
1521-0081/67/4/754–819$25.00 http://dx.doi.org/10.1124/pr.114.010454
PHARMACOLOGICAL REVIEWS Pharmacol Rev 67:754–819, October 2015
Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics

ASSOCIATE EDITOR: ELIOT H. OHLSTEIN

International Union of Basic and Clinical Pharmacology.
XCIX. Angiotensin Receptors: Interpreters of
Pathophysiological Angiotensinergic Stimulis

Sadashiva S. Karnik, Hamiyet Unal, Jacqueline R. Kemp, Kalyan C. Tirupula, Satoru Eguchi, Patrick M. L. Vanderheyden, and Walter G. Thomas

Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.);
Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and
Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of

Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756
I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756

A. History, Classic Components, and Functions of Renin-Angiotensin System . . . . . . . . . . . . . . . 756
B. Tissue Renin-Angiotensin System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
C. Intracellular Renin-Angiotensin System and Alternative Pathways Generating

Angiotensin Peptides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
D. Newer Components and Functional Axis of Renin-Angiotensin System . . . . . . . . . . . . . . . . . . . 758
E. Angiotensin Receptors Interpret Functions of Renin-Angiotensin System . . . . . . . . . . . . . . . . . 759

II. The Angiotensin II Type 1 Receptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760
A. Structure-Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760
B. Pharmacology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762

1. Pharmacophore Structure-Activity Relationship. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
2. Inverse Agonism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
3. Insurmountable and Reversible Antagonism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
4. Biased Agonism.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765

C. Mouse Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766
D. Genetic Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
E. Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

1. G-protein–Mediated Signaling.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
2. G-Protein–Independent b-Arrestin-Mediated Signaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
3. Reactive Oxygen Species Signaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
4. Nonreceptor Type Tyrosine Kinase Signaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
5. Activation of Small G-protein Signaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
6. Transactivation of Receptor Tyrosine Kinase Signaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
7. Signaling through AT1 Receptor Interacting Scaffold Proteins.. . . . . . . . . . . . . . . . . . . . . . . 771
8. Mechanical Stretch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
9. Signaling through Heterodimerization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772

10. AngiotensinII Type 1 Receptor Signaling by Phosphorylation,
Desensitization, and Internalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773

F. Expression and Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
G. Pathophysiological Aspects of AngII Type 1 Receptor Activation . . . . . . . . . . . . . . . . . . . . . . . . . 774

This work was supported by National Institutes of Health National Heart, Lung, and Blood [Grants R01 HL57470 and HL115964 to S.S.K.].
S.S.K., H.U., J.J.K., and K.C.T. contributed equally to this work.
S.S.K., H.U., J.R.K., and K.C.T. are local members of Subcommittee on Angiotensin Receptor Nomenclaturel and S.E., P.M.L.V., and W.G.

are external members.
Address correspondence to: Dr. Sadashiva S. Karnik, Chair, Subcommittee on Angiotensin Receptors, Nomenclature Committee-

International Union of Pharmacology, Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, 9500 Euclid Ave.,
NB5-76, Cleveland, OH 44195. E-mail: karniks@ccf.org

dx.doi.org/10.1124/pr.114.010454.
s This article has supplemental material available at pharmrev.aspetjournals.org.

754

http://dx.doi.org/10.1124/pr.114.010454
mailto:karniks@ccf.org
http://dx.doi.org/10.1124/pr.114.010454
http://pharmrev.aspetjournals.org


1. Cardiovascular Remodeling and Hypertrophy.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
2. Vascular Inflammation and Atherosclerosis.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
3. Endothelial Dysfunction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
4. Oxidative Stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
5. Extracellular Matrix Deposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
6. Insulin Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
7. Angiogenesis and Cancer.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
8. Autoantibodies and Malignant Hypertension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

III. The Angiotensin II Type 2 Receptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
A. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778
B. Pharmacology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778
C. Mouse Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
D. AGTR2 Genetic Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
E. Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780

1. G-Protein Involvement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
2. Protein Phosphatase Involvement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
3. Scaffolding Protein Involvement.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
4. Nitric Oxide/cGMP Involvement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
5. Ion-Channel Protein Involvement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
6. Involvement of Constitutive Activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784

F. Expression and Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
1. Developmental Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
2. Adult Tissue Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785

G. Pathophysiological Aspects of AngII Type 2 Receptor Activation . . . . . . . . . . . . . . . . . . . . . . . . . 785
1. Regulation of Vascular Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
2. Regulation of Cardiac Growth Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
3. Regulation of Fibrosis Response in Other Tissue.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787

H. Drug Targeting the AngII Type 2 Receptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
IV. Angiotensin II Type 3 Receptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
V. Angiotensin IV Binding Site(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788

A. Functional Definition of AngIV Binding Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
B. Structure of the AngIV Binding Protein, Insulin Regulated Amino Peptidase . . . . . . . . . . . . . 788
C. Pharmacology of AngIV Analogs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789

1. Agonists of the AngIV Binding Site.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
2. Antagonists of the AngIV Binding Site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790
3. Inhibitors of the Insulin Regulated Amino Peptidase Activity. . . . . . . . . . . . . . . . . . . . . . . . 790

D. Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
1. Effects on Insulin Regulated Amino Peptidase Signaling as a

