

b. Neuropsychiatric Disease. Given the expression
of CaV1.2 in most brain regions, the gain-of-function
phenotype can also alter neuronal function and neuro-
nal development. Autism often develops in older TS
patients who survive from arrhythmias. Autistic behav-
ioral traits are replicated in mice expressing a human
TS mutation (Bader et al., 2011). Activity-dependent
dendrite retraction was observed in induced pluripotent
stem cell–derived neurons produced from TS patients
(Krey et al., 2013), indicating that normal CaV1.2
activity is essential for synaptic development. On the
basis of our current knowledge about the role of CaV1.2
channels for brain physiology (see section II.B), this
suggests that CaV1.2 dysfunction may also contribute to
human neuropsychiatric disease risk. Indeed, large-
scale genome-wide association studies (GWASs) re-
vealed a strong association between susceptibility for
various psychiatric disorders, including bipolar disease,
schizophrenia, and major depression, and single nucle-
otide polymorphisms (SNPs) in the CACNA1C gene.
These are located within intronic regions (Bhat et al.,
2012). SNP rs1006737, a common intronic risk haplo-
type, is one of the most consistent associations in psy-
chiatric genetics (Bhat et al., 2012; Yoshimizu et al.,
2015). It also has an impact on task-based human
behaviors and human brain morphology, such as gray
matter volume of specific regions (for references, see
Yoshimizu et al., 2015). Interestingly, this SNP leads to
increased CaV1.2 a1 subunit mRNA expression and
L-type current density in fibroblast-derived induced
neurons (Yoshimizu et al., 2015). This fits well with
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the observation that autism associated with TS is also
caused by gain-of-function CACNA1C mutations.
3. CaV1.3.
a. Parkinson’s Disease. As described above, LTCCs

serve as an important Ca2+ source in spontaneously
active SNc neurons, which preferentially degenerate in
PD. In some reports, DHPs were found to protect SNc
neurons in neurotoxin-based models of PD in rodents
and nonhuman primates (Kupsch et al., 1995, 1996;
Chan et al., 2007; Ilijic et al., 2011). This was achieved
at low doses of DHPs, considered therapeutic in hu-
mans. Further support for a potential therapeutic role
for DHPs comes from case-control and cohort studies.
These studies reported a significantly reduced risk
for a first-time diagnosis of PD in users of brain-
permeable CCBs (odds or rate ratios of 0.71–0.78)
(Becker et al., 2008; Ritz et al., 2010; Pasternak et al.,
2012; Lang et al., 2015). Neuroprotection by CCBs, in
particular by DHPs, can be rationalized by inhibi-
tion of dendritic Ca2+ entry during action potentials of
rhythmic activity or during burst firing (Putzier et al.,
2009), which occurs in response to reward-predicting
stimuli (Liss andRoeper, 2008). In addition, these drugs
may reduce a-synuclein–dependent L-DOPA–induced
degeneration of SNc-dopamine neurons (Mosharov et al.,
2009).
b. Hearing and Cardiac Dysfunction. Like in knock-

out mice, the major symptoms of CaV1.3 deficiency in
humans are SAN dysfunction (bradycardia and ar-
rhythmia) and deafness. This has been described in
two Pakistani families with autosomal recessive sino-
atrial node dysfunction and deafness syndrome (Baig
et al., 2011). Thus far, it is unclear to what extent other
CACNA1Dmutations or polymorphisms contribute risk
for hearing disorders or for SAN dysfunction. Despite
a normal life span, CaV1.3

2/2 mice also appear more
vulnerable to ventricular extrasystoles (Matthes et al.,
2004) and atrial fibrillation due to reduced L-type
currents and impaired intracellular Ca2+ handling in
atrial myocytes (Zhang et al., 2002; Mancarella et al.,
2008).
c. Neuropsychiatric Disease. As for CaV1.2, human

genetics also strongly point to an important role of
CaV1.3 LTCCs in the pathophysiology of neuropsychi-
atric disease, including autism spectrum disorders
(ASDs). As described above, somatic CaV1.3 a1-subunit
(CACNA1D) gain-of-function mutations cause aldoste-
ronism through excess aldosterone production in APAs
(Azizan et al., 2013). Interestingly, two of these muta-
tions were also found as germline de novo mutations in
two patients with a severe congenital syndrome pre-
senting not only with primary aldosteronism but also
with neurodevelopmental deficits and seizures at early
age (PASNA, OMIM number 615474) (Scholl et al.,
2013). In addition, de novo CACNA1D mutations have
also been reported as high-riskmutations in two patients
with sporadic autism and intellectual disability (Iossifov

et al., 2012; O’Roak et al., 2012). For both mutations,
functional studies also revealed a strong channel gain of
function (Pinggera et al., 2015) very similar to the
biophysical changes observed for mutations in APAs
(Azizan et al., 2013; Scholl et al., 2013). Given the
important role of CaV1.3 for many brain functions (see
above) and the causal role of CaV1.2 gain of function in
autism associated with TS, these data do not prove, but
strongly suggest, a direct causal role of the two de novo
mutations in the ASD patients (Pinggera et al., 2015).
Moreover, these observations prompt several clinically
relevant questions: Would patients with ASD and pa-
tients with primary aldosteronism with seizures and
neurologic abnormalities with CACNA1D mutations
benefit from therapywith LTCC blockers? Is aldosterone
secretion also enhanced in the two ASD patients or do
they show any other symptoms that could result from
enhanced Cav1.3 function?

These findings also raise the important question of to
what extent more subtle functional changes in CaV1.3
function in known CACNA1D polymorphisms can also
contribute to overall neuropsychiatric disease risk.

4. CaV1.4.
a. Congenital Stationary Night Blindness Type 2.

CaV1.4 channels are the most predominant LTCCs in
retinal neurons. Their importance is well supported by
the fact that CACNA1F gene mutations cause several
forms of human retinal diseases (OMIM numbers
300071, 300476, and 300600). The majority of CaV1.4
mutations were identified in patients with congenital
stationary night blindness type 2 (CSNB2). Typical
symptoms of CSNB2 are low visual acuity, myopia,
nystagmus, strabismus, photophobia, and night blind-
ness (Bech-Hansen et al., 1998). The severity of night
blindness is a variable symptom, and in some cases, it
was not even reported. Because of the X-linked nature of
CaV1.4 channel dysfunction, CSNB2 mainly involves
male individuals but heterozygote female individuals
can also be affected (Hope et al., 2005; Michalakis et al.,
2014).

Structural aberrations identified in CSNB2 patients
comprise CaV1.4 a1-subunit missense or truncation
mutations in addition to insertions or deletions, which
can be categorized by their functional effects as loss or
gain of function or impairment of the CTM (see above)
(Stockner and Koschak, 2013). The complete absence
of channel function or altered gating properties is
expected to eliminate or decrease CaV1.4-mediated
Ca2+ entry required for normal photoreceptor signaling.
Both loss of channel function and a strong gain of
function can also lead to alterations in photoreceptor
synapse formation. This has been demonstrated in mice
lacking CaV1.4 (CaV1.4

2/2) andmutantmice (CaV1.4 a1
containing the I745Tmutation, which induces a gain-of-
function phenotype with activation at more hyperpolar-
ized voltages and slowed inactivation) (Tom Dieck,
2013). These data demonstrated the importance of
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proper CaV1.4 function for efficient photoreceptor
synapse maturation, and that dysregulation of CaV1.4
channels in CSNB2 may have synaptopathic conse-
quences. Thus far, no comparable human data are
available regarding retinal morphology. However, inner
and outer retinal layers were shown to be thinned in
CSNB2 patients when evaluated with spectral domain
optical coherence tomography (Chen et al., 2012). These
animal data suggest that altered Ca2+ signaling in
CSNB2 may result in changes in retinal morphology
early in development and may contribute to the overall
dysfunction of retinal transmission. Potential pharma-
cotherapeutic interventions might therefore have to be
applied early in disease. Such interventions also depend
on mechanistic insights into the aberrations caused by
the individual mutations. Gene therapeutic approaches
focus on recombinant viral vectors as promising vehicles
for therapeutic gene delivery to the retina (for reviews,
see Boye et al., 2013; Lipinski et al., 2013). Gene
replacement strategies may be applicable in patients
carrying null mutations (full channel) or with impaired
CTM function (C-terminal truncations) (Burtscher et al.,
2014). The recent finding that some mutations (e.g.,
L860P; Burtscher et al., 2014) reduce the expression
of functional channels by decreasing protein stability
also suggests alternative approaches, such as pharma-
cochaperoning with ligands that stabilize folding
intermediates and reduce endoplasmic reticulum–

associated degradation. Valproic acid has been suggested
to act as a pharmacological chaperone for unfolded pro-
teins and is being explored in an ongoing clinical trial in
patients with autosomal dominant retinitis pigmentosa
(ClinicalTrials.gov identifier NCT01233609). Direct phar-
macological activation of CaV1.4 channels with known
LTCCactivators (e.g.,BayK8644) isnot feasible for clinical
application in human retinal disorders due to toxic side
effects resulting from activation of CaV1.2 and CaV1.3 in
other tissues as outlined below.

D. Pharmacology of CaV1 Channels

1. Molecular Pharmacology. Clinically used CCBs
belong to different chemical classes. The most widely
used are DHPs, such as amlodipine, felodipine, or ni-
fedipine (Fig. 3). Like verapamil (a phenylalkylamine)
and diltiazem (a benzothiazepine), they interact with
overlapping high-affinity drug binding domains close to
the pore and to the proposed activation gate of LTCC a1
subunits (Fig. 4) (Hockerman et al., 1997; Striessnig
et al., 1998; Tikhonov and Zhorov, 2009; Catterall and
Swanson, 2015). Binding is reversible, stereoselective
and, in isolated membranes at zero membrane poten-
tial, occurs with dissociation constants in the nano-
molar range (0.1–50 nM) (Glossmann and Striessnig,
1990). Bound drugs interfere with the normal voltage-
dependent cycling of the channel through its rest-
ing, open, and inactivated states (modulated receptor
model) (Bean et al., 1986; Berjukow and Hering, 2001).

The uncharged DHPs primarily stabilize and induce
inactivated channel states. They possess much higher
affinity for the inactivated channel conformation and
thus their IC50 decreases with increased availability of
inactivated channel states at more depolarized mem-
brane potentials (voltage-dependent block) (Bean et al.,
1986; Hamilton et al., 1987; Berjukow and Hering, 2001;
Koschak et al., 2001). Access of phenylalkylamines and
benzothiazepines is favored by the open channel state.
Direct pore block together with stabilization of inactivated
channel states with slowed recovery from inactivation re-
sults in pronounced frequency- or use-dependent inhibi-
tion (Shabbir et al., 2011). Ca2+ channel activators, such as
the DHPs (2)-BayK8644 and (+)-SDZ202-791 [propan-2-yl
(4R)-4-(2,1,3-benzoxadiazol-4-yl)-2,6-dimethyl-5-nitro-1,4-
dihydropyridine-3-carboxylate], also exist (see below).

The sensitivity of LTCCs for DHP CCBs varies in
different tissues for several reasons. One explanation is
the variable contribution of these LTCCs to total L-type
current. CaV1.3 and CaV1.4 exhibit about 5- to 10-fold
lower sensitivity to DHPs thanCaV1.2, as demonstrated
in heterologous expression systems at negative mem-
brane potentials (Koschak et al., 2001, 2003; Xu and
Lipscombe, 2001). This can explain the relatively weak
inhibition of L-type pacemaker currents in the SAN,
which are dominated by CaV1.3 (Mangoni and Nargeot,
2001). Another factor affecting DHP sensitivity of L-
type currents is alternative splicing of a1 subunits. For
CaV1.2, it has been demonstrated that DHPs inhibit
currents in arterial smooth muscle at lower concentra-
tions than in the working myocardium. A detailed
analysis of CaV1.2 a1 splice variants in the heart and
smooth muscle revealed the presence of more DHP-
sensitive splice variants predominantly expressed in
arterial smooth muscle. Some of these splice variants
activate at slightly more negative voltages (Liao et al.,
2004; Cheng et al., 2009) and are therefore expected to
preferentially contribute to a steady-state Ca2+ inward
current (window current) close to the smooth muscle
resting potential that controls myogenic tone. The more
depolarized resting membrane potential in smooth
muscle ($260 mV) compared with cardiomyocytes (or
most neurons) favors inactivated channel states prefer-
entially blocked by DHPs. Some of these splice variants
are also prone to more pronounced steady-state in-
activation, which also enhances DHP sensitivity (Liao
et al., 2007). There is also evidence that alternative
splicing of CaV1.2 a1 affects the molecular architecture
of the drug binding domain and thus the access of DHPs
for inactivated channel states (Welling et al., 1993).
Alternative splicing (in the C terminus) also slightly
affects the DHP sensitivity of CaV1.3 (Huang et al.,
2013b).

2. Clinical Pharmacology. LTCCblockers have been
licensed for decades for the treatment of hypertension
and myocardial ischemia, and they belong to the most
widely prescribed drugs worldwide. DHPs are arterial
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vasodilators reducing arterial muscle tone, peripheral
vascular resistance, and vasospasms in coronary or
peripheral arteries. By lowering arterial blood pressure
and afterload, DHPs also reduce cardiac oxygen de-
mand. Together with their spasmolytic effect, this
explains most of the antianginal actions of DHPs. At
therapeutic doses, DHPs lack negative inotropic actions
and do not directly affect SAN and AVN function. In
addition to their antihypertensive, vasodilating, and
spasmolytic properties, verapamil and diltiazem are
also negative chronotropic, dromotropic, and inotropic
and thus inhibit exercise-induced increases in heart
rate and myocardial oxygen consumption (similar to
b-adrenoceptor antagonists). These direct cardiodepres-
sant effects make them suitable for the treatment of
angina pectoris in hypertensive patients (Bangalore
et al., 2008).
Unwanted effects at therapeutic doses, such as flush-

ing, headache, dizziness, and hypotension, are mostly
related to the vasodilating effects of CCBs. Peripheral
edema and ankle swelling is often the therapy-limiting
side effect upon long-term use of DHPs (Parkinson
Study Group, 2013). Constipation is a frequent side
effect of verapamil and can be explained by LTCC

inhibition in intestinal smooth muscle (Moosmang et al.,
2005b). Verapamil (and to a lesser degree, diltiazem)
can cause bradycardia, atrioventricular block, or a de-
crease in left ventricular function, especially in patients
who are taking b-adrenoceptor blockers or who have
preexisting heart disease. DHPs can also worsen an-
gina, most likely due to a redistribution of coronary
blood flow to the nonischemic myocardium in the ab-
sence of direct cardiodepressant effects.

At therapeutic doses, CCBs cause no relevant side
effects in other tissues where LTCCs serve important
functions. There is no evidence for muscle weakness
from block of CaV1.1 channels in skeletal muscle,
increased hearing thresholds from inhibition of CaV1.3
in cochlear inner hair cells, visual impairment from
block of CaV1.4 in retinal photoreceptors, or CNS
disturbances from block of CaV1.2 and or CaV1.3 in
the brain. Suppression of insulin secretion and hyper-
glycemia occur only at toxic plasma levels after CCB
overdose (Levine et al., 2007). However, this side effect
plays no role at therapeutic doses in clinical practice.