Transmembrane Receptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791

ABBREVIATIONS: ACE, angiotensin converting enzyme; ADAM, A Disintegrin and Metalloproteinase; AGT, angiotensinogen; Ang(1-7),
angiotensin(1-7, Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7); Ang, angiotensin; AngII, octapeptide angiotensin (Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-
Phe8); AngIII, angiotensin 2-8 (Arg2-Val3-Tyr4-Ile5-His6-Pro7-Phe8); AngIV, angiotensin 3-8 (Val3-Tyr4-Ile5-His6-Pro7-Phe8); ARB, AT1

receptor blocker; AT1 receptor, AngII type 1 receptor; AT2 receptor, AngII type 2 receptor; AR234960, 1-[[(4S)-4-(3-fluorophenyl)-1-(2-methoxy-
4-nitrophenyl)sulfonylpyrrolidin-3-yl]methyl]-4-pyridin-2-ylpiperazine; AR244555, 19-but-3-enyl-5-chlorospiro[2H-indole-3,49-piperidine]-1-yl)-
(2,6-difluorophenyl)methanone; AT3 receptor, AngII type 3 receptor; ATN, antiretroviral toxic neuropathy; ATRAP1, AT1 receptor-associated protein;
AVP, vasopressin; C21, Compound 21; CGP42112, nicotinic acid-Tyr-N-benzoxyl-carbonyl-Arg-Lys-His-Pro-Ile-OH; CHO, Chinese hamster ovary;
CTGF, connective tissue growth factor; DAG, diacylglycerol; ECL, extracellular loop; eGFP, enhanced green fluorescent protein; EGFR, AT1 receptor-
associated protein (ATRAP1); EMA300, 5-[2,2-di(phenyl)acetyl]-4-[(4-methoxy-3-methylphenyl)methyl]-1,4,6,7-tetrahydroimidazo[4,5-c]pyridine-6-
carboxylic acid; EMA401, (S)-2-(diphenylacetyl)-1,2,3,4-tetrahydro-6-methoxy-5-(phenylmethoxy)-3-isoquinolinecarboxylic acid; ERK, extracellular
signal-regulated kinase; 3-D, three-dimensional; GPCR, G-protein–coupled receptor; GRK, G-protein–coupled receptor kinase; HF, heart failure; HGF,
hepatocyte growth factor; ICL3, intracellular third loop; IL, interleukin; IP3, inositol triphosphates; IRAP, insulin regulated amino peptidase, also
AngIV binding site; IRS, insulin receptor substrates; L-158809, 2-ethyl-5,7-dimethyl-3-[[4-[2-(2H-tetrazol-5-yl)phenyl]phenyl]methyl]imidazo[5,4-b]
pyridine; LDL, low-density lipoprotein; MAPK, mitogen-activated protein kinase; MAS, putative Ang(1-7) receptor, also product of theMAS oncogene;
NFkB, nuclear factor; NOS, nitric oxide synthase; PD123177, trifluoroacetate salt; PD123319, ditrifluoroacetate; PDGFR, platelet derived growth
factor receptor; PKC, protein kinase C; PLC, phospholipase C; PLZF, transcription factor promyelocytic zinc finger protein; PRR, prorenin receptor;
PTZ, pentylenetetrazol; RAS, renin-angiotensin system; ROS, reactive oxygen species; RTK, receptor tyrosine kinase; SHP, Src homology phosphatase;
SHR, spontaneously hypertensive rats; SNP, single nucleotide polymorphism; TM, transmembrane; VEGF, vascular endothelial growth factor;
VIF, vasoconstriction-inhibiting factor; VSMC, vascular smooth muscle cells.

State of the Angiotensin Receptors 755



2. Effects on Insulin Regulated Amino Peptidase-Dependent
Neuropeptide Potentiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791

3. AngIV Effects on IRAP Trafficking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
E. Distribution of the of AngIV Binding Sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
F. Insulin Regulated Amino Peptidase Gene Knockout Mice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793

1. Evaluation of AngIV-dependent Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
2. Nuances for Defining Receptor(s) for AngIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794
3. AngIV Binding Site Conclusion.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794

VI. Receptor Conundrum in the Renin-Angiotensin System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
A. Pairing MAS Receptor with Ang (1-7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
B. Pharmacology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796
C. Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796
D. Other Receptors for the Proposed Ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798
E. Tissue Distribution of MAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798
F. Mas Gene-Knockout in Mice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798
G. Pathophysiological Evidence of MAS Receptor Interaction with Ang(1-7). . . . . . . . . . . . . . . . . . 798

1. Heart.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
2. Kidney. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
3. Vasculature.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
4. Brain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
5. Reproductive Organs.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799

H. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800
VII. Overall Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

Abstract——The renin angiotensin system (RAS) pro-
duced hormone peptides regulate many vital body
functions. Dysfunctional signaling by receptors for
RAS peptides leads to pathologic states. Nearly half of
humanity today would likely benefit from modern
drugs targeting these receptors. The receptors for RAS
peptides consist of three G-protein–coupled receptors—
the angiotensin II type 1 receptor (AT1 receptor), the
angiotensin II type 2 receptor (AT2 receptor), the MAS
receptor—and a type II trans-membrane zinc protein—
the candidate angiotensin IV receptor (AngIV binding
site). The prorenin receptor is a relatively new con-
tender for consideration, but is not included here be-
cause the role of prorenin receptor as an independent
endocrine mediator is presently unclear. The full spec-
trum of biologic characteristics of these receptors is
still evolving, but there is evidence establishing unique

roles of each receptor in cardiovascular, hemodynamic,
neurologic, renal, and endothelial functions, as well as
in cell proliferation, survival, matrix-cell interaction,
and inflammation. Therapeutic agents targeted to these
receptors are either in active use in clinical intervention
of major common diseases or under evaluation for re-
purposing in many other disorders. Broad-spectrum
in fluence these receptors produce in complex patho-
physiological context in our body highlights their role
as precise interpreters of distinctive angiotensinergic
peptide cues. This review article summarizes findings
published in the last 15 years on the structure, pharma-
cology, signaling, physiology, and disease states related
to angiotensin receptors. We also discuss the challenges
the pharmacologist presently faces in formally accepting
newer members as established angiotensin receptors
and emphasize necessary future developments.

I. Introduction

The angiotensin receptor field has featured an enor-
mous development since the last IUPHAR review, with
.7255 peer review publications and reviews. Many of
these belong to various facets of the type 1 angiotensin
receptor followed by the type 2 receptor literature, which
is closely followed by the upstart newcomerMAS receptor
literature (Fig. 1). We have tried to identify all key papers
and year-by-year break down on each of the four angio-
tensin receptors by carrying out systematic searches,
initially using broad search terms and finally narrowing
down to specific receptors. We recognize that computer
searches do not fully cover all aspects of a particular

receptor, but we have added selected references to more
detailed reviews, which should be consulted for further
information. To provide access to a wide range of specific
information and the biologic activity data for each receptor
detailed in this review, links are provided to IUPHAR/BPS
receptor page for each receptor. Readers may also
navigate to the IUPHAR/BPS Guide to Pharmacology
website (www.guidetopharmacology.org).

A. History, Classic Components, and Functions of
Renin-Angiotensin System

“Renin” was discovered in kidney extract as a hy-
pertensive factor nearly 117 years ago by Tigerstedt
and Bergman (1898). Hypertension in humans and
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animal models was described as a renovascular disease
(Goldblatt et al., 1934). Page and Helmer (1940) isolated
angiotensinogen, which they named as “renin activator” at
that time, and they proceeded to isolate a vasoconstrictor
substance “angiotonin” in the blood from live animals
infused with renin. An identical vasoactive compound
identified in Goldblatt hypertensive dog ischemic kidney
by Braun-Menendez was named “hypertensin.” The in-
dependently isolated pressor substance was later shown
to be an octapeptide and not its decapeptide precursor
(Skeggs et al., 1956; Bumpus et al., 1957; Elliott and
Peart, 1957). Now the octapeptide bears the hybrid name
angiotensin II (AngII) in honor of the original independent
discovery of this important endocrine hormone with nu-
merous actions beyond its hypertensive effects. The pre-
cursor AngI generated by renin action on angiotensinogen
has no vasopressor activity. The sequence of human
AngII is Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-Phe8. The
quest for a peptide antagonist drug to control hyper-
tension began with establishment of bioactivity of total
chemically synthesized AngII (Bumpus et al., 1957; Rittel
et al., 1957), which lead to an era of establishing the
structure-activity relationship of angiotensin analogs
in tissues (Khosla et al., 1974; Meyer et al., 1974; Peach
and Levens, 1980).
The cascade of proteolytic steps leading to the forma-

tion of AngII in vivo and components of the renin
angiotensin system (RAS) were characterized in later
years (Fig. 2). RAS maintains normal blood pressure
in vivo by regulating fluid volume and the vascular struc-
ture as well as integrity. AngII regulates blood volume
through water-electrolyte balance (content) and also
modulates cardiac output, vascular resistance (con-
tainer). RAS is activated in response to decreased
plasma sodium level and fluid volume, which stimu-
late juxtaglomerular cells in the kidneys to secrete renin.
The enzyme renin cleaves angiotensinogen (AGT) released

to circulation by liver to the decapeptide angiotensin I
(AngI) in circulation. The octapeptide AngII is produced
by the carboxypeptidase angiotensin converting enzyme
(ACE1) predominantly located on endothelial cells. This
constitutes the classic circulating RAS, an elaborate
endocrine system that stimulates adrenal gland to release
aldosterone to regulate fluid volume/electrolytes and
nerve ends to release catecholamine to regulate vascular
tone. It is amultifunctional hormone influencing many
cellular processes, including cell growth, apoptosis,
migration, inflammation, and fibrosis (Hunyady, 2009;
Stegbauer and Coffman, 2011; Horiuchi et al., 2012).

B. Tissue Renin-Angiotensin System

Apart from being a circulating hormone, locally pro-
duced AngII inmost tissues functions as a paracrine and
autocrine hormone (Dzau and Gibbons, 1987; Griffin
et al., 1991; Weber et al., 1995). In this mode, the tissue
RAS regulates long-term and chronic responses to
locally produced AngII in tissues, including the brain,
heart, kidneys, pancreas, vasculature, and adipose tis-
sue. Importantly, tissue RAS functions independently of
circulating RAS, providing critical paracrine or autocrine
control in pathophysiological conditions, including hy-
pertension, inflammation, thrombosis, atherosclerosis,
diabetes, end-stage renal disease, coronary artery dis-
ease, cardiovascular hypertrophy, and heart failure (HF)
(Lijnen and Petrov, 1999; Kim and Iwao, 2000; Lavoie
and Sigmund, 2003; Mehta and Griendling, 2007).

C. Intracellular Renin-Angiotensin System and
Alternative Pathways Generating
Angiotensin Peptides

Cardiac and vascular smooth muscle cells and fibro-
blasts have been reported to harbor an intracellular
AngII production pathway sometimes also referred as
an “intracrine system” (Kumar et al., 2009). Often the

Fig. 1. Literature search and analysis of primary journal articles on RAS receptors. The journal articles published on RAS were automatically
retrieved from PubMed with the search term “(((((RAS[Title/Abstract]) AND angiotensin, or AT1 receptor, or AT2 receptor, or AT3 receptor, or AngIV
binding site, or MAS1[Title/Abstract]) NOT medication adherence scale[Title/Abstract])”. The extracted references list had a total of 9147 reviews,
opinions, commentary, lectures, and primary journal articles through the end of year 2013. The results were manually curated to retain relevant,
nonredundant references. The primary journal articles were separated from the reviews, interviews, lectures, or commentary articles. The pool of these
7255 primary journal articles were further analyzed to illustrate number of publications under each RAS receptor as in the pie chart (A). The bar graph
represents publication for each receptor/year (B). Python and Bio python scripts were used to aid in the literature search and analysis.
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major components of RAS, renin, AGT, and ACE do not
coexist in most cells to fully support an intracellular
RAS paradigm. However, alternative enzymes, such as
cathepsins and chymases may produce functional AngII
intracellularly (Kumar et al., 2008; Kumar and Boim,
2009). Depending on the cell type, cathepsin D can
participate in the first step of intracellular AGT cleav-
age usually catalyzed by renin and the second step by
chymase, not ACE (Wasse et al., 2012). Obviously, ACE
inhibitors do not inhibit the intracellular RAS. Simi-
larly, intracellular AngII actions are not prevented by
Ang receptor blockers (Baker et al., 2004; Baker and
Kumar, 2006; Singh et al., 2007). Importance of in-
tracellular RAS concept in pathophysiology of disease
is extensively described in several reports (Carey,
2012; Cook and Re, 2012; Ellis et al., 2012; Gwathmey
et al., 2012; Kumar et al., 2012). However, controversy
exists because it is recognized that extracellular
AngII may be internalized by receptor-mediated pro-
cesses and serve as the source of intracellular AngII
(Re and Cook, 2011).
ACE-independent, alternative pathways generating