3. L-Type Calcium Channels as Potential Targets for
Other Indications. Our increasing understanding re-
garding the physiologic and pathophysiological role of

Fig. 3. Modulation of L-type channels by drugs, toxins, and signaling pathways. (Pathway 1) The major pharmacologically relevant classes of LTCC
active drugs are shown. DHPs (prototype nifedipine) are the most selective LTCC blockers. Verapamil and diltiazem also block non- LTCCs at higher
concentrations (Diochot et al., 1995; Ishibashi et al., 1995). Tetrandrine is a bis-benzylisoquinoline alkaloid. It was isolated from the Chinese medicinal
herb Stephania tetrandra used in China to treat hypertension and angina (King et al., 1988). In addition to LTCCs, it also blocks non–L-type current
components (Weinsberg et al., 1994). Note that the apparent potency of classic L-type channel blockers strongly depends on membrane potential and/or
stimulation frequency and action potential length. (Pathway 2) L-type channels are modulated by a variety of different signaling pathways either
through membrane-delimited actions of activated G proteins (pathway 2a) or enzymes activated by GPCR (pathway 2b) or receptor tyrosine kinase
(RTK) (pathway 2c) signaling (for details, see text). The FS2 structure (very similar to calciseptine) was drawn according to PDB ID 1TFS (chain trace,
disulfide bonds not shown).
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LTCCs also outside the cardiovascular system raises
the important question about the pharmacotherapeutic
potential of LTCC block in other tissues. A particularly
challenging question relates to the efficient inhibition of
LTCCs in the brain. As outlined above, a number of
therapeutically highly relevant pharmacological effects
can be postulated from findings in mutant mice and
from human mutations. This includes neuroprotection
in PD as well as treatment of neuropsychiatric disor-
ders, ASDs, and febrile seizures. Since CCBs are well
established for clinical use in cardiovascular disease,
they could be “repurposed” for other indications.
a. Parkinson’s Disease Neuroprotection. Based on

the strong preclinical findings regarding a key role of
LTCC-mediated Ca2+ load in SNc neurons, a phase 3
clinical trial (ClinicalTrials.gov identifierNCT02168842)
has already been initiated to study the neuroprotective
potential of the DHP isradipine in early PD. Isradipine
is currently licensed for the treatment of high blood
pressure. At present, the preclinical in vivo findings from
neurotoxin-induced PDmodels do not allow us to predict
whether CaV1.2, CaV1.3, or both isoforms contribute to
the proposedCa2+ toxicity. In clinical trials, CaV1.2-mediated

side effects, such as hypotension and/or peripheral
edema, limit long-term treatment of PD with higher
doses of DHPs (Parkinson Study Group, 2013), pro-
viding a strong argument for efforts to discover CaV1.3-
selective inhibitors that are not yet available (see
below). However, it is currently unknown whether
CaV1.3-selective inhibitors would miss a neuroprotec-
tive component mediated by CaV1.2 channels.

b. Neuropsychiatric Disease. As described above,
GWASs have revealed a strong association of intronic
SNPs in CACNA1C and the susceptibility for psychiat-
ric disorders, including bipolar disease, schizophrenia,
major depression, and ADs. It is one of the most con-
sistent associations reported in psychiatric genetics
(Dao et al., 2010; Cross-Disorder Group of the Psychi-
atric Genomics Consortium, 2013; Ripke et al., 2013).
The recent findings that one of these SNPs (rs1006737)
leads to increased CaV1.2 function (Yoshimizu et al.,
2015), and that gain-of-function CACNA1C mutations
cause autism in TS, strongly motivate the reevaluation
of CCBs for the treatment of bipolar disease, schizo-
phrenia, and major depression. In contrast with earlier
clinical studies (Hollister and Trevino, 1999; Post et al.,

Fig. 4. Calcium channel structure and ligand binding sites. (A) Extracellular view of the overall structure of CaVAb (preopen state; PDB ID 4MVQ),
a homotetrameric voltage-dependent and calcium-selective channel generated by introducing three negatively charged aspartate residues (side chains
in the pore are illustrated) (Tang et al., 2014). The four homologous domains of the a1 subunits of voltage-gated calcium channels likely possess a very
similar architecture. Each domain contributes a voltage-sensing domain (VSD) (green, segments S1–S4) and a pore-forming domain, which together
form the pore domain (PD) with a central ion conducting pathway for calcium ions (sphere). Each voltage sensor contains four positively charged
arginines (side chains illustrated) that sense transmembrane voltage changes. Voltage-sensor movements are transmitted to the PD through a linker
(arrow indicates one of them) between helices S4 and S5. (B) Top view of the pore module of CaVAb (pore-forming S5 and S6 helices are shown as
cylinders) in the preopen state, with amino acid side chains analogous to those implicated in phenylalkylamine binding (green) and amino acid side
chains specific for DHP binding illustrated in blue. The CaVAb structure has been used to illustrate how the analogs of amino acid residues important
for drug binding in mammalian channels may form drug binding domains (Catterall and Swanson, 2015).The overlapping binding pocket can explain
noncompetitive interactions observed in binding experiments in different tissues (Striessnig et al., 1998). (C) Top view of the CaVAb pore module in the
preopen state, with the S5 and S6 segments illustrated as cylinders and amino acid side chains analogous to those implicated in phenylalkylamine
binding illustrated in dark green for CaV1.2-specific residues and in light green for CaV-conserved residues. (D) Representation of DHP binding
residues as in (C) for phenylalkylamines. Images in (B) to (D) were reproduced from Catterall and Swanson (2015), with permission.
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2000), future trials could stratify patients according to
risk alleles to define cohorts who may benefit most from
the addition of CCBs to standard therapy (Ostacher
et al., 2014; Lencz and Malhotra, 2015). Nonselective
brain-permeable CCBs, such as isradipine, are expected
to block both CaV1.2 and CaV1.3. On the basis of the
preclinical findings discussed above, the inhibition of
CaV1.3 may contribute antidepressant effects.
c. Febrile Seizures. CaV1.2 channels appear to con-

tribute critically to the generation of febrile seizures.
This has been shown using patch clamp recordings from
hippocampal pyramidal cells in acute rat pup brain
slices (Radzicki et al., 2013). Nimodipine could block
hyperthermia-induced abnormal spontaneous firing of
these neurons in vitro as well as in an in vivo model.
Nimodipine was applied intraperitoneally, acutely at
a dose of 2.5 mg/kg, which was carefully selected to
prevent side effects, but it is expected to reach much
higher plasma concentrations than during therapeutic
dosing in humans. Nimodipine, unlike other CCBs, is
also a potent inhibitor of adenosine uptake (Striessnig
et al., 1985); therefore, a contribution of this mechanism
to the observed in vivo protection of febrile seizure can-
not be excluded. Irrespective of these considerations,
this study provided compelling evidence for a role of
CaV1.2 in febrile seizures and for clinical trials to stop
or prevent seizures triggered by high fever and to re-
duce the risk for long-term neurologic consequences.
Parenteral nimodipine is already licensed for the treat-
ment of subarachnoid hemorrhage and is thus already
available for interventional studies.
d. Cardiovascular Disease. The recent discovery

that CaV1.3 plays a key role in aldosterone secretion
may be one of the reasons why therapeutic doses of the
DHP CCBs, which preferentially block CaV1.2 in arte-
rial resistance vessels, show no robust inhibitory ef-
fects on aldosterone secretion in humans. This may be
achieved in the future with potent CaV1.3-selective
inhibitors. They are unlikely to affect cardiac inotropy
due to their absence in ventricular myocardium but are
expected to cause a bradycardic effect (Platzer et al.,
2000; Baig et al., 2011). This combined mechanism of
action could be therapeutically meaningful in patients
with heart failure, in which heart rate (due to enhanced
sympathetic drive) and aldosterone (due to secondary
aldosteronism) are both elevated. High heart rate is
a risk factor in heart failure, and selective lowering of
heart rate, with the HCN (If) channel blocking brady-
cardic agent ivabradine, improves cardiovascular out-
comes (Böhm et al., 2010). However, in this patient
cohort, a troublesome side effects of these drugs may be
atrial fibrillation risk, which has been shown to be
increased in CaV1.3-deficient mice (see above).
4. Pharmacological Targeting of L-Type Calcium

Channels in the Brain. Effective block of LTCCs in the
brain is complicated by the fact that negative resting
membrane potentials in most neurons and short action

potential durations do not favor high sensitivity for
DHPs due to their state-dependent action (Helton et al.,
2005). At the same time, alternative splicing and more
depolarized potentials render CaV1.2 channels highly
DHP sensitive in arterial resistance vessels (see above).
To minimize cardiovascular side effects and maximize
therapeutic actions in the brain, two strategies can be
pursued. One consists of the development of CaV1.3-
selective drugs. However, if inhibition of neuronal CaV1.2
channels is also desired, then higher CNS activity may be
achieved by enhancing brain delivery of CCBs to the
brain.

a. CaV1.3-Selective L-Type Calcium Channel Blockers.
In radioligand binding studies, isradipine binds to
CaV1.2 and CaV1.3 channels with indistinguishable
affinities (Koschak et al., 2001). However, in functional
studies, isradipine inhibits recombinant CaV1.2 chan-
nel currents with about 5- to 10-fold lower IC50 values
(Koschak et al., 2001), indicating differences in the ef-
fect of voltage on drug sensitivity. Evidence for more
potent inhibition of CaV1.2 by isradipine also comes
from experiments in isolated SAN cells, in which 70% of
the L-type current is CaV1.3 mediated. In a previous
study, 50 nM isradipine inhibited only 26% of the wild-
type current (mostly CaV1.3) but 72% of the CaV1.2
component remaining in CaV1.3

2/2 SAN cells. This im-
plies an IC50 for CaV1.3 well above 50 nM (Mangoni
et al., 2003).

Thus far, only one study has described CaV1.3-selective
blockers. A detailed structure-activity relationship has
been reported for novel pyrimidine-2,4,6-triones (Kang
et al., 2012, 2013). The most selective candidate, BPN-
4689 [1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-
2,4,6-trione; also referred to as compound 8 (Cp8)] (Kang
et al., 2012), showed a more than 600-fold selectiv-
ity for CaV1.3 compared with CaV1.2 in a fluorescent
imaging plate reader assay. Whole-cell patch clamp re-
cordings in human embryonic kidney 293 cells stably
expressing LTCC complexes revealed an IC50 of
24.3 mM for CaV1.3 inhibition, whereas CaV1.2 Ba2+

currents were nearly unaffected. A follow-up study
(Huang et al., 2014) confirmed the inhibitory activity of
Cp8 on transiently expressed LTCC Ca2+ currents in
whole-cell patch clamp recordings. However, neither
high potency nor relevant CaV1.3 selectivity was con-
firmed. These experiments also revealed a dependence
of the Cp8-mediated effect on the coexpressed auxiliary
b subunit. With palmitoylated b2a, CaV1.2 Ca2+ cur-
rents were even more sensitive to Cp8 than CaV1.3
currents. A third study found an even more complex
modulation of LTCC Ba2+ and Ca2+ currents by Cp8
(Ortner et al., 2014). In whole-cell patch clamp record-
ings on transiently expressed LTCCs in tsA201 cells,
Cp8 induced a pronounced time-dependent change in
gating kinetics characterized by a slowing of the
activation, inactivation, and deactivation time course
and thus closely resembled the activity of known LTCC
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activators. This effect was also confirmed for native
CaV1.2- and CaV1.3-current components in mouse
chromaffin cells (Ortner et al., 2014). Taken together,
these studies suggest that the CaV1.3 selectivity of Cp8
and related pyrimidine-2,4,6-triones is highly depen-
dent on experimental conditions and that these drugs
may even cause channel-activating effects. Therefore,
CaV1.3-selective blockers, for use as CaV1.3-selective
pharmacological tools and suitable for further clinical
development, still remain to be discovered.
b. L-Type Channel Activators as Therapeutics. In

addition to selective blockers, activators of LTCCs have
also been successfully used to study the role of LTCCs
for cellular signaling and LTCC physiology in vivo. The
most widely used experimental compounds are the
DHPs (2)-BayK8644 and (+)-SDZ202-791 (Glossmann
and Striessnig, 1990) as well as the benzoyl pyrrole FPL
64167 (methyl 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-
1H-pyrrole-3-carboxylate) (Zheng et al., 1991). The ster-
eoselective activation of a voltage-gated Ca2+ current
component by these drugs is currently the most spe-
cific proof for the presence of an L-type current. These
compounds exert their activating properties by increas-
ing current amplitudes, shifting activation voltage to
more negative voltages, slowing of inactivation, and
increasing and slowing tail currents (Tsien et al., 1986;
McDonough et al., 2005). Despite their invaluable role in
studying the molecular pharmacology of LTCCs in vitro,
they are not suitable for clinical use. They activate all
four LTCC isoforms and in vivo effects are largely
determined by toxic effects through activation of CaV1.2
in the brain and cardiovascular system. BayK8644 in-
creases cardiac contractility (Pelc et al., 1986), induces
cardiac arrhythmias (Zhou et al., 2013), and elevates
arterial blood pressure (Bourson et al., 1989). Activation of
brain LTCCs by BayK8644 induces a severe neurobeha-
vioral dystonic syndrome, including self-biting, mostly
due to CaV1.2 activation (Sinnegger-Brauns et al., 2004;
Hetzenauer et al., 2006). It is associated with enhanced
release of dopamine, glutamate, and other neurotrans-
mitters as well as massive neuronal activation in most
brain regions (Sinnegger-Brauns et al., 2004; Hetzenauer
et al., 2006). These pharmacological effects preclude the
chronic administration of LTCC activators. However, it is
currently unclear whether short-term administration of
low doses in a controlled clinical setting could lead to long-
term changes in brain function, such as those induced by
electroconvulsive therapy.
c. Peptide Toxins Inhibiting L-Type Calcium Channels.

As for non-LTCCs, peptides selectively inhibiting
L-type channels have been discovered. Calciseptine
and FS2 (Fig. 3) are structurally highly related 60–
amino acid polypeptides, isolated from venom of the
black mamba (Dendroaspis polylepis polylepis). Similar
to DHPs, they selectively block LTCCs, and this
explains their smooth muscle relaxant and cardiode-
pressant properties (De Weille et al., 1991; Watanabe

et al., 1995). Glacontryphan-M (11 amino acid residues)
isolated from the venom of the marine snail Conus
marmoreus (Hansson et al., 2004) is also present in the
wings of a butterfly, apparently serving as predator
defense (Bae et al., 2012). In pancreatic b cells, it
inhibits only L-type currents with low nanomolar IC50

values and does not inhibit other (CaV2) Ca
2+ channels

(Hansson et al., 2004). Selective but less potent in-
hibition of neuronal LTCCs has also been reported for
a peptide, CSTX-1, isolated from the venom of a spider,
Cupiennius salei (Kubista et al., 2007). Calcicludine
is a 60–amino acid polypeptide from the venom of
Dendroaspis angusticeps structurally related to den-
drotoxins (Schweitz et al., 1994). In addition to neuronal
L-type currents, it also blocks native N-type and other
high voltage–activated Ca2+ channels at low nanomolar
concentrations (Schweitz et al., 1994). In contrast with
N-type CCBs (ziconotide, see section III.D.2 on CaV2
channels), peptide toxins blocking LTCCs have not been
developed for clinical use thus far.

5. Indirect Modulation of CaV1 Calcium Channels.
The activity of LTCCs is modulated by neurotransmit-
ters, enzymes, and alternative splicing and protein in-
teractions in a number of ways.

a. cAMP-Dependent Protein Kinase (Protein Kinase A).
Activation of cardiac (CaV1.2) LTCCs by adrenergic
stimulation in the “fight-or-flight” response and upon
therapy with b-adrenergic receptor agonists is the
classic example of ion channel regulation by a signal-
ing pathway (Fig. 3). During the fight-or-flight re-
sponse, PKA phosphorylates CaV1.2 LTCC currents in
cardiomyocytes, and this contributes to increased heart
rate and contractility. Modulation requires the proteo-
lytic cleavage of the C-terminal tail by post-translational
proteolytic processing. The resulting C-terminal frag-
ment remains noncovalently attached with the remain-
der of the long C-terminal tail through interaction of two
putative a-helices (PCRD and DCRD, see above) (Fuller
et al., 2010; Fu et al., 2013). Binding of the C-terminal
fragment to the cleaved a1 subunit inhibits channel
activity. PKA is anchored to the C-terminal fragment by
A kinase–anchoring proteins. PKA phosphorylates two
CaV1.2 a1 residues, serine 1700 and threonine 1704,
within the PCRD helix (Fuller et al., 2010; Fu et al.,
2013). This interferes with PCRD–DCRD interaction,
relieves inhibition by the C-terminal fragment, and in-
creases CaV1.2 current. In mutant mice carrying these
mutations, the important role of the phosphorylation of
these residues for b-adrenergic modulation of CaV1.2
channels in the heart was recently confirmed in vivo
(Fu et al., 2013). C-terminally attached phosphatases
(including protein phosphatase 2A and 2B/calcineurin)
ensure rapid dynamics for regulation by phosphorylation/
dephosphorylation in the heart and brain (Murphy
et al., 2014).

A kinase–anchoring proteins are also found in a com-
plex with native CaV1.3 channels (Marshall et al., 2011)
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and are stimulated by PKA. This has been shown
in adrenal chromaffin cells (Mahapatra et al., 2012)
and in the SAN (Mangoni et al., 2003). For CaV1.3, the
molecular details for PKA regulation are less well
studied but seem to also involve phosphorylation sites
within the C-terminal tail (Liang and Tavalin, 2007;
Ramadan et al., 2009).
b. Membrane Phospholipids. Various G protein–

coupled receptors (GPCRs) (e.g., muscarinic acetylcho-
line receptors) can inhibit voltage-gated calciumchannels,
including LTCCs (Suh and Hille, 2005; Hille et al., 2015),
through activation of phospholipase C. Phosphatidylino-
sitol 4,5-bisphosphate (PIP2) seems to stabilize active
channel conformations by tethering cytoplasmic domains,
bound to its inositol phosphates, to the plasmamembrane
to which PIP2 is anchored through its fatty acid side
chains (Suh et al., 2012). This can explain the reduction of
Ca2+ channel currents by receptor-mediated PIP2 de-
pletion. In superior cervical ganglion neurons, extracellu-
larly applied arachidonic acid can also inhibit Ca2+

channel activity (Heneghan et al., 2009). Current models
predict that arachidonic acid released after phospholipase
C activation and activation of Ca2+-sensitive phospholi-
pase A2 can occupy the fatty acid binding site of PIP2 and
interfere with PIP2 stabilization of the channel. Channel-
lipid interactions at the inner leaflet of the membrane
bilayer which reduce rather than stabilize channel activ-
ity have also been identified (Kaur et al., 2015).
As for CaV2 channels, inhibition of LTCCs by GPCR

activation through direct G protein–mediated, membrane-
delimited pathways (Fig. 3, pathway 2a) has also been
reported (Gilon et al., 1997; Pérez-Garci et al., 2013) but is
less well understood on the molecular level.
c. Receptor Tyrosine Kinases. Activation of receptor

tyrosine kinases (e.g., by insulin-like growth factor-1)
can activate CaV1.2 and CaV1.3 LTCC function, involv-
ing phosphorylation of their pore-forming a1 subunits
(Bence-Hanulec et al., 2000; Gao et al., 2006) (Fig. 3,
pathway 2c).
d. Protein Interactions with L-Type Calcium Channels.

For a discussion of confirmed protein interaction part-
ners, see separate reviews by Calin-Jageman and Lee
(2008) and Striessnig et al. (2014). Protein–protein
interactions, as described for LTCCs in the brain and
heart, can serve as scaffold proteins, stabilize channel
gating, recruit enzymes (e.g., PKA, CaMKII; see above)
to the channel, or guide the channel to defined sub-
cellular compartments. In principle,modulation of LTCC
may also be achieved by interference with modulatory
proteins, including accessory subunits. For example,
genetically encoded CCBs can be obtained by anchoring
known a1-subunit protein interaction partners (e.g.,
CaM or CaMKII) to the plasma membrane (Yang et al.,
2013).
e. Novel Modulatory Mechanisms. Sincemaintenance

of LTCC channel activity within a narrow activity range
seems to be a prerequisite especially for normal brain and

heart function, close control of its activity and expression
is required. Recent studies have identified novel modula-
tory mechanism beyond the usual signaling pathways.
Among those are microRNAs (miRs), which have been
identified as potential regulators of CaV1.2. For example,
miR-1 targets the CaV1.2 a1-subunit gene (CACNA1C)
and reduces its expression (Rau et al., 2011). InDM (DM1,
DM2) miR-1 is lost, which may account for the observed
upregulation of heart CaV1.2 a1 protein and the result-
ing cardiac pathology in affected individuals (Rau et al.,
2011).

E. Conclusion

The recent discovery of important physiologic func-
tions controlled by different LTCC isoforms (particu-
larly CaV1.2 and CaV1.3) identifies these LTCCs as new
drug targets. This is especially attractive because non-
selective channel blockers have been in clinical use for
decades and could therefore be repurposed for novel
indications. In addition, a high therapeutic potential
for several indications, including neuropsychiatric dis-
eases, can also be predicted for novel, CaV1.3-selective
CCBs.

III. CaV2 Channel Family

A. Genes, Gene Products, and Splice Variants

Like the LTCCs described in the preceding section,
members of the CaV2 family are heteromultimeric as-
semblies of a pore-forming CaVa1 subunit plus ancil-
lary CaVb andCaVa2d subunits, with the former defining
the channel subtype. The CaV2 family is encoded by
three genes (CACNA1A, CACNA1B, and CACNA1E) that
encode CaVa1 subunits CaV2.1, CaV2.2, and CaV2.3,
respectively (Mori et al., 1991; Dubel et al., 1992;
Williams et al., 1992). CaV2.1 channels give rise to both
P-type and Q-type currents that were described in
neurons, with this distinction likely being caused by
a combination of associated the CaVb subunit (Richards
et al., 2007) and alternative splice events in the CaV2.1
subunit per se (see below). CaV2.2 and CaV2.3 underlie
neuronal N-type and R-type currents, respectively.

Each of the CaV2 channel family members can un-
dergo alternative splicing, thus creating a wide spec-
trum of CaV2 currents with specific biophysical and
pharmacological properties. For example, alternative
splicing of CaV2.1 channels in the domain I–II linker
region can drastically alter voltage-dependent inactiva-
tion, whereas an insertion of asparagine-proline motif
in the domain IV S3–S4 loop region drastically al-
ters sensitivity of the channels to the spider toxin
v-agatoxin-IVA (Bourinet et al., 1999). Alternative splic-
ing of exon 37, in the CaV2.1 C-terminal region, results
in altered calcium-dependent inactivation and facilita-
tion of the channel (Soong et al., 2002; Chaudhuri et al.,
2004; Chang et al., 2007). Alternative splicing of the
C-terminal region also affects channel biophysics and

838 Zamponi et al.



functional regulation by the CaVb subunit (Sandoz
et al., 2001). It is interesting to note that splice variation
in CaV2.1 channels has been shown to alter the func-
tional effects of mutations linked to familial hemiplegic
migraine (FHM) (Adams et al., 2009), such that bio-
physical consequences of several of these pathologic
mutations are weakened in CaV2.1 channels containing
exon 47.
Alternative splicing of CaV2.2 channels has also been

described. Splicing of sequences in domain III S3–S4
and domain IV S3–S4 gives rise to variants with
different biophysical properties and tissue distribution
(Lin et al., 1997, 1999). Along these lines, alternative
splicing of exon 18 in the intracellular domain II–III
linker region alters voltage-dependent inactivation of
the channels (Pan and Lipscombe, 2000; Thaler et al.,
2004), and splice variants of the human CaV2.2 channel
that lack large portions of the II–III linker display very
large shifts in the half-inactivation potential of the
channel and distinct subcellular distributions in neu-
rons, in addition to preventing the association of the
channel with synaptic proteins such as syntaxin 1A
(Kaneko et al., 2002; Szabo et al., 2006). Interestingly,
similar deletion variants in the CaV2.1 II–III linker
have also been described (Rajapaksha et al., 2008).
Alternative splicing of exon 31 in the CaV2.2 voltage
sensor produces channels with different activation
kinetics (Lin et al., 2004). Perhaps the splice event that
has gathered the most attention involves exon 37 of
the channel. Alternative splicing of this exon (which
encodes sequences in the CaV2.2 C terminus) alters cur-
rent densities, second messenger regulation, and tissue
distribution, with the exon 37a–expressing variants be-
ing more expressed in small nociceptive neurons (Bell
et al., 2004; Castiglioni et al., 2006; Raingo et al., 2007;
Andrade et al., 2010). Remarkably, the variant contain-
ing exon 37a contributed most prominently to nocicep-
tive signaling (Altier et al., 2007). The effects of splicing
of exon 37 on current densities could be correlated
with alterations in the ubiquitination state of the chan-
nel (Marangoudakis et al., 2012). Truncated forms of
CaV2.1 and CaV2.2 channels that lack entire trans-
membrane domains have also been reported (Scott
et al., 1998; Raghib et al., 2001). Coexpression of these
truncated forms mediates dominant negative effects on
full-length channels due to the activation of unfolded
protein response pathways (Page et al., 2004).
Interestingly, splicing of exons 24 and 31 in CaV2.1

and CaV2.2 channels appears to be controlled by the
splicing factor Nova-2 (Allen et al., 2010), suggest-
ing a common cellular mechanism for fine-tuning the
expression/properties of these two channel subtypes,
and perhaps explaining why analogous splice variants
are observed in these two calcium channels subtypes (as
noted above, large deletions in the domain II–III linker
region have been described for both CaV2.1 and CaV2.2
channels; Kaneko et al., 2002; Rajapaksha et al., 2008).

In contrast with CaV2.1 and CaV2.2, investigations
into alternate splicing of CaV2.3 channels have been
more limited. Six major splice isoforms of CaV2.3 have
been identified and shown to differ in their tissue
distribution (Marubio et al., 1996; Vajna et al., 1998;
Schramm et al., 1999) and in their pharmacological
properties (Tottene et al., 1996, 2000).

Overall, the three members of the CaV2 family can
give rise to a large number of different types of ionic
conductances through alternate splicing of various
exons. This diversity is further enhanced by coassembly
with the various ancillary CaVb and CaVa2d subunits,
and their splice variants, thus providing tremendous
control of calcium entry in specific tissues at specific
times during development. The existence of multiple
variants of a single calcium channel type is potentially
important for drug design. For example, in the context
of developing new analgesics, the ability to selectively
target CaV2.2 channels containing exon 37a, although
downregulated in experimental neuropathic pain con-
ditions (Altier et al., 2007), might allow for selective
inhibition of CaV2.2 channels expressed in nociceptive
neurons while sparing channels expressed in other
regions of the nervous system.

B. Physiologic Roles of CaV2 Calcium Channels

CaV2 channels are primarily thought of as the drivers
of evoked synaptic transmission (Wheeler et al., 1994).
Although these channels are expressed at various sub-
cellular loci, they are targeted to presynaptic nerve
terminals where they open in response to incoming
action potential (Westenbroek et al., 1992, 1995). The
ensuing entry of calcium ions then triggers the fusion of
synaptic vesicles, culminating in the release of neuro-
transmitters into the synaptic cleft. The three major
CaV2 channel isoforms support not only rapid neuro-
transmitter release but also hormone release from
secretory cells such as chromaffin cells (Santana et al.,
1999; Albillos et al., 2000; Wykes et al., 2007; Álvarez
et al., 2013).

To facilitate effective coupling between the neuro-
transmitter release machinery and calcium entry, these
CaV2.1 and CaV2.2 channels contain a synaptic protein
interaction (synprint) site that interacts with syntaxin
1A and SNAP25 (Sheng et al., 1994, 1996; Rettig et al.,
1996). This is one mechanism by which channels can be
localized in proximity to synaptic vesicles. It also allows
for regulation of calcium channel activity by these
synaptic proteins. In particular, syntaxin 1A is a potent
regulator of CaV2.1 and CaV2.2 channel availability
(Bezprozvanny et al., 1995); furthermore, syntaxin 1A
facilitates G protein inhibition of CaV2.2 channels
(Jarvis et al., 2000; Jarvis and Zamponi, 2001; for
review, see Zamponi, 2003). Several considerations
suggest that this syntaxin 1A–mediated regulation of
channel activity, rather than coupling to the release
apparatus, may be the physiologically more important
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function of the synaptic protein interaction site. First,
invertebrate CaV2 channels do not possess a synprint
motif, yet they perfectly support synaptic transmission
(Spafford et al., 2003). Second, although they are able to
bind to syntaxin 1A in vitro, CaV2.3 calcium channels do
not have a synprint-like motif. Finally, work from
several groups has identified postsynaptic density pro-
tein PSD95, Drosophila disc large tumor suppressor
Dlg1, and Zona occludens-1 protein–containing proteins
such as Rab3-interacting molecule and MINT-1 as
critical anchors between CaV2 channels and synaptic
vesicles (Maximov and Bezprozvanny, 2002; Han et al.,
2011, 2015; Kaeser et al., 2011; Wong et al., 2013, 2014),
with the interactions being critically dependent on the
C-terminal region of the channel.
In addition to supporting vesicle release, members of

the CaV2 channel family also fulfill other signaling
functions. For example, CaV2.1 and CaV2.2 channels
interact physically with large conductance calcium-
activated potassium channels and provide the calcium
influx needed to efficiently activate these channels
(Berkefeld et al., 2006; Berkefeld and Fakler, 2008).
This in turn allows CaV2 channels to regulate neuronal
excitability by altering potassium conductances (Loane
et al., 2007). In addition, CaV2 channel activity has been
linked to CREB-dependent gene transcription via acti-
vation of Ca2+-CaMKII (Wheeler et al., 2012) as well as
to the activation of nuclear factor of activated T cells
(Hernández-Ochoa et al., 2007). Along these lines, the
expression of syntaxin 1A appears to be initiated by
activation of CaV2.1 calcium channels (Sutton et al.,
1999), again via a CREB-dependent pathway.
These fundamental roles of CaV2 channels for neuro-

nal function and communication manifest themselves
in many critical physiologic functions in the whole ani-
mal, ranging from motor control to the transmission
of sensory information. These roles are exemplified by
many pathologic conditions that occur as a result of cal-
cium channel dysfunction, as we discuss in the ensuing
section.

C. CaV2 Channel Pathophysiology

Notwithstanding the possibility of compensation,
CaV2 channel knockout mouse lines can provide com-
pelling insights into the function of a particular CaV2
channel isoform. This is readily apparent when consid-
ering the phenotype of CaV2.1 null mice. These mice
exhibit ataxia and absence seizures and die around 4
weeks after birth (Jun et al., 1999). Although CaV2.1
channels control neuromuscular synaptic transmission
under normal circumstances, these mice are not para-
lyzed, likely because of compensation from CaV2.2 and
CaV2.3 channels (Jun et al., 1999; Urbano et al., 2003).
It is interesting to note that postnatal deletion of the
CaV2.1 encoding gene results in a much slower onset of
the neurologic deficits (Mark et al., 2011).

In contrast with CaV2.1 null mice, CaV2.2 deficiency
leads to only mild consequences, which include reduced
pain hypersensitivity in models of inflammatory and
neuropathic pain (Hatakeyama et al., 2001; Kim et al.,
2001a; Saegusa et al., 2001), hyperactivity (Beuckmann
et al., 2003), reduced anxiety (Saegusa et al., 2001),
a reduction of voluntary alcohol intake (Newton et al.,
2004), and problems with blood pressure control (Mori
et al., 2002). The effects of CaV2.2 channel deletion on
pain are consistent with the notion that CaV2.2 chan-
nels are critical for neurotransmitter release from
afferent terminals in the spinal dorsal horn (for review,
see Bourinet et al., 2014), and these findings validate
CaV2.2 channels as potential targets for analgesics. The
link between CaV2.2 channels and behaviors related to
addiction and anxiety is less clearly understood. Similar
to CaV2.2 channel knockout mice, mice lacking CaV2.3
are viable and show reduced pain sensitivity (Saegusa
et al., 2002). These mice are also resistant to certain
types of chemically induced seizures, suggesting a role
of these channels in thalamocortical network excit-
ability or communication (Weiergräber et al., 2007);
these mice also show deficits in hippocampal theta os-
cillation architecture (Müller et al., 2012). Finally, it
has been reported that these CaV2.3 null mice show def-
icits in second-phase insulin release (Jing et al., 2005).

Another source for insights into the physiologic and
pathophysiological roles of channels is derived from
channelopathies in both animals and humans. To our
knowledge, no mouse mutations in CaV2.2 and CaV2.3
channels have been linked to a disease phenotype,
perhaps consistent with the absence of a severe pheno-
type on the corresponding null mice. However, there is
a recent report of an apparent gain-of-function human
point mutation in the CaV2.2 gene, leading to a myoclo-
nus-dystonia phenotype (Groen et al., 2015).

A different picture emerges with regard to CaV2.1
channels. There are several mouse lines with mutations
in CaV2.1 channels that give rise to ataxic and epilep-
tic phenotypes. This includes “leaner,” “tottering,” and
“rocker,” which were previously reviewed in detail
(Pietrobon, 2002; Khosravani and Zamponi, 2006).
Mutations in CaV2.1 channels have been described in
patients with various forms of ataxia, as well as in
patients with FHM. Spinal cerebellar ataxia type 6 is
a disorder in which there is a polyglutamine expansion
within the channel’s C-terminal region (Jodice et al.,
1997). The cellular mechanisms by which these expan-
sions trigger the disease phenotype remain a topic of
investigation. When introduced into CaV2.1 channels
and studied in heterologous systems, the polyglutamine
expansions have been shown to cause hyperpolarizing
shifts in the half-inactivation potential of the channels
(Matsuyama et al., 1999).When introduced into amouse
model, however, channel function in cerebellar Purkinje
cells does not appear to be compromised in Purkinje
cells (Saegusa et al., 2007). A similar lack of effects on
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channel biophysics was observed in another mouse
model; nontheless, an age-dependent neuronal dysfunc-
tion was observed, and there was an accumulation of
CaV2.1 aggregates (Watase et al., 2008). Altogether,
these data suggest that it is the formation of these
aggregates, rather than alterations in channel function,
that underlies the clinical phenotype in spinal cerebel-
lar ataxia type 6.
Episodic ataxia type 2 is another form of movement

disorder that has been linked to CaV2.1 channel muta-
tions (for review, see Pietrobon, 2010). These mutations
include missense mutations, splice site mutations, and
frame shifts the lead to the truncation of the CaV2.1
protein junctions and typically lead loss of channel func-
tion (Wappl et al., 2002; Kipfer et al., 2013). In addition,
dominant negative effects of mutated channels on normal
CaV2.1 channels have been reported (Jouvenceau et al.,
2001; Jeng et al., 2008; Mezghrani et al., 2008; Page et al.,
2010). Consistent with what has been observed with
CaV2.1 null mice, loss of function of CaV2.1 due to a
premature truncation of the protein has been shown to
give rise to absence seizures in one patient with episodic
ataxia (Jouvenceau et al., 2001). The observation that loss
of CaV2.1 function is linked to adverse events such as
movement disorders and seizures suggests that therapeu-
tics with off-target actions on CaV2.1 channels may result
in pathophysiological side effects.
On the other hand, gain-of-function mutations in the

gene encoding CaV2.1 channels have been associated
with FHM (Tottene et al., 2009). Numerous FHM-1
mutations in CACNA1A have been discovered, and
a number of these have been examined in both heter-
ologous expression systems and in knock-in mouse
models. It has become clear that expression of such
mutants in heterologous systems is not ideal, because
these mutations appear to manifest themselves differ-
ently when the channels are present in a native neuro-
nal environment [compare Hans et al. (1999) with Van
den Maagdenberg et al. (2004)]. The various mutations
can lead to drastic differences in disease severity consis-
tent with the notion that FHM-1 has a wide spectrum of
clinical phenotypes (Pietrobon and Moskowitz, 2013). A
mouse model of one of the mutations (S218L) recapit-
ulates the clinical phenotype observed in humans (Van
den Maagdenberg et al., 2010), including ataxia, seiz-
ures, and brain edema after head trauma. Remarkably,
a small organicmolecule (tert-butyl dihydroquinone) that
normalizes the gain-of-function phenotype of these mu-
tant channels has been shown to counteract the effects of
the equivalent of the S218L mutation on Drosophila
synaptic physiology (Inagaki et al., 2014). It remains to
be determined whether this compound may mediate
similar protection in S218L knock-in mice.
Overall, among the CaV2 channel family members,

CaV2.1 appears to be the main subtype compromised
by multiple genetic mutations. That said, one could
speculate that CaV2.2 channel and CaV2.3 channel

dysfunction may be more subtle in many cases, except
for the gain-of-function mutation recently reported in
CaV2.2 (Groen et al., 2015), and could contribute to
disorders such as pain hypersensitivity, addiction, or
seizures, perhaps via dysregulation by cellular signal-
ing processes rather than genetic abnormalities in the
channels themselves.