angiotensin peptides AngI, AngII, AngIII, Ang(1-7), and
AngIV (Fig. 2) have been described. These are intricate,
highly efficient endogenous pathways in cardiac and
smooth muscle cells, renal tubular, mesenchymal, as well
as inflammatory cells infiltrating various tissues. Con-
tribution of alternative pathways involving chymases,
tonins, neutral endopeptidases, and aminopeptidases can
significantly vary relative to classic RAS in a patho-
logic setting (Carey and Siragy, 2003; Chua et al., 2010;
Wasse et al., 2012; Naffah-Mazzacoratti et al., 2014;
Su, 2014).

D. Newer Components and Functional Axis of Renin-
Angiotensin System

The function of classic RAS was thought to be rather
simple, to regulate formation of AngII as shown in
Fig. 2. However, clinical application of RAS blockers
demonstrated that these agents do not uniformly
control circulating and tissue AngII levels. The con-
centration of AngII may often increase above pretreat-
ment levels under therapy, which suggests that the
beneficial effects are not due to blocking AngII pro-
duction. Perhaps AngII is further metabolized to
produce the beneficial effects. Paradigm shift discov-
ery of angiotensin(1-7) [Ang(1-7)] as the antagonist of
physiologic actions mediated by AngII and the dis-
covery of angiotensin-converting enzyme 2 (ACE2)
that produces Ang(1-7) in vivo has provided basis for
this. More than a decade of research has unraveled a
second arm of RAS (Fig. 2) that is composed of the mono-
carboxypeptidase ACE2, producing Ang(1-7) through
hydrolysis of AngI or AngII, and counterbalancing the
pressor arm constituted by renin-angiotensinogen-
AngI-ACE, leading to production of AngII (Ahmad
et al., 2011). This arm of RAS is considered the counter-
regulatory axis. Both animal and clinical studies have
emerged to define a role for ACE2 in regulating the
progression of cardiovascular disease and pulmonary
arterial hypertension. The activation of pulmonary ACE2
could serve as a novel therapeutic target in vivo (Bradford
et al., 2010; Jiang et al., 2014). The ACE2/Ang(1-7) axis
seems to be involved in many physiologic and patho-
physiological processes in several systems and organs,
especially by opposing the detrimental effects of in-
appropriate overactivation of the ACE/AngII axis
(Passos-Silva et al., 2013).

Fig. 2. A current view of enzymatic pathways generating hormonal peptides of RAS and corresponding cell surface receptors. Surrogate enzymes, such
as mast cell chymase, neutral endopeptidase, tonin, cathepsin D, kalikrine, and aminopeptidases are also known to participate in angiotensin
metabolism in different contexts. Some authors contend inclusion of these enzymes as components of RAS. Inhibitors of different components of RAS
are shown in red.
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Blockade of RAS with drugs targeting various com-
ponents disturbs feedback control of AngII levels by
highly regulated release of renin. As a result, the
increase in plasma renin causes AngII and aldosterone
levels to surge. In addition, the levels of prorenin also
increase, a key observation that led to the discovery of
the prorenin receptor (Fig. 2) (Nguyen et al., 2002;
Batenburg et al., 2004). Higher levels of prorenin than
renin are seen in blood plasma during hypertension and
diabetes. The prorenin receptor (PRR) is a ubiquitously
expressed 350-amino acid protein, previously described
as Na/H+ ATPase. PRR can bind both renin and pro-
renin and induce nonproteolytic prorenin activation
and generation of AngI. PRR-mediated activation is
a distinct mechanism from classic proteolytic activation
of prorenin by an unidentified enzyme restricted to
kidney. Renin inhibitors do not block the PRRactivation
of prorenin. PRR expression levels are high in brain
regions, which could be particularly relevant because
the expression of classic RAS components is low. The
PRR-mediated oxidative stress in central nervous sys-
tem is caused by increased reactive oxygen produced by
overexpressed NOX2 and NOX4. This regulation is
independent of AngII formation and involves ERK-
PI3K/Akt signals directly induced by PRR binding of
prorenin (Peng et al., 2013). Neuron-specific PRR gene
knockout prevents development of deoxycorticosterone
acetate salt-induced hypertension and brain AngII pro-
duction (Li et al., 2014). PRR may thus be a critical
membrane-bound prorenin receptor with signaling
ability that regulates physiology. The PRR thus may
contribute to angiotensin surges as well as directly
activate transmembrane signaling independently. The
discovery of PRR has renewed interest in the physiology
of the RAS (Guang et al., 2012).

E. Angiotensin Receptors Interpret Functions of Renin-
Angiotensin System

The concept of a plasma membrane receptor in target
cells emerged based on specific recognition of AngII and
stimulation of response such as adrenal steroidogene-
sis, nerve catecholamine release, and aortic contraction
(Peach, 1977; Devynck et al., 1978). In the 1980s,
pharmacological nonpeptide antagonists Dup753 and
PD123177 were instrumental in demonstrating two
types of AngII receptors in tissues, which were in-
distinguishable by peptide analogs (Chiu et al., 1989;
Whitebread et al., 1989; Speth and Kim, 1990). Other
angiotensin-derived metabolites such as Ang1-7, or
Ang3-8 (AngIV) have all been shown to have distinct
biologic activities (Peach, 1977; Ferrario et al., 1991;
Wright et al., 1995; Iyer et al., 1998). Metabolism of
AngII via aminopeptidases A and N generates AngIV
(Padia and Carey, 2013). Effector organs responded
differently to AngII and its metabolites based on the
presence of distinctly different receptors, their abun-
dance in target tissue, their selectivity for the agonists,

their structure-activity relationships, signal trans-
duction specificity, and regulation, desensitization and
trafficking. G-protein–coupled receptors (GPCR) that
elicit a response to AngII and Ang(2-8) (AngIII) are the
angiotensin II type 1 (AT1 receptor) and angiotensin II
type 2 (AT2 receptor), which are extensively studied
(Teerlink, 1996; de Gasparo et al., 2000). MAS, an
orphan GPCR, has been functionally and pharmacolog-
ically linked to Ang(1-7) and is a strong candidate target
for mediating the ACE2-Ang(1-7) axis of RAS. A class I
membrane protease, insulin regulated amino peptidase
(IRAP), is a strong candidate for AngIV receptor with
distinctly different function compared with the GPCRs
of RAS.