D. Molecular Pharmacology of CaV2 Channels

1. CaV2.1 and CaV2.3 Channels and Their Potential
Roles as Targets for Therapeutics. Various types of
voltage-gated calcium channels can be potently inhibited
by peptide toxins isolated from the venoms of a variety
of predatory organisms, such as fish-hunting molluscs,
scorpions, and spiders. For example, CaV2.1 channels are
potently inhibited byv-agatoxin IVA, a large polypeptide
that is isolated from the venom of the North American
funnel web spider Agenelopsis aperta (Adams et al.,
1993) (for review, see Olivera et al., 1994). However, as
noted above, unless they are carefully modulated with
compounds that normalize aberrant gain of function (see
Inagaki et al., 2014), CaV2.1 channels are not broadly
considered as good pharmacological targets. CaV2.3
channel inhibitors could potentially have a beneficial
effect in seizure disorders (Dibué et al., 2013) and as pain
therapeutics (Matthews et al., 2007); however, these
channels do not have a particularly rich pharmacology
and selective small organic inhibitors of CaV2.3 channels
are lacking (Schneider et al., 2013). They are inhibited
by the spider toxin SNX-482 (Newcomb et al., 1998);
however, this toxin also targets CaV1.2 LTCCs (Bourinet
et al., 2001) and A-type K+ currents (Kimm and Bean,
2014) and is thus not selective.

2. CaV2.2 Channels and Their Roles as Targets for
Therapeutics. In contrast with the CaV2.1 and CaV2.3
channels, there is an extensive body of literature
pertaining to N-type calcium channel inhibitors. There
are four principal means by which CaV2.2 channel–
mediated cellular events can be regulated for therapeu-
tic purposes: 1) direct block of CaV2.2 channel peptides
and small organic molecules, 2) activation of a range of
GPCRs, 3) interference with CaV2.2 channel trafficking,
and 4) direct interference with the coupling of the
channels to downstream effectors (Fig. 5). Here, we
provide a brief overview of these four mechanisms.

a. Direct CaV2.2 Channel Blockers. CaV2.2 channels
are potently inhibited by peptide toxins isolated from
the venoms of a variety of predatory organisms. In
particular, they are selectively and potently inhibited
by v-conotoxin GVIA, a peptide toxin isolated from
the fish-hunting cone snail Conus geographus (Olivera
et al., 1984) (Fig. 5, pathway 2). Indeed, v-conotoxin
GVIA and v-agatoxin IVA have been used extensively
as experimental tools to help distinguish native N-type
and P/Q-type currents in various types of neurons, and
this has been made possible largely by the high degree
of target selectivity by these peptides. Furthermore,
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these two toxins also exemplify two major modes of
action: pore block and gating modification. v-Conotoxin
GVIA is a small 27–amino acid peptide with a backbone
that is constrained by three disulfide bonds and it can be
physically lodged into the permeation pathway of the
channel, thus acting as a pore blocker (Reynolds et al.,
1986; Ellinor et al., 1994; Feng et al., 2001). The unblock-
ing rate constant is quite low, leading to virtually irre-
versible block (at least over the time course of tens of
minutes) unless the plasma membrane is strongly hyper-
polarized (Stocker et al., 1997; Feng et al., 2003). To our
knowledge, all of the knownv-conotoxins that act onCaV2
channels fall into this category. By contrast, v-agatoxin
IVA is a much larger (83 amino acid) peptide that acts by
blocking voltage sensor movement, rather than occluding
the pore of the channel (Mintz et al., 1992). It too produces
poorly reversible inhibition, unless the membrane is
repetitively depolarized—an action that allows the
voltage sensors of the channel to dislodge the bound
toxin (Mintz et al., 1992). Several other spider toxins
fall into the category of gating inhibitors, including
a-grammotoxin SIA, a peptide that is isolated from the
venom of the tarantula Grammostola spatulata and
inhibits both CaV2.2 and CaV2.1 channels (Lampe et al.,
1993; McDonough et al., 1997), and the CaV2.3 channel
blocker SNX-482 from the tarantulaHysterocrates gigas
(Bourinet et al., 2001).
Fish-hunting molluscs have proven to yield a partic-

ularly rich palette of CaV2 calcium channel blockers,
in many cases with selectivity for CaV2.2 channels. A
25–amino acid CaV2.2 channel pore-blocking toxin,
v-conotoxin MVIIA, has been isolated from the Conus
magus snail and mediates potent analgesia after in-
trathecal delivery to rodents (Chaplan et al., 1994;
Bowersox and Luther, 1998; Wang et al., 2000; Scott
et al., 2002) and human patients with persistent cancer
pain (Atanassoff et al., 2000; Miljanich, 2004; Staats
et al., 2004; Thompson et al., 2006; Wallace et al., 2006;
Ver Donck et al., 2008). This fits with the important role
of CaV2.2 channels in neurotransmitter release from
afferent terminals. C. magus also yields a number of
other CaV2 channel inhibitors such as v-conotoxins
MVIIB, MVIIC, andMVIID (Olivera et al., 1994). Along
these lines, peptides isolated from other types of snails
such as Conus striatus, Conus fulman, and Conus catus
produce various CaV2 channel blocking peptides.
These peptides generally share a similar disulfide
bridge arrangement and act as pore blockers. Although
most of them act selectively on CaV2.2 channels (e.g.,
v-conotoxins SIA, FVIA, or CVID) (Smith et al., 2002;
Adams et al., 2003; Lee et al., 2010), others also block
CaV2.1 channels (e.g., v-conotoxins SIB and MVIIC)
(Hillyard et al., 1992;Adams et al., 1993;Woppmann et al.,
1994). Some of these v-conotoxins are effective systemi-
cally in a mouse model of inflammatory pain (Sadeghi
et al., 2013). Of note, v-conotoxin CVID has been tested
as an analgesic in clinical trials (Schroeder et al., 2006).

The blocking site for v-conotoxin GVIA and MIIVA in
the CaV2.2 subunit has been investigated via the
construction of chimeric channels (Ellinor et al., 1994)
and by site-directed mutagenesis (Feng et al., 2001,
2003). These studies have revealed that the large
extracellular domain III S5–S6 region is a key de-
terminant of v-conotoxin GVIA block, and that muta-
genesis of a single glycine residue in this region at
position 1326 to proline dramatically enhances the
reversibility of v-conotoxin GVIA and MVIIA block.
A subsequent study showed that coexpression of the
CaVa2d subunit alters both the kinetics and extent of
inhibition of the channels by v-conotoxin CVID and
MVIIA (Mould et al., 2004), but it is not clear whether
this is due to a steric hindrance of toxin access or an
allosteric effect.

Although peptide toxins can be highly selective high-
affinity blockers of various CaV2 channel subtypes, their
clinical use is limited because they do not cross the
blood–brain barrier. Furthermore, many of the pore-
blocking conotoxins do not act effectively as state-
dependent blockers (Feng et al., 2003), which can be
a desirable feature in clinically active compounds, as
seen with anticonvulsants and local anesthetics (Hille,
1977;Willow et al., 1985; Ragsdale et al., 1991; Zamponi
et al., 1993). Both of these issues are overcome with the
development of small organic blockers, but often at the
expense of selectivity and affinity. Although there are,
to our knowledge, no selective small organic inhibitors
of CaV2.1 and CaV2.3 channels, several small organic
molecules that preferentially block CaV2.2 channels
have been identified, likely because of the importance
of the latter channel subtype for pain transmission.
The peptidylamines are one such class, and they are
designed to mimic the pore-blocking actions of the
larger conotoxin molecules and are formed by linking
N,N-di-substituted leucine acid to a tyrosine amine (Hu
et al., 1999b,c; Ryder et al., 2000). High-affinity (ap-
proximately 40 nM) block of CaV2.2 channels has been
reported in the literature (Ryder et al., 1999). The same
authors also identified phenylalanine and benzoxy-
aniline derivatives as high-affinity (,1 mM) CaV2.2
channel blockers with efficacy in pain (Hu et al.,
1999a,d).

Another distinct class of CaV2.2 channel blockers is
derived from compounds that are related to D2 dopa-
mine receptor–blocking antipsychotics (and a subclass
of ion channel blockers such as fomocaine and flunar-
izine; Benjamin et al., 2006; Ye et al., 2011) (Fig. 5,
pathway 2). These types of compounds contain a core
piperidine, morpholine, or piperazine structure, often
linked to one or two diphenyl moieties via alkyl chains,
and they have long been known to block N-type chan-
nels (Tytgat et al., 1991; Zamponi et al., 1996). Exten-
sive structure-activity work in this compound class has
been reported (Zamponi et al., 2009; Pajouhesh et al.,
2010, 2012). Furthermore, several lead compounds in
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this class have been validated in animal models of pain.
For the derivatives with a mixed action on CaV2.2 and
CaV3 channels, the addictive and intoxicating narcotic
properties of ethanol were also abrogated (Newton
et al., 2008). Other derivatives in this class include
pyrazolpiperidines (Subasinghe et al., 2012) and amino-
piperidine sulfonamide (Shao et al., 2012), both of which
have analgesic properties by virtue of N-type channel
blocking action.
Although most typically thought of as blockers of

LTCCs, there is evidence that someDHPs can also block
N-type calcium channels with high affinity. One such
example is cilnidipine (Uneyama et al., 1997; Kato et al.,
2002), which has analgesic properties in rats (Koganei
et al., 2009) in addition to being kidney protective and
antihypertensive in human patients (Hatta et al., 2012;
Kario et al., 2013). These beneficial effects may be attrib-
utable to the actions of this compound on N-type chan-
nels in the sympathetic nervous system (Takahara, 2009).
Finally, other examples of CaV2.2 channel blockers

that have been described in the literature include an

oxindole compound termed TROX-1 [(3R)-5-(3-chloro-
4-fluorophenyl)-3-methyl-3-(pyrimidin-5-ylmethyl)-1-
(1H-1,2,4-triazol-3-yl)-1,3-dihydro-2H-indol-2-one]
(Abbadie et al., 2010; Swensen et al., 2012), which is
a state-dependent inhibitor that has analgesic proper-
ties. In addition, long carbon chain molecules such as
aliphatic monoamines (Beedle and Zamponi, 2000) and
farnesol (Roullet et al., 1999) block CaV2.2 channels
with high affinity (albeit not selectively) and exhibit
preferential block of inactivated channels. There are
likely many other classes of CaV2.2 channel–inhibiting
pharmacophores, altogether indicating that these chan-
nels show a rich pharmacology. It is worth reiterating
that many of the compounds described above mediate
state-dependent block of CaV2.2 channels, which is seen
as a leftward shift in the steady-state inactivation curve
of the channel and frequency-dependent inhibition of
current activity. This contrasts with the tonic blocking
action that is typically observed with pore-blocking
toxins. Also in contrast with the action of peptide toxins,
the blocking sites for the vast majority of small organic

Fig. 5. Modulation of N-type channels by drugs, toxins, and signaling pathways. The major pharmacologically relevant classes of N-type calcium
channel active drugs and toxins are shown in pathway 2. This includes pore-blocking peptide toxins such as v-conotoxin MVIIA, as well as a series of
different types of small organic molecules that include piperazines and piperidines, DHPs, and long-chain carbon molecules. N-type channels are
modulated by a variety of different signaling pathways either through membrane-delimited actions of activated G proteins activated by GPCRs
(pathway 1), or by interfering with scaffolding proteins such as CRMP-2 (pathway 3) (for details, see the text). The image of v-conotoxin MVIIA is
reproduced from Wikipedia (https://en.wikipedia.org/wiki/Ziconotide).
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CaV2.2 channel blockers are not known. Although the
nature of the coexpressed CaVb subunit and point
mutations in the domain I–II region of CaV2.1 both
affect piperidine block (Benjamin et al., 2006), it is not
clear whether this region is the physical interaction site
for these compounds.
b. G Protein Inhibition of CaV2.2 Channels. Many

types of GPCRs are functionally linked to CaV2.2 cal-
cium channels (for reviews, see Dolphin, 2003; Tedford
and Zamponi, 2006) (Fig. 5, pathway 1). Activation of
these receptors initiates nucleotide exchange in the
associated Ga subunit, producing active signaling
molecules (Ga-GTP and Gbg). The Gbg subunits
physically associate with the Cav2.2 channel to medi-
ate a potent voltage-dependent inhibition of channel
activity (Herlitze et al., 1996; Ikeda, 1996), which
arises from a stabilization of the channel’s closed con-
formation (Jones et al., 1997). CaV2.1 channels are
regulated in an analogous manner, but they undergo
amuch smaller degree of inhibition (Arnot et al., 2000).
Although the majority of clinically used drugs act via
various GPCRs, these receptors are coupled to many
downstream effector systems; hence, the extent to
which the clinical action of receptor agonists and an-
tagonists involves CaV2 calcium channels is unclear.
However, opioid receptors are one example in which
the clinical action of a receptor agonist is linked
closely to CaV2.2. The m-opioid receptor agonist mor-
phine is a potent clinically used analgesic that inter-
acts with m-opioid receptors (Mizoguchi et al., 2012),
which then inhibits CaV2.2 channels in dorsal horn
synapses (Heinke et al., 2011), along with concomitant
activation of G protein–coupled inward rectifier potas-
sium channels (Marker et al., 2005). The receptor-
induced inhibition of CaV2.2 channels is thought to
reduce presynaptic calcium levels, which in turn re-
duces synaptic transmission between these afferent
nerve terminals (Kondo et al., 2005; Beaudry et al.,
2011). Morphine also acts at m-opioid receptors that
are expressed in the CNS (Diaz et al., 1995; Goodchild
et al., 2004), where a clear correlation between phys-
iologic effects and modulation of CaV2.2 channels is
more difficult to establish. Although morphine is con-
sidered selective for m-opioid receptors, selective ago-
nists of the other three members of the extended opioid
receptor family (i.e., d- and k-opioid receptors, and
nociceptin receptors) also functionally inhibit CaV2.2
channels (Gross and Macdonald, 1987; Moises et al.,
1994; Motin et al., 1995; Morikawa et al., 1998; Toselli
et al., 1999; Larsson et al., 2000; Yeon et al., 2004;
Ruiz-Velasco et al., 2005; Evans et al., 2010). As in the
case of m-opioid receptors, their activation induces an-
algesia in various animal models of pain (King et al.,
1997; Darland et al., 1998; Field et al., 1999; Mika
et al., 2001; Courteix et al., 2004; Nozaki et al., 2012).
Although there are no clinically approved d-opioid– and
nociceptin receptor–targeting analgesics, there is at

least one k-opioid receptor agonist (pentazocine) that
is used in humans as an analgesic.

GABAB receptors are another class of receptors that
inhibit CaV2.2 calcium channels in dorsal horn syn-
apses (Terrence et al., 1985); however, the associated
CNS side effects typically preclude clinical use of sys-
temic GABAB agonists such as baclofen (Schuele
et al., 2005; Bortolato et al., 2010). Nevertheless,
intrathecal baclofen is used in patients to treat
spasticity and associated central pain after brain or
spinal cord injury (Slonimski et al., 2004). Interest-
ingly, the a-conotoxin Vc1.1 and the structurally
related peptide Rg1A have been shown to activate
peripheral GABAB, leading to CaV2.2 channel inhibi-
tion and analgesia when delivered intrathecally or
intramuscularly (Callaghan et al., 2008; Callaghan
and Adams, 2010; Klimis et al., 2011; Cuny et al.,
2012; Berecki et al., 2014). To enhance oral bioavail-
ability, a cyclized version of the Vc1.1 has been de-
signed (Carstens et al., 2011); however, it is unclear
whether these cyclized peptides could lead to similar
central nervous side effects.

Altogether, CaV2.2 channels are important effectors
of 7-transmembrane-helix receptors, with the physio-
logic significance of this regulation being most clearly
exemplified in the primary afferent pain pathway.
Although it is likely that agonists of other GPCRs
mediate their downstream effects via CaV2 calcium
channels in many other physiologic processes (see
Kisilevsky et al., 2008), systematic studies of the effects
of GPCR agonists in CaV2.2 null mice would be required
to ascertain the importance of CaV2 channels as phys-
iologic effectors.

c. Inhibition of CaV2.2 Channel Trafficking.
CaV2.2-type calcium channels have been shown to
associate with collapsin response mediator protein 2
(CRMP-2; Chi et al., 2009) (Fig. 5, pathway 3). This
interaction stabilizes the channels in the plasma
membrane, presumably by slowing the rate of channel
internalization, and this in turn facilitates CaV2.2
channel–mediated release of neurotransmitters such
as calcitonin gene–related peptide (Chi et al., 2009).
Conversely, disruption of Cav2.2 channel interactions
with CRMP-2 can be achieved by using interfering
peptides, attached to cell penetrating sequences such
as TAT. TAT peptides reduce CaV2.2 channel density
in the plasma membrane, thereby mediating analgesic
effects in various pain models (Brittain et al., 2011;
Ripsch et al., 2012; Wilson et al., 2012). This is an
example of how CaV2.2-mediated calcium entry can be
regulated by targeting the mechanism that controls
channel density in the plasma membrane without
blocking channel function per se. A search for small
molecular mimetics of these TAT peptides is ongoing.
Another mechanism that is critical for CaV2.2 channel
trafficking is the association of these channels with the
ancillary CaVa2d subunit. This mechanism can also be
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exploited for therapeutic intervention, as discussed in
detail in later sections of this review.
d. Interference with CaV2.2 Coupling to the Synaptic

Vesicle Release Machinery. As noted earlier, CaV2.2
channels physically associate with proteins that are
involved in fast synaptic transmission (Sheng et al.,
1994). It has been shown that competitive disruption of
CaV2.2 interactions with syntaxin 1A by using synthetic
synprint peptides blocks CaV2.2 channel–mediated
synaptic transmission (Mochida et al., 1996). This
constitutes an example of how CaV2.2 channel–
mediated physiologic processes can be pharmacologi-
cally manipulated without alteration of CaV2.2 channel
function or density. As with regulators of CaV2.2
channel trafficking, it may be possible to identify small
organic mimetics of these synprint peptides that can be
used to target CaV2.2 channel–mediated synaptic trans-
mission as a potential approach toward treating con-
ditions such as pain.

E. Conclusion

Altogether, among the CaV2 channel family mem-
bers, CaV2.2 and to a lesser extent CaV2.3 channels
have potential as therapeutic targets. Although CaV2.3
channels may potentially be explored as targets for
epileptic seizures and analgesics, CaV2.3 (thus far) has
a relatively limited pharmacology that can be exploited
for therapeutic purposes. By contrast, substantial
efforts have been made in identifying novel classes of
CaV2.2 channel blockers with high affinity and selec-
tivity. This effort may have been boosted by the U.S.
Food and Drug Administration approval of Prialt (the
commercial name of v-conotoxin MVIIA or ziconotide;
Jazz Pharmaceuticals, Dublin, Ireland) and the pheno-
type of the CaV2.2 null mouse. Beyond their application
as analgesics, CaV2.2 channel blockers may well be
effective in conditions such as drug dependence and
anxiety.

IV. CaV3 Channel Family

A. Genes, Gene Products, and Splice Variants

T-type calcium channels are represented by three
genes (CACNA1G, CACNA1H, and CACNA1I) that en-
code three different types of CaV3a1 subunits: CaV3.1
(Perez-Reyes et al., 1998), CaV3.2 (Cribbs et al., 1998),
and CaV3.3 (Lee et al., 1999a). Expression of these
subunits gives rise to T-type currents with distinct
electrophysiological and pharmacological properties
(Mcrory et al., 2001; Santi et al., 2002). Unlike members
of the high voltage–activated channel CaV1 and CaV2
families, CaV3 calcium channels do not require coas-
sembly with auxiliary calcium channel subunits. None-
theless, these channels can be functionally regulated
by these ancillary subunits. Coexpression of CaVa2d
subunits has been shown to increase current density
of T-type calcium channels; however, no biochemical

complexes have been identified (Dolphin et al., 1999;
Dubel et al., 2004). Furthermore, CaVg6 subunits
can depress CaV3.1 channel current density (Hansen
et al., 2004), and this is due to a physical interaction
with the CaV3.1 subunit (Lin et al., 2008). Its effect
can be mimicked by small peptide sequences derived
from CaVg6. Both CaVa2d-2 and CaVg5 subunits alter
gating currents of CaV3.1 channels, which is again
indicative of direct functional modulation (Lacinová
and Klugbauer, 2004). Nonetheless, these functional
interactions do not have the hallmarks of the universal
auxiliary subunit regulation of CaV1 and CaV2 calcium
channels.

The three CaV3 subunits have all been shown to
undergo alternative splicing, which serves to increase
functional diversity (Swayne and Bourinet, 2008). Al-
ternative splicing events in the domain I–II linker of
CaV3.1, leading to exclusion of exon 8, result in en-
hanced cell surface expression and thus elevated cur-
rent densities (Shcheglovitov et al., 2008), indicating
that this region may be involved in either endoplasmic
reticulum retention or cell surface trafficking. A CaV3.1
splice isoform isolated from the mouse inner ear,
including exons 14, 25A, 34, and 35, displays unique
permeation characteristics (Nie et al., 2008). Multiple
splice isoforms of CaV3.1 in the domain III–IV linker
region that arise from different combinations of exons
25A, 25B, and 26 have been identified and shown to
exhibit altered activation and inactivation kinetics, as
has splicing of exon 14 in the II–III linker region
(Chemin et al., 2001a). Notably, the expression of the
III–IV linker splice isoforms is altered in samples from
human glioma and in retinoblastoma cells, suggesting
a possible role of particular CaV3.1 isoforms in tumor
growth (Latour et al., 2004; Bertolesi et al., 2006).
Alternative splicing has also been described for CaV3.2
channels. Splicing of exons 25 and 26 in the domain III–
IV linker of this channel results in changes in activation
and inactivation kinetics (Ohkubo et al., 2005). Fur-
thermore, exon 25 influences the functional effects of
CaV3.2 channel mutations that have been linked to the
development of seizures in a rat model of absence
epilepsy (Powell et al., 2009) and may be linked to the
development of cardiac hypertrophy (David et al., 2010).
Altogether, in CaV3.2 channels, as many as 14 different
sites for splice variation have been identified, some of
which are capable of producing nonfunctional channels
(Zhong et al., 2006). Finally, splicing events in CaV3.3
channels have also been shown to give rise to variants
with distinct biophysical properties. Splicing of exon 9
in the domain I–II linker and exons 33 and 34 in the
C-terminal region of the channel are important deter-
minants of channel properties (Murbartián et al., 2002,
2004).

In summary, different splice isoforms of all three
CaV3 channel subtypes can give rise to a large array of
different types of T-type channel conductances thatmay
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be expressed in a region-specific manner and can also be
developmentally regulated. Understanding which spe-
cific splice isoforms contribute to particular physio-
logic functions is an important consideration for drug
discovery.

B. Physiologic Roles of CaV3 Calcium Channels

T-type calcium channels are ideally suited to regulate
neuronal excitability, due to their hyperpolarized range
of activation and inactivation. At a typical neuronal
resting membrane potential, T-type calcium channels
are partially inactivated. A brief membrane hyperpo-
larization (e.g., inhibitory postsynaptic event) can be
sufficient to recover channels from inactivation, thus
increasing the fraction of the channel that is available
for opening (Coulter et al., 1989; Huguenard and Prince,
1992). This in turn facilitates membrane depolariza-
tion and thus neuronal firing to give rise to a phe-
nomenon termed “rebound bursting” (McCormick and
Huguenard, 1992). This is of particular importance
in thalamocortical circuitry (Ulrich and Huguenard,
1997) but also in many other brain circuits such as in
the cerebellum (Molineux et al., 2006; Tadayonnejad
et al., 2010). In addition, as a result of the overlap
between activation and inactivation curves, T-type
channels support a window current that is active near
neuronal resting membrane potentials, which also
contributes to the regulation of neuronal excitability
(Chevalier et al., 2006; Dreyfus et al., 2010). In the SAN,
CaV3 channels also contribute to pacemaker activity
(Mangoni et al., 2006). Finally, T-type calcium channels
have been shown to be associated physically and
functionally with members of voltage- and calcium-
activated potassium channels (Anderson et al., 2010,
2013; Engbers et al., 2012, 2013; Rehak et al., 2013).
These associations confer T-type channel–mediated
calcium-dependent control of potassium channel activ-
ity, which in turn regulates neuronal firing patterns
(Turner and Zamponi, 2014). CaV3.2 channels have also
been associated functionally with inhibition of KV7
channels to control axonal firing (Martinello et al.,
2015) and with HCN channels to regulate presynaptic
function at specific cortical synapses (Huang et al.,
2011).
In addition to regulating neuronal excitability, T-type

calcium channel activity has been linked to evoked
hormone secretion, such as the release of catechol-
amines from chromaffin cells (Carabelli et al., 2007).
In addition, T-type calcium channels have been linked
to neurotransmitter release from presynaptic afferent
nerve terminals in the spinal cord dorsal horn (Jacus
et al., 2012; García-Caballero et al., 2014). This function
may rely in part on the association of these CaV3
channels with the synaptic vesicle release proteins
syntaxin 1A and SNAP25, which in turn have been
shown to modulate Cav3 channel activity (Weiss
et al., 2012). Furthermore, T-type channels, particularly

CaV3.1, are important in sleep-wake cycles and feeding
behavior (Uebele et al., 2009).

T-type calcium channel activity is also important for
the function of the cardiovascular system and the renin-
angiotensin system (Hansen, 2015). Angiotensin results
in the upregulation of T-type calcium channels, which
then triggers an increase in aldosterone secretion
(Chen et al., 1999). This process appears to involve the
activation of CaMKII and its phosphorylation of the
domain II–III linker region in CaV3.2 channels (Yao
et al., 2006). As a result, T-type calcium channels are
considered excellent potential targets for the develop-
ment of novel antihypertensive drugs (Oshima et al.,
2005; Perez-Reyes et al., 2009). Aldosterone, in turn,
has been shown to upregulate T-type channel expres-
sion in cultured cardiac myocytes, thereby altering
beating frequency (Lalevée et al., 2005). This highlights
the function of T-type calcium channels as regulators
of pacemaking in the heart (Mesirca et al., 2014, 2015).
A recent study revealed that CaV3.2 T-type calcium
channels are also critically important for relaxation of
cerebral arteries by contributing to a negative feedback
loop that involves calcium-induced calcium release from
RyRs and subsequent activation of calcium-dependent
potassium conductances (Harraz et al., 2014, 2015).
This then would suggest that T-type calcium channel
blockers could act in some cases as vasoconstrictors. By
contrast, CaV3.3 in human cerebral arteries contributes
to smooth muscle cell contraction in cooperation with
CaV1.2. (Harraz et al., 2015)

T-type calcium channel activity has also been linked
to gene transcription. Activation of T-type channels has
been shown to activate nuclear factor of activated T cells
in cartilage tissue (Lin et al., 2014) and during the
development of cardiac hypertrophy (Hsu et al., 2013;
Huang et al., 2013a). T-type channels have also been
linked to activation of CREB in cardiomyocytes in
response to aldosterone (Ferron et al., 2011). Unlike in
the case of CaV1 and CaV2 calcium channels (Wheeler
et al., 2012), the mechanism by which T-type calcium
channels modulates gene expression remains poorly
understood.

C. CaV3 Channel Pathophysiology

Knockout mouse lacking the three CaV3 calcium
channel isoforms have been created and examined in
detail. Mice lacking the CaV3.1 subunit are viable and
have a relatively mild behavioral phenotype. They
are resistant to baclofen-induced seizures (Kim et al.,
2001b), whereas mice overexpressing CaV3.1 present
with absence epilepsy (Ernst et al., 2009). They also
show resistance to chemically induced tremor (Park
et al., 2010), but the latter is accompanied by increased
cerebellar atrophy and a loss of motor coordination
(Chang et al., 2011). CaV3.1 knockout mice also appear
to show increased visceral pain sensation due to alter-
ations in thalamic neuron firing (Kim et al., 2003), and
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these mice present with bradycardia (Mangoni et al.,
2006), which is consistent with the role of these channels
in cardiac pacemaker activity. Furthermore, CaV3.1
knockout mice show resistance to high-fat diet–induced
weight gain (Uebele et al., 2009).
CaV3.2 null mice show abnormal development of the

trachea and reduced relaxation of vascular tissue in
response to acetylcholine (Chen et al., 2003a), the latter
fitting with the observations described in the preceding
section. These mice also show reduced sensitivity to
certain types of peripheral painful stimuli (Choi et al.,
2007), as well as heightened anxiety and impaired
memory (Gangarossa et al., 2014). CaV3.3 nullmice exhibit
an increased susceptibility to drug-induced spike and
wave discharges (Lee et al., 2014) but appear otherwise
normal.
A number of channelopathies linked to CaV3 channels

have been described in humans. Although there is
no consistent linkage of mutations in human CaV3.1
and CaV3.3 channels to pathophysiology, mutations in
CaV3.2 channels have been associated with seizure
disorders, autism, and hyperaldosteronism. Many sin-
gle nucleotide mutations in CaV3.2 have been reported
in patients with childhood absence epilepsy and other
types of idiopathic generalized epilepsies (Chen et al.,
2003b; Heron et al., 2004, 2007). Functional studies in
which these mutations were introduced into transiently
expressed CaV3.2 channels revealed that a subset of
the mutations caused gains of function in channel gating
and increases in cell surface expression, whereas others
appeared to have no effects on the biophysical proper-
ties of the channels (Khosravani et al., 2004, 2005; Vitko
et al., 2005, 2007; Peloquin et al., 2006; Heron et al.,
2007). The absence of biophysical effects of some of the
mutations is curious; however, a recent study examin-
ing the consequences of a CaV3.2 mutation in a rat
model of absence epilepsy revealed that the biophysical
effect of the mutation depended critically on the use of
a specific splice variant backbone of the channel (Powell
et al., 2009). Gain-of-function mutations in CaV3.2 have
also been linked to a genetic form of autism (Splawski
et al., 2006), although how these changes in channel
function lead to an autistic phenotype is not understood.
Gain-of-function mutations in CACNA1H have also
recently been associated with early onset hypertension
and hyperaldosteronism (Scholl et al., 2015), in agree-
ment with the known role of CaV3.2 in aldosterone
secretion from zona glomerulosa cells in the adrenal
cortex (Guagliardo et al., 2012).
Dysregulation of T-type calcium channels has been

associated with chronic pain in animal models. In
particular, the dorsal root ganglion (DRG) subtypes
expressing CaV3.2 have recently been characterized in
molecular detail (Reynders et al., 2015; Usoskin et al.,
2015). In primary afferent fibers, CaV3.2 channels
regulate neuronal excitability and synaptic transmis-
sion in the dorsal horn (Jacus et al., 2012; Waxman and

Zamponi, 2014). Therefore, enhancement of CaV3.2
channel expression/activity contributes to pain hyper-
sensitivity. Although nomutations in CaV3.2 that result
in increased pain in humans have been reported in
the literature, peripheral nerve injury or inflammation
(Jagodic et al., 2008; García-Caballero et al., 2014),
diabetes (Jagodic et al., 2007; Messinger et al., 2009),
and colonic inflammation (Marger et al., 2011a) all give
rise to increased DRG neuron T-type calcium currents
in rodents. At least two mechanisms appear to contrib-
ute to this phenomenon: an enhancement of CaV3.2
channel trafficking, due to glycosylation in the case
of diabetic pain (Orestes et al., 2013; Weiss et al.,
2013), and stabilization of these channels as a result
of enhanced deubiquitination (García-Caballero et al.,
2014). Inhibiting CaV3.2 channels pharmacologically
thus mediates analgesia (François et al., 2014). The
recent development of a floxed CaV3.2–green fluores-
cent protein mouse line revealed that this channel is
expressed in sensory neurons specialized in detecting
mechanical stimuli, termed low-threshold mechanore-
ceptors. Conditional knockout of the channel in this
subtype of DRGs further shows that CaV3.2 is impli-
cated in allodynia linked to neuropathic pain (François
et al., 2015).

As noted above, CaV3.2 channels also play a role in
pressure overload-induced cardiac hypertrophy (Chiang
et al., 2009). They appear to be a contributor to abnor-
mal growth of ventricular cells (Martínez et al., 1999)
and may dispose hypertrophic tissue to arrhythmias
(Nuss andHouser, 1993). Finally, there is accumulating
evidence that T-type calcium channels may also partic-
ipate in the growth of certain cancers (Ohkubo and
Yamazaki, 2012; Rim et al., 2012; Zhang et al., 2012;
Das et al., 2013; Gackière et al., 2013; Dziegielewska
et al., 2014).