The decapeptide angiotensin I (AngI) serves as the
reference for residue numbering of all angiotensin
metabolites, as adopted by the International Society
for Hypertension, The AmericanHeart Association, and
theWorldHealth Organization (Dzau andGibbons, 1987).
Along this convention, the receptors for specific angiotensin
metabolites are named Ang receptors (currently MAS
is an exception). The classification of angiotensin recep-
tors proposed in 1991 was updated in 2000 and 2014
(Bumpus et al., 1991; de Gasparo et al., 2000; Karnik
et al., 2014).

The criteria used for inclusion of Ang receptors in-
clude the affinity and selectivity of agonists and antag-
onists for the receptor followed by transduction criteria,
which is dependent on agonist-specific receptor-effector
coupling. Finally, the gene and receptor sequence and
the three-dimensional structure, if available, are the struc-
tural criteria. Signal coupling mechanisms and phys-
iologic tissue responses in some instances have been
major influencing factors on differentiating receptor
types. Gene and receptor structures, cloning and heter-
ologous expression combined with pharmacological val-
idation were used in defining different receptors, which
respond to specific metabolite fragment angiotensins,
ultimately validating the structural basis for classifi-
cation. Thus, a combination of several criteria was used
in defining true receptor types. However, all criteria not
met with equitable rigor for different Ang receptors
remain a limitation.

Principles used for angiotensin receptor nomencla-
ture were documented previously (de Gasparo et al.,
2000). The receptors are AT1–AT3. Additional subdivi-
sions (e.g., AT1b) and species (hAT1 or mAT2) are
identified for pharmacologically defined receptor sub-
types in different species. The Ang receptors AT1 and
AT2 fully meet classification criteria, with IUPHAR
Receptor Code of 2.1.Ang.01.000.00.00 and 2.1
Ang.02.000.00.00 (Humphrey and Barnard, 1998). They
are seven transmembrane domains rhodopsin sub-
class GPCRs. The human genome contains single genes
AGTR1 and AGTR2, which encode AT1 and AT2 re-
ceptors, respectively. The name AT3 receptor was origi-
nally assigned based on AngII binding described in the
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Neuro-2a mouse neuroblastoma cell line. AngII binding
to sites in these cells was not blocked by the AT1-specific
losartan, and the AT2-specific PD123319 and was not
affected by GTP analogs (Chaki and Inagami, 1992b).
Without the knowledge of the complete human genome
at that time, cloning efforts directed at finding addi-
tional angiotensin receptor genes in humans lead to the
realization of segmental duplications and rearrange-
ments in unrelated loci but not a second AT1 receptor
gene (Iafrate et al., 2004). Consequently, an AGTR3
gene is also not assigned in the completed human
genome despite molecular identification of a putative
cDNA clone for the proposed AT3 receptor. The exis-
tence of a genuine AT3 receptor is not confirmed at this
time.
Additional angiotensin receptors (AngIV binding site

and MAS) are proposed based on ligand interaction and
physiologic functional criteria. The AngIV binding site
may play a significant role in the central nervous
system, kidney, and vasculature. The cloned AngIV
binding site is an allosteric transmembrane zinc pro-
tease. The selectivity of endogenous AngIV for this
receptor is not clear, and the physiologic characteristics
evaluated in gene knockout and overexpression mouse
models have not yielded a conclusive unifying picture.
The signal transduction mechanisms of the AngIV
binding site are unknown. Also, other functional surro-
gate AngIV binding sites proposed have generated
some confusion. This transmembrane protease is thus
a strong candidate for consideration as AngIV binding
site. MAS is an exception to the Ang receptor nomen-
clature system, because it is an orphanGPCR capable of
signal transduction in response to several unrelated
peptides and angiotensin metabolites. The confusing
pharmacology documented for this receptor, including
the possibility of multiple endogenous ligands and
confusing transduction modalities, is the reason for
not elevating it to Ang(1-7) receptor. Multiple endoge-
nous ligands are not unusual but AngIV binding site
and MAS as physiologic entities do not rise to the level
of acceptance as specific Ang receptors, because phar-
macology and signaling are not rigorously established.

II. The Angiotensin II Type 1 Receptor

The lion’s share of literature on RAS receptors be-
longs to the AT1 receptor as reflected by 4418 peer re-
viewed articles mined in our search (Fig. 1; Unal et al.,
2014, http://www.guidetopharmacology.org/GRAC/
ObjectDisplayForward?objectId=34). Major effects
on renal and cardiovascular physiology attributed to
AngII are mediated through the AT1 receptor (Dinh
et al., 2001). Chronic activation of the AT1 receptor can
lead to disease states including hypertension, cardiac
arrhythmia, stroke, diabetic nephropathy, and meta-
bolic disorders (Audoly et al., 2000; de Gasparo et al.,
2000; Zaman et al., 2002; Thomas and Mendelsohn,

2003), which are effectively treated using AT1 recep-
tor blockers (Zaman et al., 2002; Billet et al., 2008;
Akazawa et al., 2013; Michel et al., 2013; Seva Pessoa
et al., 2013). The cDNAs for the AT1 receptor were
cloned from rat smooth muscle and bovine adrenal gland
(Murphy et al., 1991; Sasaki et al., 1991). The AT1 re-
ceptor of human, mouse, rabbit, pig, dog, turkey, and
frog were characterized later. Human genome harbors
a single gene, AGTR1, which mapped to chromosome
3q21-3q25. Rat and mouse genome harbors two dis-
tinct AT1 receptor genes, Agtr1a (chromosomes 17 and
13, respectively) and Agtr1b (chromosomes 2 and 3,
respectively). The AT1a receptor and AT1b receptor share
95% amino acid sequence homology. Noncoding regions
of their genes are strikingly different, suggesting possi-
ble differences in tissue-specific expression and regu-
lation of AT1a receptor and AT1b receptor (de Gasparo
et al., 2000). Indeed, both receptor subtypes are phar-
macologically and functionally identical, but they differ
in tissue distribution and transcriptional regulation.
The AT1a receptor is well expressed in most cardiovas-
cular tissues and is the principal regulator of blood
pressure. The AT1b receptor expression is limited to endo-
crine tissues such as the adrenal and pituitary glands
(Kakar et al., 1992; Ito et al., 1995; Sugaya et al., 1995;
Chen et al., 1997). TheAGTR1 gene contains five exons
and four introns, out of which exon 5 codes for the hAT1

receptor polypeptide (Sasaki et al., 1991). Human AGTR1
splice variant mRNAs containing exon 2 are poorly trans-
lated. In contrast, mRNA splice variants, which harbor
exon 3, produce a longer hAT1 receptor isoform with
additional 32N-terminal amino acids. The long-form of
hAT1 receptor displayed a threefold diminished affinity
for AngII. Splice variants of hAT1 receptor may ulti-
mately affect AngII responsiveness in a given tissue
(Warnecke et al., 1999; Elton and Martin, 2003). The
early characterization of AT1 receptor pharmacology and
signal transduction property is comprehensively reviewed
by de Gasparo et al. (2000).

A. Structure-Function

The genomic DNA of all mammalian species contains
an open reading frame for 359 amino acid residues,
yielding ;41 kDa calculated molecular weight for AT1

receptor (Guo et al., 2001). AT1 receptor belongs to the
rhodopsin branch of the GPCR superfamily. The extracel-
lular domain consists of the N terminus and the extracel-
lular loops (ECLs) and contains threeN-glycosylation sites.
Four cysteine residues in the extracellular domain of
the AT1 receptor are predicted to form two disulfide
bonds (Fig. 3A), which are prone to inactivation by dithio-
threitol and other reducing agents (Warnecke et al., 1999).
The three intracellular loops form the G protein activation
domain. The cytoplasmic C-terminal tail contains phosphor-
ylation sites for serine/threonine kinases, including pro-
tein kinase C (PKC) and GPCR kinases. Functionally, the
AT1 receptor is primarily coupled through the Gq protein to
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phospholipases C, A2, and D. Similar to other prototypical
GPCRs, agonist activation leads to desensitization and
internalization of AT1 receptor.
The three-dimensional structure at room temperature

with 2.9-Å resolution was determined for hAT1 receptor
bound to the experimental antihypertensive agent
ZD7155 using a novel, X-ray–free approach through
collaborative efforts (Zhang et al., 2015). The three-
dimensional structure confirms a canonical seven-
transmembrane (TM) a-helical architecture with
precise boundaries forN terminus, three extracellular loops
(ECL1-3), three intracellular loops (ICL1-3), an amphi-
pathic helix VIII, and the C terminus (Figs. 2 and 3).
The AT1 receptor three-dimensional structure is most
similar to chemokine and opioid receptors. The pre-
dicted disulfide bonds, Cys18–Cys274 connecting the
N terminus and ECL3, and Cys101–Cys180 connecting
helix III and ECL2 are confirmed. The ECL2 of AT1

receptor exhibits a b-hairpin secondary structure as in
other peptide GPCRs (Fig. 3B). Intriguingly, ECL2 of
AT1 receptor serves as an epitope for the agonistic auto-
antibodies in preeclampsia and malignant hypertension
(Unal et al., 2012; Xia and Kellems, 2013). The con-
served DRY motif in helix III and the NPxxY motif in
helix VII of AT1 receptor were proposed to participate in
receptor activation (Oliveira et al., 2007).
An agonist bound AT1 receptor structure is unavailable

at this time. However extensive site-directed muta-
genesis studies combined with biochemical and pharma-
cological experiments on mammalian AT1 receptor have
provided insights into AngII binding, mechanism of

receptor activation, G-protein interaction, as well as
regulation by desensitization and internalization (Hjorth
et al., 1994; Marie et al., 1994; Schambye et al., 1994;
Noda et al., 1995a; Yamano et al., 1995; Hunyady et al.,
1996, 1998; Karnik et al., 1996; Monnot et al., 1996;
Balmforth et al., 1997; Groblewski et al., 1997; Inoue
et al., 1997; Han et al., 1998).

The current view is that AngII binding to the AT1

receptor involves two salt bridges, between thea-carboxyl
group ofAngII andLys199 of AT1 receptor and between the
guanidinium group of Arg-2 in AngII and Asp281 in the
receptor (Yamano et al., 1992; Feng et al., 1995; Noda
et al., 1995a; Miura et al., 2003a). Ligand-crosslinking
approach showed interactions betweenPhe-8 ofAngII and
Phe293 and Asn294 in AT1 receptor in TMdomain (Perodin
et al., 2002). Another interaction observed by crosslink-
ing between Val-3 of AngII and Ile172 in AT1 receptor is
consistent with an ion pair suggested between Asp-1 in
AngII and His183 by mutagenesis data (Feng et al., 1995;
Boucard et al., 2000). Arg23 in N terminus of AT1 receptor
may be essential for binding AngII (Santos et al., 2004a).
Thus, the hydrophobic carboxyl terminal region of AngII
appears to enter the TM-domain core of the receptor and
amino terminal region of AngII appears to interact with
extracellular region of the AT1 receptor. A two-stepmodel
for binding of AngII to AT1 receptor has been proposed
(Le et al., 2002; Feng et al., 2005). Boucard et al. (2000)
suggested an extended conformation of AT1 receptor-
bound AngII (Perodin et al., 2002; Fillion et al., 2013).
The methionine proximity mapping approach they used
identified details of the residues lining the AngII binding