Altogether, it appears as if aberrant expression and
function of T-type calcium channels is a factor in
multiple disorders. Conversely, targeting these chan-
nels pharmacologically may provide a spectrum of
therapeutic benefits. Below, we highlight aspects of
T-type calcium channel pharmacology.

D. Molecular Pharmacology of CaV3 Channels

1. Inorganic Ions. One of the key distinguishing
features of T-type calcium channels is their sensitivity
to extracellularly applied nickel ions (Fox et al., 1987).
CaV3.2 calcium channels display a greater affinity for
nickel ions compared with CaV3.1 and CaV3.3 channels,
by approximately one order of magnitude (Lee et al.,
1999b). This is due to the fact that CaV3.2 channels
express a unique histidine residue at position 191
within the domain I S3–S4 loop (Kang et al., 2006;
Nosal et al., 2013). It was subsequently shown that
the same residue also acts as a major redox modula-
tion site in the channel, which leads to inhibition of
channel activity by ascorbate (Nelson et al., 2007) and
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upregulation of channel function in the presence of
L-cysteine (Nelson et al., 2005). Differential regulation
of CaV3 isoforms also occurs in the presence of another
metal ion, zinc. CaV3.2 channels are inhibited more
strongly by zinc ions compared with the other two CaV3
isoforms (Traboulsie et al., 2007). Interestingly, under
certain circumstances, zinc ions can act as agonists of
CaV3.3 channels by slowing the rate of deactivation,
giving rise to ultraslow tail currents (Traboulsie et al.,
2007; Reynders et al., 2015). By contrast, the deactiva-
tion kinetics of CaV3.2 channels is enhanced by zinc ions
(Noh et al., 2010). Finally, magnesium ions also appear
tomodulate T-type channel activity. Importantly, it was
shown that differential magnesium blocking affinity in
external barium- and calcium-containing solutions
underlies the apparent differences in the magnitude
of CaV3.1 currents carried by calcium and barium
(Serrano et al., 2000).
In addition to divalent metal ions, T-type channels

are also potently blocked by trivalentmetal ions (Mlinar
and Enyeart, 1993). Specifically, for cloned human
CaV3.1 channels, yttrium was the most potent of the
lanthanides, with an affinity of around 30 nM (Beedle
et al., 2002). However, block was greatly attenuated
upon increasing the concentration of permeant ions,
suggesting that trivalent ions act by physically occlud-
ing the pore of the channel.
Altogether, metal ions can be potent inhibitors of

T-type calcium channel activity, also showing some
selectivity. However, these ions are predominantly
useful as research tools, rather than as a therapeutic
approach.
2. Peptide Toxins. Like in the case of inorganic ions,

peptide toxins are not particularly useful therapeutic
agents because they cannot be administered orally and
do not cross the blood–brain barrier. Kurtoxin, a peptide
isolated from the venom of the scorpion species Para-
buthus transvaalicus, was first reported to inhibit
CaV3.1 calcium channels with high affinity (Chuang
et al., 1998). This compound acts as a gating modifier in
a manner akin to that described for the P-type channel
blocker v-agatoxin IVA (Sidach and Mintz, 2002).
However, kurtoxin also targets other calcium channel
isoforms, including both N and L types (Sidach and
Mintz, 2002), and also has effects on sodium channels
(Zhu et al., 2009). The solution structure of kurtoxin has
been solved and shown to resemble those of a-scorpion
toxins, but nonetheless with unique surface properties
that could explain its action on T-type channels (Lee
et al., 2012b). KLI and KLII are additional P. trans-
vaalicus scorpion toxins with blocking effects on T-type
calcium channels. Both toxins block T-type channels
and sodium channels, with only a weak effect on tran-
siently expressed CaV3.3 channels (Olamendi-Portugal
et al., 2002).
Protoxins I and II are peptides isolated from the

Thrixopelma pruriens tarantula, and theywere originally

described as sodium channel inhibitors (Schmalhofer
et al., 2008). Both peptides were subsequently shown to
block CaV3 channels in a subtype-dependent manner
(Edgerton et al., 2010). Protoxin I preferentially blocks
CaV3.1 channels over CaV3.3 and even more so over
CaV3.2 (Ohkubo et al., 2010; Bladen et al., 2014b).
Protoxin II appears to act as a gating modifier, with the
highest affinity for CaV3.2 channels (Edgerton et al.,
2010; Bladen et al., 2014b). Another spider toxin that
blocks T-type calcium channels is PsPTx3, a peptide
isolated fromTheraphosidae tarantula that has apparent
selectivity for CaV3.2 calcium channels (French patent
application FR2940973).

Overall, compared with N-type calcium channels for
which there is a rich peptide toxin pharmacology (in
particular in marine snails), peptide toxin inhibitors
of CaV3 channels remain relatively scant and derive
mostly from arachnids. It should be noted, however,
that peptide blockers of T-type calcium channels need
not be confined to those derived from venomous species.
For example, monocyte chemoattractant protein-1,
which is an endogenous agonist of the chemokine
receptor CCR2, directly and potently inhibits CaV3.2
T-type calcium channels (You et al., 2010).

3. Small Organic Molecules. Compared with pep-
tide toxins, there is no dearth of small organic T-type
calcium channel blockers. A number of different classes
of T-type calcium channel blockers have been identified
(Fig. 6). One of the first recognized blockers of T-type
calcium channels is the diuretic amiloride (Tang et al.,
1988). It blocks CaV3.2 channels with about one order of
magnitude higher affinity compared with CaV3.1 and
CaV3.3 channels (Lopez-Charcas et al., 2012); however,
this compound is by nomeans a selective T-type calcium
channel inhibitor (Kleyman and Cragoe, 1988; Manev
et al., 1990). The succinimides are also a group of
relatively simple compounds that include the antiepi-
leptic agent ethosuximide (Huguenard, 2002). This com-
pound is a low-affinity blocker of all three CaV3 channel
isoformsanddisplays state-dependent inhibition (Gomora
et al., 2001).

Mibefradil is a compound that initially generated
significant excitement in the field, due to its purported
selective inhibition of T-type calcium channels (Mishra
and Hermsmeyer, 1994; Ertel and Clozel, 1997). This
compound was approved by the U.S. Food and Drug
Administration for the treatment of hypertension, but
it had to be withdrawn from the market because of
metabolism by cytochrome P450 and drug–drug in-
teractions (Mullins et al., 1998). Furthermore, this
compound was by no means a selective inhibitor of
T-type channels. A more recent derivative of mibefradil
(NNC55-0396 [(1S,2S)-2-[2-[[3-(1H-benzimidazol-2-yl)
propyl]methylamino]ethyl]-6-fluoro-1,2,3,4-tetrahydro-
1-(1-methylethyl)-2-naphthalenyl cyclopropanecarboxylate
dihydrochloride]) has much lower interactions with
CYP3A4 (Bui et al., 2008).
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T-type calcium channels also interact with endocan-
nabinoids and synthetic cannabinoid receptor ligands.
Anandamide and its derivative Na-Gly (arachidonyl
glycine) mediate potent inhibition of CaV3 cal-
cium channels (Chemin et al., 2001b; Barbara et al.,
2009). NMP-7 [(9-pentylcarbazol-3-yl)-piperidin-1-
ylmethanone] is a synthetic carbazole derivative that
acts as an agonist of cannabinoid receptors. This com-
pound and several of its derivatives also potently block
T-type calcium channels (You et al., 2011; Gadotti et al.,
2013).
Diphenyl-butyl piperidines are a class of neuroleptic

drugs that are well known for their actions as D2
dopamine receptor antagonists (Seeman, 1980). Several
members of this class of compounds, including pimozide
and penfluridol, potently inhibit CaV3 channels in a sub-
type-dependentmanner (Enyeart et al., 1990; Santi et al.,
2002). Rational drug discovery efforts centered around
the piperidine core pharmacophore have resulted in the
discovery of a number of selective and highly potent

T-type channel inhibitors, including a compound termed
Z944 (N-[[1-[2-(tert-butylamino)-2-oxoethyl]piperidin-4-
yl]methyl]-3-chloro-5-fluorobenzamide) (Tringham et al.,
2012). This compound has completed phase1b clinical
trials for pain and is being advanced into phase 2 trials. A
series of compounds that combine the carbazole core of
NMP-7 and features of Z944 also mediate potent CaV3
channel inhibition without off-target effects on cannabi-
noid receptors and with efficacy in several in vivo models
of pain (Bladen et al., 2015). Another series of compounds
that incorporates features of Z944 includes TTA-A2
[(R)-2-(4-cyclopropylphenyl)-N-(1-(5-(2,2,2-trifluoroethoxy)
pyridin-2-yl)ethyl) acetamide] and TTA-P2 [3,5-dichloro-
N-[1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-
fluoro-piperidin-4-ylmethyl]-benzamide] (Choe et al.,
2011; Francois et al., 2013), both of which mediate
state-dependent inhibition of T-type currents with a
preference for CaV3.2. TTA-A2 increased sleep and
prevented high-fat diet–induced weight gain in mice
(Uebele et al., 2009).

Fig. 6. T-type calcium channel regulators. Examples of classes of blockers known to inhibit T-type calcium channels, including small organic molecules
and the peptide toxin kurtoxin. The inhibitors either physically block the pore, or bind to the gating machinery (pathway 1). T-type calcium channels
can also be regulated by activation of GPCRs, either directly by G protein bg subunits (pathway 2a), or indirectly via protein kinases such as Rho
kinase, protein kinase C, or CaMKII (pathway 2b). T-type calcium channel expression in the plasma membrane is regulated by ubiquitination and
deubiquitinating. The deubiquitinase USP5 removes ubiquitin groups, thus increasing channel stability in the plasma membrane. Interfering with
USP5 binding to the channel (pathway 3) leads to channel internalization and degradation. The kurtoxin image is reproduced from the Orientations of
Proteins in Membranes database (Lomize et al., 2006; http://opm.phar.umich.edu/protein.php?pdbid=1t1t).
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T-type calcium channels also have the propensity to
interact with certain types of DHPs. LTCC-blocking
DHPs such as nimodipine and niguldipine also po-
tently block T-type channels (Stengel et al., 1998).
Several types of DHP with preferential blocking
action on T-type channels over L-type channels have
since been identified (Kumar et al., 2002; Bladen
et al., 2014a). In contrast with these inhibitors, an-
other compound, ST101 (spiro[imidazo[1,2-a]pyridine-
3,2-indan]-2(3H)-one), exhibits a channel-activating
response, and this may be useful to further unravel
the role of T-type channels. Its use in vivo showed
cognitive-enhancing effects (Moriguchi et al., 2012).
It is interesting to note that many of the classes of

compounds described above have been tested in vari-
ous rodent models of inflammatory and neuropathic
pain and have shown to mediate analgesia. Further-
more, we are aware of at least two T-type channel
blockers that are being tested in humans for safety and
efficacy in pain: Z944 (Lee, 2014) and ABT-639 [5-[(8aR)-
3,4,6,7,8,8a-hexahydro-1H-pyrrolo[1,2-a]pyrazine-
2-carbonyl]-4-chloro-2-fluoro-N-(2-fluorophenyl)
benzenesulfonamide] (Ziegler et al., 2015). This under-
scores the importance of T-type calcium channels (par-
ticularly CaV3.2) in the primary afferent pain pathway.
On the other hand, as noted earlier, T-type calcium
channels are important targets for treating absence
seizures, with ethosuximide being one of the archetypal
T-type channel blocking antiepileptic drugs. Other
clinically used antiepileptic drugs with at least partial
action on T-type calcium channels include zonisamide
(Matar et al., 2009) and valproic acid (Todorovic and
Lingle, 1998).
4. Interference with CaV3 Channel Regulation.

T-type calcium channels can be regulated by extracel-
lular signaling molecules, and this can potentially be
exploited for therapeutic purposes. For example, it has
been shown that T-type channels (most notably CaV3.2
channels) are regulated by redoxmodulation. Ascorbate
inhibits CaV3.2 channel activity via metal catalyzed
oxidization (Nelson et al., 2007), whereas L-cysteine
increases CaV3.2 current amplitudes (Nelson et al.,
2005; Joksovic et al., 2006) through redox activity. This
redox modulation occurs at a specific residue (His-191)
(Nelson et al., 2007), which is also involved in Ni2+ block
of these channels (Kang et al., 2006) and results in
hyperalgesia (Pathirathna et al., 2006). Along these
lines, hydrogen sulfide induces hyperalgesia via actions
on CaV3.2 calcium channels (Maeda et al., 2009). In this
context, it is interesting to note that administration of
polaprezinc can mediate analgesia in a model for in-
terstitial cystitis, presumably through its antioxidant
activity (Murakami-Nakayama et al., 2015).
Another means of altering CaV3 channel activity is

via intracellular messenger regulation. This includes
effects of protein kinases (Welsby et al., 2003; Yao et al.,
2006; Iftinca et al., 2007), direct binding of G proteins

(Wolfe et al., 2003), and phosphatases (Huang et al.,
2013a). A detailed description of second messenger
regulation of T-type channels has been the focus of
several previous review articles (Huc et al., 2009; Iftinca
and Zamponi, 2009). Here, we focus on one example in
which T-type channel regulation can potentially be
exploited as a therapeutic strategy for pain. As noted
earlier, CaV3.2 channels are under control by ubiquiti-
nating and deubiquitinating enzymes. The deubiquiti-
nase USP5 is upregulated after injury or inflammation,
leading to increased T-type channel activity and thus
chronic pain. Uncoupling USP5 from the channel via
interfering TAT peptides reverses the pain phenotype
(García-Caballero et al., 2014), as do small organic
mimetics (Gadotti et al., 2015) (Fig. 6). This is reminis-
cent of the approach described above for the interaction
between CaV2.2 channels and CRMP-2 (Ripsch et al.,
2012) and supports the idea of therapeutic interven-
tions that are not targeted at blocking channel activity,
but instead interfere with channel trafficking.

E. Conclusion

T-type channels are important regulators of neuronal
firing and neuronal communication, and they play
important roles in the cardiovascular system. Their
dysregulation can give rise to conditions such as epi-
lepsy, pain, cardiac hypertrophy, and cancer; conse-
quently, they are potential drug targets for these
conditions. However, despite the fact that there are
many classes of potential T-type channel blocking small
organic molecules, their clinical use to date has been
restricted largely to the treatment of absence seizures.

V. Auxiliary a2d and b Subunits

Purification of the channel complexes showed the
CaV1.1 and CaV1.2 channels, as well as the CaV2.1 and
CaV2.2 channels, to be associatedwith auxiliary a2d and
b subunits (Takahashi et al., 1987; Tanabe et al., 1987;
Witcher et al., 1993; Liu et al., 1996). Subsequent
expression studies have shown that the other CaV1
and CaV2 channels also require these subunits for cell
surface and functional expression (see sections II and
III). However, from purification studies, the association
of the a2d subunit with the complex was found to be
looser than that of the b subunit and was dependent on
the solubilization conditions used to extract the channel
complex from the lipid bilayer (Müller et al., 2010).
Whether the T-type channels are associated with
auxiliary a2d subunits is still under investigation (see
section IV). This section concentrates on a2d subunits,
because of their important role as an established
therapeutic target; however, the function of b subunits
is also discussed briefly below (section V.F), because
they are functionally very important in CaV1 and CaV2
calcium channel complexes and also since disruption of
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the interaction between a1 and b subunits has been the
subject of drug discovery projects.

A. a2d Subunit Genes and Gene Products

Four mammalian genes encoding a2d subunits have
been cloned (CACNA2D1–CACNA2D4). A further gene
was also identified by homology (Whittaker and Hynes,
2002). The first to be cloned was a2d-1, after purification
of the protein as part of the skeletal muscle calcium
channel complex. CACNA2D1 encodes a2d-1, whose
distribution is fairly ubiquitous in excitable cells and
some other cell types. In addition to being present in
skeletal muscle, it is also found in cardiac and smooth
muscle as well as in both the central and peripheral
nervous systems and in secretory tissue. In skeletal,
cardiac, and smoothmuscle, a2d-1 is associated with the
LTCCs CaV1.1 in skeletal muscle and CaV1.2 in cardiac
and smooth muscle (Ellis et al., 1988; Jay et al., 1991;
Klugbauer et al., 1999; Wolf et al., 2003; Walsh et al.,
2009).CACNA2D2 andCACNA2D3, encoding a2d-2 and
a2d-3, were identified by homology with CACNA2D1.
They are expressed in neurons and some other tissues
(Klugbauer et al., 1999; Barclay et al., 2001). CAC-
NA2D4, encoding a2d-4, is present in retinal neurons
and elsewhere (Qin et al., 2002; Wycisk et al., 2006b).
The exon structure is similar in all a2d subunit genes;
for example, CACNA2D1 has 39 exons.
Several other related genes have been found bioin-

formatically to have a comparable domain structure. A
gene incorrectly termed CACNA2D5 in an article by
Whittaker and Hynes (2002) has the sequence of a2d-4
(CACNA2D4), and the more remotely related gene,
erroneously termed CACNA2D4 in that review corre-
sponds to the more distantly related CACHD1, and has
not yet been characterized. Homologous genes are also
found in Drosophila melanogaster and Caenorhabditis
elegans (Dickman et al., 2008; Saheki and Bargmann,
2009) and have been characterized to affect both calcium
channel and presynaptic functions. Furthermore, pro-
teins of the CLCA gene family, which have a related
domain structure, have been identified to be auxiliary
subunits of calcium-activated chloride channels (Yurtsever
et al., 2012).
1. a2d Subunit Splice Variants. It was noted that

the cDNA sequence of a2d-1 subunit isoforms expressed
in rat brain and skeletal muscle showed some diver-
gence (Kim et al., 1992). Three regions, termedA, B, and
C, were later identified to be alternatively spliced, with
DA + B + C being the major splice variant in brain and
in peripheral DRG neurons (Angelotti and Hofmann,
1996; Lana et al., 2014). A change in a2d-1 splicing was
recently found in rat DRG neurons, after spinal nerve
ligation. Increased expression was observed of a minor
splice variant (DA + BDC), particularly in small DRG
neurons, and this showed a lower affinity for gabapentin
(Lana et al., 2014). There are also splice variants of the
other a2d subunits, but their expression has not been

studied in detail (Klugbauer et al., 1999; Barclay and
Rees, 2000; Qin et al., 2002).

B. Physiologic Roles of a2d Proteins

1. Roles in Calcium Channel Function. The a2d
subunits were originally described as transmembrane
proteins, but evidence suggests they are glycosylphos-
phatidylinositol anchored (Davies et al., 2010) (Fig. 1).
In coexpression studies, the a2d-1 to a2d-4 subunits
results in increased currents formed by high voltage–
activated calcium channels (CaV1 and CaV2 families).
The current density is markedly increased, and there
are also a number of effects on biophysical parameters
of the current, including hyperpolarization of inactiva-
tion and increase in inactivation kinetics as well as an
increase in the coupling of channel opening to changes
in voltage (Gurnett et al., 1996, 1997; Qin et al., 1998;
Wakamori et al., 1999; Barclay et al., 2001; Brodbeck
et al., 2002; Klugbauer et al., 2003; Yasuda et al., 2004;
Cantí et al., 2005; Tuluc et al., 2007). Several of these
studies show that a2d and b subunits produce synergis-
tic effects on current density for several channel subtypes
(see Yasuda et al., 2004). For the CaV1.1 channel complex
in skeletal muscle, a2d-1 was also found to have a func-
tional role in excitation-coupled entry of Ca2+ into skeletal
myotubes, although not in the formation of the CaV1.1
tetrad structure or in excitation-contraction coupling
(Obermair et al., 2005; Gach et al., 2008). In mice in
whicha2d subunitswere depleted, therewas a reduction
of calcium currents in relevant cell types (Barclay et al.,
2001; Fuller-Bicer et al., 2009; Patel et al., 2013; Pirone
et al., 2014).

It was recently shown that a2d-1 subunits increased
the expression of CaV2 channels in the plasma mem-
brane (Cassidy et al., 2014); therefore, at least part of
the effect of a2d subunits on current density relates to
trafficking of channel complexes. The effect of a2d-1 was
largely dependent on the additional presence of a b
subunit that produced a marked increase of the density
of channels in the plasma membrane (Cassidy et al.,
2014). However, no effect of a2d-1 was found on the rate
of endocytosis of CaV2.2 (Cassidy et al., 2014), making it
likely that a2d subunits increase plasma membrane
expression by enhancing forward trafficking of the
channel complexes. In agreement with an effect of a2d
subunits on trafficking, a2d-1 knockdown, using short
hairpin RNA, reduced plasma membrane expression of
CaV1.2 in smooth muscle cells (Bannister et al., 2009)
and reduced CaV2.1 levels in synaptic boutons (Hoppa
et al., 2012).

Several studies also found a small enhancement of
T-type (CaV3) channel expression by a2d subunits
(Dolphin et al., 1999; Dubel et al., 2004), although these
channels express very well without a2d subunits. This
leaves open the possibility that CaV3 channel traffick-
ing and function may be enhanced by auxiliary subunit
expression.
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2. Structural Roles of a2d-1 Subunits. The a2d sub-
units have a similar domain structure to many proteins
involved in extracellular matrix and extracellular
protein–protein interactions (Whittaker and Hynes,
2002). Indeed, a2d-1 has been reported to interact with
thrombospondins and to have a structural role in syn-
apse formation (Eroglu et al., 2009), and the a2d pro-
teins inDrosophila have been shown to have an effect on
presynaptic morphology (Dickman et al., 2008; Kurshan
et al., 2009), as is also the case for a2d-3 in an auditory
system synapse (Pirone et al., 2014). Since a2d subunits
are involved in calcium channel trafficking as well as
function, it may be difficult to tease apart their roles
independent of calcium channels.

C. Pathophysiological Roles of the a2d Subunits
in Disease

1. Cardiac Dysfunction. Human mutations in CAC-
NA2D1 have been associated with cardiac dysfunc-
tion in a small number of patients, including Brugada
(Burashnikov et al., 2010) and short QT (Templin et al.,
2011; Bourdin et al., 2015) syndromes. Furthermore,
knockout of cacna2d1 in mice resulted in a cardiac
phenotype; the mice had compromised cardiac function
and smaller cardiac calcium channel current density
(Fuller-Bicer et al., 2009).
2. Epilepsies and Cerebellar Ataxia. Mutations in

cacna2d2 give rise to a phenotype of cerebellar ataxia
and absence epilepsy in the spontaneously arising
mouse mutants ducky and ducky2J (Barclay et al.,
2001; Brodbeck et al., 2002; Donato et al., 2006). Entla
is another mouse strain with a mutation in cacna2d2,
and these mice display ataxia and tonic-clonic epilepsy
(Brill et al., 2004). This is also seen in the targeted
knockout of cacna2d2 (Ivanov et al., 2004). These
mutations are all recessive, with the heterozygotes
showing no significant behavioral effects (Barclay
et al., 2001). Interestingly, ataxia is one of the adverse
events reported when gabapentin and pregabalin are
used therapeutically (Beal et al., 2012; Zaccara et al.,
2012).
The ataxic phenotype is thought to result from the

loss of a2d-2 from cerebellar Purkinje cells, in which it is
normally strongly expressed (Barclay et al., 2001).
Mutations in CACNA2D2 in humans have been de-
scribed to cause rare cases of recessive epileptic enceph-
alopathy and mental retardation (Edvardson et al.,
2013; Pippucci et al., 2013; Vergult et al., 2015). Family
members with one mutated copy of this gene were
unaffected. Regarding the role of a2d-1 in epilepsy, in
two rat models of epileptic seizures, no upregulation of
brain a2d-1 was observed, although there were regions
of dysregulated a2d-1 distribution associated with neu-
ronal cell loss (Nieto-Rostro et al., 2014).
3. Neuropathic Pain. Peripheral nerve injury has, as

one consequence, an increase of a2d-1 mRNA in damaged
DRG neurons, as evidenced by in situ hybridization

(Newton et al., 2001), microarray analysis (Wang et al.,
2002), and quantitative polymerase chain reaction
(Bauer et al., 2009; Lana et al., 2014). This results in
an increase of a2d-1 protein in DRGs and their termi-
nals within the spinal cord (Luo et al., 2001; Bauer et al.,
2009). Furthermore, a2d-1–overexpressing mice show
a neuropathic phenotype (tactile allodynia and hyper-
algesia) in the absence of nerve injury (Li et al., 2006),
indicating that a2d-1 regulates the excitability of DRG
neurons. In agreement with this, cacna2d1 knockout
mice showed a phenotype of reduced sensitivity to me-
chanical stimulation and delayed onset of neuropathic
mechanical hypersensitivity after peripheral nerve in-
jury (Patel et al., 2013). It has been found that expres-
sion of a2d-1 reduced the on rate of v-conotoxins
including MVIIA and CVID as well as their apparent
affinity for CaV2.2 in the oocyte expression system
(Mould et al., 2004). Given that a2d-1 is upregulated in
damaged sensory neurons in neuropathic pain models,
this may limit the efficacy of these toxins.

A role for a2d-3 in central pain processing in mice and
humans has also been elucidated, on the basis of
a Drosophila screen that identified the importance of
straightjacket (stj), the Drosophila homolog of a2d-3, in
thermal nociception (Neely et al., 2010).

4. Psychiatric Disorders. SNPs in the a2d subunit
and other calcium channel genes have been associated
with a spectrum of psychiatric diseases in a five-disorder
meta-analysis of GWASs (Cross-Disorder Group of the
Psychiatric Genomics Consortium, 2013). The data
were gathered from patients with bipolar disorder,
schizophrenia, major depressive disorder, ASD, and
attention-deficit disorder. In this study, SNPs in the a2d
genes CACNA2D2 and CACNA2D4 (as well as other
calcium channel genes CACNA1C, CACNA1S, CAC-
NA1D, CACNA1E, and CACNB2) were found to show
significant association with illness, across these disor-
ders. SNPs in CACNA1I were also recently associated
with schizophrenia (Schizophrenia Working Group of
the Psychiatric Genomics Consortium, 2014). In a more
recent study, an excess of several rare disruptive mu-
tations in CACNA2D1, CACNA2D2, and CACNA2D3,
as well as other calcium channel genes and a variety of
other genes involved in synaptic function, were found in
schizophrenic patients (Purcell et al., 2014). Further-
more, a splice site mutation in CACNA2D3 was identi-
fied previously as a “likely gene-disruptingmutation” in
ASDs (Iossifov et al., 2012).

5. Night Blindness. It was initially found that
CACNA2D4, encoding a2d-4, was distributed in a lim-
ited number of cell types, including the pituitary gland,
adrenal gland, and colon, suggesting that it might have
a role in secretory tissue (Qin et al., 2002). However,
widespread distribution of a2d-4 transcripts was ob-
served in mouse tissue (Wycisk et al., 2006a). Mutation
in the CACNA2D4 can lead to dysfunction of photo-
receptors, causing certain forms of night blindness.
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These include spontaneous mutation in the mouse, as
well as humanmutations (Wycisk et al., 2006a,b). These
mutations are both associated with autosomal recessive
cone dystrophy and night blindness. It is possible that
the phenotype resulting from a2d-4 loss or dysfunction
is confined to the retina because of a unique role in
photoreceptors and lack of compensation by other a2d
subunits.
6. Hearing. A role for a2d-3 in hearing has been

identified using a knockout mouse for a2d-3 (Pirone
et al., 2014). This study identified reduced presynaptic
Ca2+ channels and smaller auditory nerve fiber termi-
nals synapsing on cochlear nucleus bushy cells to be
associated with a specific hearing impairment resulting
from the loss of a2d-3.

D. Pharmacology of a2d Ligands

1. Ligand Binding Sites on a2d Subunits. The a2d-1
and a2d-2 subunits (but not a2d-3 or a2d-4) possess
a binding site for the antiepileptic drugs gabapentin
(2-[1-(aminomethyl)-cyclohexyl] acetic acid) and prega-
balin [S(+)-3-isobutyl GABA].
Other related compounds include 4-methylpregabalin

and similar molecules (Ohashi et al., 2008; Corrigan
et al., 2009). These compounds were not designed as
drugs with a2d binding in mind; rather, they were
intended to increase GABAA receptor activation. They
were synthesized to be rigid lipophilic analogs of GABA
(Belliotti et al., 2005; Silverman, 2008). However, it was
identified that gabapentin did not affect GABA recep-
tors or GABA levels, despite being effective in various
forms of experimental epilepsy models and in some
human epilepsies (for review, see Taylor et al., 2007). To
unravel the function of gabapentin, a key step was to
purify and identify its binding sites in the brain by using
radiolabeled gabapentin and proteomic approaches
(Gee et al., 1996). By these means, the primary binding
site was found to be a2d-1.

3H-gabapentin was then
observed to also bind to a2d-2 but not a2d-3 (Klugbauer
et al., 1999; Gong et al., 2001). It is worth emphasizing
that a2d subunits, as accessory proteins of voltage-gated
calcium channels, would not have been considered as
drug targets. Indeed, until a2d-1 was identified as the
binding site of gabapentin, the a2d proteins were not
considered to have any ligand binding sites. A single
affinity binding site was observed, and the Hill co-
efficient was reported as near to 1, indicating a lack of
binding cooperativity (Dissanayake et al., 1997).
In the initial studies in which a2d-1 was identified as

the binding site for gabapentin, the apparent affinity for
gabapentin binding showed a sequential increase dur-
ing the steps of purification of a2d from pig brain, from
92 nM in membranes to 9.4 nM for purified a2d-1 pro-
tein (Brown et al., 1998). In our studies, a marked in-
crease in gabapentin binding affinity was observed for
both a2d-1 and a2d-2 purified in detergent-resistant
membrane (lipid raft) fractions compared with total

membrane fractions (Davies et al., 2006; Lana et al.,
2014). For example, the binding of 3H-gabapentin to a2d
from membranes from mouse cerebellum (predomi-
nantly a2d-2, which is strongly expressed in Purkinje
neurons) gave a KD of approximately 385 nM, whereas
theKD was approximately 80 nM in detergent-resistant
membranes from the same tissue (Davies et al., 2006).
For a2d-2 expressed in Cos-7 cells, the KD was approx-
imately 470 nM in membranes and approximately
50 nM in the lipid raft fraction (Davies et al., 2006). The
affinity of 3H-gabapentin binding to a2d-1 was similarly
found to increase 3-fold on dialysis of brain membranes,
and this was attributed to the removal of diffusible
factor of molecular mass , 12 kDa (Dissanayake et al.,
1997). These results could indicate that there may be an
endogenous ligand that occupies this site, although its
function still remains obscure and its nature remains
unknown; however, many endogenous amino acids,
including L-leucine, are able to bind to a2d subunits
(Brown et al., 1998). Structure-function studies showed
that C-terminal truncation of a2d-1 abrogated binding
to 3H-gabapentin (Brown andGee, 1998). Subsequently,
residues were identified in a2d-1, which were essential
for gabapentin binding, particularly the third arginine
(R) in an RRR motif (Wang et al., 1999). Mutation of
RRR to RRA in both a2d-1 and a2d-2 consistently
reduced the functionality of the a2d-1 and a2d-2 sub-
units, both in terms of calcium current enhancement
(Field et al., 2006; Hendrich et al., 2008) and calcium
channel trafficking (Tran-Van-Minh and Dolphin, 2010;
Cassidy et al., 2014). Whether this suggests that
binding of the endogenous “agonist” ligand is neces-
sary for full functionality of the a2d subunits remains
unclear, because the mutation itself could reduce
a2d function. However, in this scenario, gabapentinoid
drugs acting as “antagonists” would displace the “en-
dogenous agonist.” Although a number of endogenous
small molecules have been shown to bind to a2d-1 and
a2d-2, including L-leucine (Gee et al., 1996; Dissanayake
et al., 1997), it has not been shown that they fulfill an
endogenous agonist role.

The RRR motif is situated just upstream of the VWA
domain, and it is therefore predicted to sit structurally
at the base of the VWA domain, between it and the first
chemosensory-like domain (Dolphin, 2012). Mutation of
RRR to RRA reduced the affinity of gabapentin binding,
for both a2d-1 (Wang et al., 1999) and a2d-2 (Davies
et al., 2006). Knock-in mice were created with the same
point mutation in either a2d-1 or a2d-2, such that
gabapentin binding affinity was markedly reduced
(Field et al., 2006; Lotarski et al., 2011). Using the
a2d-1 knock-in mouse model, it was found that binding
of gabapentin and pregabalin to the a2d-1 subunit is
essential for their therapeutic effect, both in neuro-
pathic pain and in several epilepsy models (Field et al.,
2006; Lotarski et al., 2014). Furthermore, anxiolytic-
like effects of pregabalin in mice were also mediated by
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drug binding to a2d-1 rather than a2d-2 (Lotarski et al.,
2011). Nevertheless, gabapentin and pregabalin show
similar affinities for a2d-1 and a2d-2 (Gong et al., 2001;
Li et al., 2011); therefore, a2d-1–selective ligands might
show an improved side effect profile.
Using ligand binding assays, it has been possible to

identify many compounds that displace 3H-gabapentin
or 3H-pregabalin, some with greater affinity for a2d-1 or
with selectivity toward a2d-1 relative to a2d-2, as well as
with improved pharmacokinetics (Cundy et al., 2004;
Mortell et al., 2006; Field et al., 2007; Rawson et al.,
2011); however, none are yet in clinical use, except
extended-release prodrugs of gabapentin. Ataxia is
reported to be one of the side effects of gabapentin that
might be mediated via binding to a2d-2, arguing that
selective a2d-1 ligands could be therapeutically use-
ful (Field et al., 2007). Many other gabapentin-like
compounds have also been found to bind to a2d-1
(Blakemore et al., 2010)
It is interesting to speculate whether ligands (endog-

enous or otherwise) might also bind to andmodulate the
function of a2d-3 (and a2d-4), neither of which possess an
RRR motif, and whether drugs binding to the fairly
ubiquitous a2d-3 subunits might have therapeutic
potential, if they could be identified. Development of
an assay for such drugs would be challenging, but
structural andmodeling studies will have a part to play.
2. Binding of Gabapentin to a2d-1 Splice Variants.