Fig. 3. Structure of human AT1 receptor. (A) Secondary structure of human AT1 receptor with precise depiction of a-helical borders and sequence
motifs. (B). Overall three-dimensional structure of AT1 receptor-antagonist complex, detailing AT1 receptor with different motifs and antagonist.
The critical hydrogen bond between Asn111 and Asn295 is indicated. Close proximity of residues such as Asp74 and Asn298 is suggestive of Na-ion
coordination site. Sodium concentration may modulate receptor activation by agonists.
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pocket of AT1 receptor. These residues include Phe77,
Leu112, Tyr113, Phe249, Trp253, His256, Thr260, and Phe293,
Asn294, Asn295, Cys296, and Leu297 (Correa et al., 2002;
Clement et al., 2005, 2006, 2009). Almost all of these
residues are within 3-Å distance of the bound antagonist
in the crystal structure, which substantiates the idea that
the agonist, AngII, and AT1 receptor antagonists share an
overlapping binding pocket of the AT1 receptor.
Intrinsic stability prevents spontaneous activation of

AT1 receptor, and agonists overcome this stability
barrier during activation. AngII is proposed to mediate
activation of AT1 receptor through stacking interactions
between Phe-8 of AngII and His256 (Noda et al., 1995a)
and between Tyr-4 of AngII and Asn111 in AT1 receptor
(Noda et al., 1996; Miura et al., 1999). Interhelical
interaction between Asn111 and Tyr292 in the inactive
receptor is proposed to be disrupted upon AngII bind-
ing, allowing Tyr292 to interact with Asp74 (Joseph et al.,
1995). Smaller residue substitutions for Asn111 have
been shown to induce constitutively activated AT1

receptor conformation (Groblewski et al., 1997; Feng
et al., 1998; Miura et al., 1999). The three-dimensional
structure suggests that Asn111 hydrogen bonds with
Asn295, and disruption of this interaction may cause
constitutive activation of AT1 receptor. Several other TM
mutations that potentially disrupt intrinsic stability
in AT1 receptor are reported to produce constitutive
activation, including Asn295, Asp125, Phe77, Leu112,
Leu118, Leu195, Ile245, and Leu305 (Parnot et al., 2000).
Nikiforovich et al. (2005) showed that AT1 receptor
constitutive activity is also elicited when bulkier residues
were introduced in TMIII without mutating Asn111.
Theyproposed that bymutatingAsn111 and adjacent bulky
residues, a cascade of conformational perturbations ac-
tivated the receptor.
Activation of AT1 receptor is shown to be associated

with translation and rotation of TM helices, including
TMII, TMIII, TMV, TMVI, and TMVII by two indepen-
dent methods, reporter cysteine accessibility mapping
and methionine proximity analysis (Miura and Karnik,
2002; Boucard et al., 2003; Miura et al., 2003b; Martin
et al., 2004, 2007; Domazet et al., 2009a,b; Arsenault
et al., 2010a). The residues Met30 and Thr33 in TMI, as
well as Arg167 and Val169 in ECL2, are shown to interact
with AngII, but these regions undergo very little
movement during AT1 receptor activation (Yan et al.,
2010). Only subtle structural changes were identified
between the AT1 receptor and its constitutively active
form (Clement et al., 2006). Binding of structurally
different ligands could produce different active receptor
conformations (Miura et al., 2012).
ECL2 is a critical determinant of ligand-specific con-

formational changes resulting in activation or inhibition
of the AT1 receptor (Unal et al., 2010). Unal et al. (2010)
suggested that ECL2 might assume a lid conformation
induced upon binding both agonist and antagonist but
exposing distinct residues around the highly conserved

disulfide bond between Cys180 and Cys101. A role in
coupling the movements of TM helices to the ECL2
during receptor activation was suggested (Ohyama et al.,
1995; Karnik et al., 2003; Unal et al., 2010). Interest-
ingly, the ECL2 assumed a lid conformation in the
gain-of-function mutant N111G-AT1 receptor without
agonist stimulation (Unal et al., 2013). In contrast,
AngII did not induce a lid conformation in the loss-of-
function mutant D281A, which is consistent with poor
AngII binding in this mutant. However, a lid confor-
mation was regained when an AngII analog that is
specific forD281Amutant bound themutant receptor. On
the basis of these results an emerging paradigmof domain
coupling facilitated by long-range interactions was pro-
posed. Domain coupling has been postulated as a mech-
anism for explaining a range of GPCR conformations
with different functional consequences regulated not
only by classic agonists and antagonists, but also by a
variety of nonclassic factors including receptor-interacting
proteins, dimerization, and activation by autoantibody
(Unal and Karnik, 2012).

Mutational analysis has shown that Tyr127 to Met134

region (ICL2) and the Ile238 to Phe239 region (ICL3) are
important for Gq/11 activation by the AT1 receptor
(Miura et al., 2000; Zhang et al., 2000; Gaborik et al.,
2003). Critical single residues in the intracellular region
of the AT1 receptor required for G-protein activation
include Arg126 (TMIII), Tyr215 (TM V), Leu222 (ICL 3),
Tyr312, Phe313, and Leu314 (TMVIII) (Oliveira et al.,
2007). The carboxyl tail of AT1 receptor regulates AT1

receptor desensitization and internalization (Hunyady
and Catt, 2006; Smith and Luttrell, 2006) and it also
directly associates with downstream effectors and plays
crucial roles in signal transduction, internalization, and
other functions of the receptor (Cruse et al., 1992; Ali
et al., 1997; Venema et al., 1998a; Horiuchi et al., 2012).
A stretch of C-terminal residues 305–320 in AT1 re-
ceptor is known as the helix VIII (Huynh et al., 2009).
Multiple lines of evidence suggest contribution of helix
VIII to AT1 receptor expression and trafficking, G-protein
coupling and activation, receptor internalization, dimer-
ization, and signaling by mediating protein-protein and
protein-lipid interactions. The Tyr-Ile-Pro-Pro (YIPP,
amino acids 319–322 in Fig. 3A) motif within helix VIII
is essential for activation of the Jak-STAT pathway, PLC-
gamma phosphorylation, and the AngII-induced intracel-
lular calcium transients (Venema et al., 1998a).