The minor splice variant of a2d-1 (DA + BDC), whose
relative expression was increased after nerve injury in
DRG neurons, showed a reduced affinity for gabapentin
(Lana et al., 2014). This finding points toward the
possibility that variation in the relative expression level
of this splice variant in patients with neuropathic pain
may influence the therapeutic efficacy of these drugs.
3. Mechanism of Action of a2d Ligands. In terms of

molecular mechanism of action (downstream of binding
to a2d subunits), most studies indicate that gabapentin
and pregabalin produce very little or no acute inhibition
of calcium currents in transfected cells or in neuronal
cell bodies in most studies (Rock et al., 1993; Davies
et al., 2006; Hendrich et al., 2008), although some
studies reported small acute inhibitory effects (Stefani
et al., 1998; Martin et al., 2002; Sutton et al., 2002). It
was also found that although gabapentin did not inhibit
calcium currents in wild-type mouse DRG neurons, the
currents in DRGs from a2d-1–overexpressing mice were
inhibited by gabapentin (Li et al., 2006). It was then
found that chronic but not acute application of gaba-
pentin markedly reduced calcium currents formed
by several different a1/b/a2d subunit combinations
(Hendrich et al., 2008). This effect occurred when using
either a2d-1 or a2d-2; however, it did not occur in the
absence of a2d subunits or when a2d-3 or mutant a2d
subunits that bind gabapentin very poorly were used in
the experiments (Hendrich et al., 2008), strongly point-
ing to the view that effects of gabapentin were indeed

occurring via binding to a2d subunits. More recently, it
has been found that chronic gabapentin reduces the cell
surface expression of a2d-1, a2d-2, and the associated a1
subunits CaV2.1 and CaV2.2 (Hendrich et al., 2008;
Tran-Van-Minh and Dolphin, 2010; Cassidy et al.,
2014), by disrupting the recycling process (Tran-Van-
Minh and Dolphin, 2010). In agreement with the
hypothesis that gabapentinoid drugs reduce trafficking
of these a2d subunits, it was also found that chronic in
vivo pregabalin application reduced the amount of a2d-1
in presynaptic terminals in the dorsal horn of the spinal
cord, interpreted as an effect on trafficking from DRG
cell bodies (Bauer et al., 2009).

Other potential mechanisms of action of gabapentin
have been put forward. Thrombospondins are se-
creted extracellular matrix proteins that promote syn-
aptogenesis via binding to a postsynaptic receptor,
which was identified to be a2d-1 (Eroglu et al., 2009).
Gabapentin was found to disrupt this interaction be-
tween a2d-1 and thrombospondins (Eroglu et al., 2009)
and has been found to interfere with synaptogenesis,
while at the same time not affecting the stability of
preformed synapses (Eroglu et al., 2009). Thrombospondins
are elevated during synaptogenesis associated with
development and are also elevated after nerve in-
jury. However, thrombospondins promote forma-
tion of nonfunctional silent synapses (Christopherson
et al., 2005), and thrombospondins destabilize postsyn-
aptic a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid glutamate receptors (Hennekinne et al., 2013). The
involvement of gabapentin in these processes remains
unclear.

As mentioned above, it is possible that selective
ligands of a2d-1 might be of therapeutic use, with fewer
side effects, because the therapeutic antiepileptic,
anxiolytic, and antihyperalgesic effects in animal mod-
els of gabapentin and pregabalin were via binding to
a2d-1 (Field et al., 2006; Lotarski et al., 2011, 2014).
Nevertheless, a2d-2 binds these drugs with similar
affinity and is expressed in brain regions associated
with movement and other behaviors (Barclay et al.,
2001).

4. Role of Amino Acid Transporters in the Action of
Gabapentin. Pregabalin and gabapentin do not inhibit
the transport of GABA in vitro (Su et al., 2005)
However, both gabapentin and pregabalin are zwitter-
ions at neutral pH and use the large neutral amino acid
transporter “system L” for uptake across cell mem-
branes (Belliotti et al., 2005; Su et al., 2005; Dickens
et al., 2013).

5. Effects of a2d Ligand Drugs on Synaptic Trans-
mission and Transmitter Release. a2d-1 subunits are
strongly expressed in presynaptic terminals (Taylor and
Garrido, 2008; Bauer et al., 2009). Indeed, chronic
effects of gabapentinoid drugs have been observed in
pain pathways (Biggs et al., 2014). Acute effects of
gabapentinoid drugs to inhibit transmitter release and
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synaptic transmission have been observed in some, but
not all, in vitro systems (reviewed in Davies et al., 2007;
Taylor et al., 2007). It is possible that, despite their lack
of acute effect on somatic calcium currents in several
systems (for review, see Dolphin, 2013), the gabapenti-
noid drugs might have differential effects on calcium
currents in presynaptic terminals compared with cell
bodies, resulting in more rapid inhibition. It is also
possible that calcium channel turnover is higher in
presynaptic terminals than in somata, so that effects on
calcium channel trafficking are observed more acutely.
Thus, gabapentinoid drugs might act rapidly or more
slowly, depending on the interplay between these
different processes, and possibly also depending on
presynaptic sensitization, such as by activation of pro-
tein kinase C (Maneuf and McKnight, 2001). However,
gabapentin had no effect on transmitter release at
hippocampal synapses in culture (Hoppa et al., 2012).
6. Effects of Gabapentinoids in Preclinical Animal

Models.
a. Seizure Models. Gabapentin and pregabalin are

effective in several models of anticonvulsant action
(Welty et al., 1993; Vartanian et al., 2006). By contrast,
pregabalin did not reduce the incidence of spontaneous
absence seizures in a genetic rat model of absence
seizures (Vartanian et al., 2006). The effect of these
drugs in several epilepsy models has been shown to
result from binding to a2d-1, rather than a2d-2 (Lotarski
et al., 2014), although there was no widespread upre-
gulation of brain a2d-1 in two epilepsy models studied
(Nieto-Rostro et al., 2014). It is possible that gabapentin
has its effect by preventing new synapse formation as
previously described (Eroglu et al., 2009), giving rise to
the possibility that gabapentin might be protective
against epileptogenesis by these means (Radzik et al.,
2015).
b. Pain Models. The effect of the gabapentinoid

drugs is said to be “state dependent,” meaning they
have no effect on normal acute pain perception in naive
animals, whereas they are efficacious in chronic pain
models (Dickenson et al., 2005). Some behavioral effects
of gabapentinoid drugs on pain phenotypes may be
observed acutely (Field et al., 2006), but chronic treat-
ment is generally more effective (Hao et al., 2000; Fox
et al., 2003; Xiao et al., 2007). In agreement with this, it
was observed that the effect of pregabalin increased
with time of chronic treatment (Bauer et al., 2009).

E. Therapeutic Uses of a2d Ligands

1. Epilepsy. Gabapentin was first developed as
a GABA analog; although it is now known that this
does not represent its mechanism of action, it was
shown to be effective as an antiepileptic drug in clinical
trials. Gabapentin was approved for use as an adjunct
drug to improve control of partial seizures (Crawford
et al., 1987; Marson et al., 2000). Pregabalin is also
effective as adjunct therapy for partial seizures (French

et al., 2003). It is possible that gabapentin also has
a protective mechanism against seizure development
(Rossi et al., 2013).

2. Neuropathic Pain. Gabapentin and pregabalin
are widely used in neuropathic pain treatment, in-
cluding diabetic neuropathy, chronic neuropathic pain
induced by chemotherapeutic and other drugs, as well
as postherpetic and trigeminal neuralgia (Rosenstock
et al., 2004; Richter et al., 2005; Stacey et al., 2008;
O’Connor and Dworkin, 2009; Moore et al., 2009, 2014).
These drugs have relatively slow onsets of action and no
effect on acute pain (Moore et al., 2009). Their efficacy is
low in terms of numbers of patients thatmust be treated
to observe a therapeutic response in one patient (e.g.,
4.4 in postherpetic neuralgia), but the efficacy of
gabapentin is consistent with that of other drug thera-
pies in postherpetic neuralgia and painful diabetic
neuropathy (Moore et al., 2014; Johnson and Rice,
2014).

Fibromyalgia is a poorly understood pain syndrome,
including persistent, widespread pain and tenderness,
sleep problems, and fatigue. Although gabapentin and
pregabalin are used in this condition (Traynor et al.,
2011; Wiffen et al., 2013), a systematic review of clinical
trials for gabapentin concluded that there was currently
insufficient evidence to confirm its efficacy (Moore et al.,
2014).

3. Other Indications. Restless legs syndrome, also
known as Willis–Ekbom disease, is a common neuro-
logic disorder with an approximate adult prevalence of
1.9–15.0%. Disruption of sleep due to symptoms of
restless legs syndrome may result in fatigue and de-
pression. Gabapentin and the longer-acting prodrug
gabapentin enacarbil have been found to have some
efficacy in the treatment of this disorder (Happe et al.,
2003; Garcia-Borreguero et al., 2013). Pregabalin has
also been examined for use in generalized anxiety
disorder (Wensel et al., 2012).

F. Physiologic and Potential Pharmacological Roles of
CaVb Subunits

1. CaVb Subunit Biochemistry. CaVb subunits were
first identified in the purified skeletal muscle voltage-
gated calcium channel complex and the gene for CaVb1
was then cloned (Ruth et al., 1989). Three more CaVb
subunit genes were then identified by homology: CaVb2,
CaVb3, and CaVb4 (for reviews, see Dolphin, 2003;
Buraei and Yang, 2010). The CaVb subunits are cyto-
plasmic proteins that bind with high affinity to the part
of the intracellular loop between domains I and II of the
CaV1 and CaV2 a1 subunits. This bindingmotif is an 18–
amino acid region in the proximal part of the I–II linker,
termed the a-interaction domain (AID) (Pragnell et al.,
1994).

CaVb subunits were found by homology modeling to
contain a conserved src homology-3 domain and a gua-
nylate kinase-like domain, linked by a flexible loop
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(Hanlon et al., 1999). However, the guanylate kinase-
like domain has no kinase activity, because there are
mutations in the active site. Three studies solved the
crystal structure of the conserved domains in several b
subunits (Chen et al., 2004; Opatowsky et al., 2004; Van
Petegem et al., 2004). They showed that the interaction
site of the AID peptide is in a groove in the guanylate
kinase-like domain (Van Petegem et al., 2004). In the
intact I–II loop, thea-helical structure of the AID, which
is imposed by binding to the CaVb-subunit, is predicted
to continue to the end of S6 in transmembrane domain
I (Opatowsky et al., 2004). Thus, b subunits may be
considered as chaperones to induce correct folding of the
a1 subunit.
2. Physiology of CaVb Subunits. CaVb subunits

increase the functional expression and influence the
biophysical properties of the CaV1 and CaV2 channels,
and at least two processes have been proposed to
account for this. All of the CaVb subunits increase the
maximum single channel open probability, which will
increase current through individual channels, and will
thus result in increased macroscopic current density
(Matsuyama et al., 1999; Meir et al., 2000; Neely et al.,
2004). However, CaVb subunits also increase the
amount of channel protein in the cell membrane, as
measured by imaging, gating charge determination, or
various biochemical means (Josephson and Varadi,
1996; Kamp et al., 1996; Brice et al., 1997; Bichet
et al., 2000; Altier et al., 2002; Cohen et al., 2005; Leroy
et al., 2005; Cassidy et al., 2014). CaVb subunits were
postulated to mask an endoplasmic reticulum retention
signal in the I–II linker of CaVa1 subunits (Bichet et al.,
2000; Cornet et al., 2002), although no specific motif was
identified (Cornet et al., 2002). It was then found that
a mutation (W391A) in the I–II loop of CaV2.2 disrupts
functional interaction with CaVb subunits (Leroy et al.,
2005), and this was used this to probe the mechanism of
action of CaVb subunits. CaV2.2 (W391A) was found to
have a more rapid rate of degradation than wild-type
CaV2.2, and this was blocked by proteasomal inhibitors
(Waithe et al., 2011). A similar conclusion was reached
for the effects of CaVb subunits on LTCCs (Altier et al.,
2011); these findings may represent a general function
of CaVb subunits in protecting the a1 subunit from
endoplasmic reticulum–associated proteasomal degra-
dation and thus promoting forward trafficking of the
channels to the plasma membrane.
Moreover, calcium channel–independent functions of

b subunits have also been reported. Several studies
demonstrated targeting of b4 subunits into the nucleus,
suggesting a direct function in activity-dependent gene
regulation (Colecraft et al., 2002; Hibino et al., 2003;
Subramanyam et al., 2009; Tadmouri et al., 2012).
Isoform-specific functions of b4 splice variants were
recently observed in neurons (Etemad et al., 2014).
Althoughmany aspects of the regulation and function of
this new signaling pathway are still controversial, a lack

of this nonconventional b4 function could contribute to
the ataxic phenotype in patients and mice with muta-
tions in the b4 gene.

3. Pathophysiology and Potential Pharmacology In-
volving CaVb Subunits. CaVb subunit pathology has
been implicated in epilepsy, cardiac dysfunction, and
other diseases (for review, see Buraei and Yang, 2010).
It has been hypothesized that development of a drug
targeting the groove within CaVb into which the AID
peptide is inserted could inhibit the interaction between
the CaVa1 and b subunits and thus reduce calcium
channel function, which could be beneficial in certain
conditions such as hypertension and chronic pain.
Indeed, such a lead molecule was identified (Young
et al., 1998). However, since the interaction between
CaVb and the AID region is of very high affinity and
involves a number of residues, it is difficult to identify
first how a small molecule would compete for binding
and second how selectivity between the different CaVa1
andb subunits would be obtained. Nevertheless, the use
of cell-permeant peptides described above to interfere
with the interaction between CaV2.2 and CRMP-2
(Ripsch et al., 2012) might also be employed to disrupt
the a1–b interaction.

VI. Conclusions

The identification of specific roles for different cal-
cium channel isoforms, as well as their different splice
variants and auxiliary subunits, has been aided by
knockout mouse models and the existence of human
mutations inmany of these channels and their auxiliary
subunits. For example, the recent discovery of impor-
tant physiologic functions differentially controlled by
CaV1.2 and CaV1.3 identifies both channels as poten-
tially novel drug targets, if selectivity can be achieved.
Nonselective blockers of these channels (DHPs and
other CCBs) have been of use in the treatment of
hypertension for many years and their side effect profile
has been well studied. Some selectivity of DHPs is
nevertheless achieved in vivo for targeting vascular
CaV1.2 because of the depolarized potentials found in
this tissue, since DHPs bind with higher affinity to
inactivated channels. If selective drugs can be devel-
oped, there is a strong therapeutic potential for selective
CaV1.3 blockers for several indications, including neu-
ropsychiatric diseases, PD neuroprotection, and resis-
tant hypertension associated with hyperaldosteronism.

For the CaV2 channel family members, CaV2.2 has
particular potential as a therapeutic target.Major effort
has been put into identifying novel classes of CaV2.2
channel blockers with high affinity, selectivity, and use
dependence. This effort has been spurred on by the suc-
cess, albeit limited, of ziconotide (the peptide v-conotoxin
MVIIA) as an intrathecally administered drug for use
in intractable pain, as well as the phenotype of the
CaV2.2 knockout mouse. Beyond their application as
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analgesics, CaV2.2 channel blockers may well be effec-
tive in conditions such as drug dependence and anxiety.
T-type (CaV3) channels are important regulators of

neuronal firing and pacemaker activity, and they play
important roles in the cardiovascular system. Their
dysregulation contributes to a number of chronic con-
ditions, including epilepsy and pain; consequently, they
are both potential and actual (ethosuximide) drug
targets for these conditions. However, despite the fact
that many classes of potential T-type channel blocking
small organic molecules have been developed and
studied, their clinical use to date has been restricted
largely to the prophylaxis of absence seizures by
ethosuximide.
Of the CaV auxiliary subunits, a2d-1 is a well estab-

lished drug target for the drugs gabapentin and pregaba-
lin, used in chronic neuropathic pain and in combination
with other drugs in several forms of epilepsy. These drugs
also bind to a2d-2, but not a2d-3. Whether a selective or
more potent a2d-1 ligand would have fewer side effects
and whether a similar ligand targeting a2d-3 might be
of therapeutic use remain to be determined. Although
targeting the interaction between a1 and b might be of
therapeutic relevance in principle, this has not yet
proven possible.
In conclusion, it is clear that selective calcium

channel blockers are likely to hold great promise for
therapeutic intervention in the future.
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