B. Pharmacology

Nonpeptide AT1 receptor antagonists, referred to
as AT1 receptor blocking (ARB) drugs, are a cornerstone
of therapy for not only lowering blood pressure and
protecting renal damage, but are under consideration
for a variety of other human disease conditions. At
least eight different ARBs are clinically available at
this time. They are losartan, candesartan, olmesartan,
telmisartan, eprosartan, irbesartan, valsartan, and
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azilsartan (Fig. 4A). ARB development efforts critically
focus on binding to AT1 receptor and oral bioavailabil-
ity, insurmountability, inverse agonism (Kohara et al.,
1996; Miura et al., 2006; Fujino et al., 2010). Candesartan
cilexitil, losartan, and olmesartan medoxomil are pro-
drugs of candesartan, EXP3174, and olmesartan, re-
spectively (Schmidt and Schieffer, 2003). Most ARBs
do not cross the blood-brain barrier but central effects
may be observed due to prolonged treatment or under
pathologic conditions where the blood-brain barrier
may become more permissive. Telmisartan is reported
to cross the blood-brain barrier, but losartan, candesartan,
olmesartan, azilsartan, and valsartan are reported to
poorly cross the blood-brain barrier. Effects on the
central nervous system are reported in preclinical
studies for several ARBs, which may afford beneficial
effects in Alzheimer’s disease in addition to blood pressure
lowering (Duron and Hanon, 2010). Physiologic responses

to in vivo antagonism of the AT1 receptor have been
quantified by measurement of renin release (Munafo
et al., 1992; Muller et al., 1994; Maillard et al., 2002),
aldosterone release (Ogihara et al., 1995), and plasma
NO production (Gossmann et al., 2001) in response to
AngII in humans.

1. Pharmacophore Structure-Activity Relationship.
Structurally, the biphenyl tetrazole seen in losartan,
EXP3174, ZD7155, and candesartan or an acidic moiety
as seen in telmisartan, 5-oxo-1,2,4-oxadiazole, as in
azilsartan change lipophilicity of ARBs (Vyas and Ghate,
2010). Eprosartan has a different structure, biphenyl-
tetrazole replaced with benzoic acid. Consequently,
ARBs are designed to exploit hydrophobic interaction
of the phenyl rings with transmembrane core of AT1

receptor and bind basic residues in AT1 receptor form-
ing ionic interactions with the acidic moieties. Losartan
has an imidazole with Cl at the other end of themolecule,

Fig. 4. (A) Three-dimensional structural details of ARBs in clinical use; and (B) interaction with human AT1 receptor. Differences in the efficacy of
different ARBs may be due to small differences in interaction of shown ARBs with residues such as Tyr92, Trp182, Lys199, Met284, and P285.
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and its metabolite, EXP3174, has a COOH substituent.
Sartans present a greater variety of structures at this
end that probably account for some of their functional
differences. Olmesartan and losartan are closely related.
Irbesartan has a cyclopentyl ring incorporated in place
of the Cl. A benzimidazole is substituted in candesartan
and azilsartan; two benzimidazoles are attached in
telmisartan to produce an unusual structure for this
ARB. The unique structure of valsartan lacks a nitrogen
containing heterocycle. The imidazole ring in eprosartan
has a large alkyl chain substituent. The difference in
structure is expected to cause the ARBs to bind in slightly
different ways.
In the crystal structure of AT1 receptor bound to

ZD7155, the ligand-binding pocket shows exactly how
ARBsmight interact with AT1 receptor (Fig. 3). The AT1

receptor residues, mainly from helices I, II, III, VII, and
ECL2, directly interact with the ligand. Side chains of
Arg167(ECL2) and Tyr35(TM1) form ionic and polar inter-
actions with ZD7155. The acidic tetrazolemoiety closely
interacts with the basic Arg167(ECL2), and this residue
may be primarily responsible for ARB-binding affinity
and selectivity for AT1 receptor. Tyr35(TM1) and the
naphthyridin-2-one moiety of ZD7155 form hydrogen
bonds. Trp84(TM2) of AT1 receptor forms p-p interaction
with the naphthyridin-2-one moiety of ZD7155. Addi-
tionally, residues Ile31(TM1), Val108(TM3), Leu112(TM3),
and Tyr292(TM7) in AT1 receptor ligand-binding pocket
interact hydrophobically with ZD7155. Most of the
other contacts for ZD7155 binding to AT1 receptor,
however, are mediated by residues, including Tyr87(TM2),
Thr88(TM2), Ser105(TM3), Ser109(TM3), Ala163(TM4), Phe182(ECL2),
Pro285(TM7), and Ile288(TM7) (Zhang et al., 2015).
Shape of the binding cavity is determined by the

secondary structures and disulfide crosslinking pat-
terns of the extracellular loop region, proline and non-
proline kinks in 7TM helical bundle, and other local
variations, resulting in deviations in the extracellular
tips of TM helices. Specific structural variations create
a remarkable variety of sizes, shapes, and electro-
static properties of the ligand-binding pockets in differ-
ent GPCRs. The ZD7155 binding site in AT1 receptor
partially overlaps with known ligand binding sites in
the chemokine and opioid receptors in which the cavity
is larger, more open, and located closer to the extracel-
lular surface, a general feature of GPCRs that recognize
diffusible small-molecule ligands. Some of the residues
that comprise the ligand-binding pockets are conserved
among these structurally similar peptide GPCRs, in-
cluding Tyr(TM1) and Trp(TM2), and the majority of the
residues forming the ligand binding of these receptors
are close to the extracellular boundaries of the helices.
Arg167(ECL2) is one of the three critical residues that
holds the antagonist close to the extracellular side and
it is a unique residue of AT1 receptor compared with
other structurally similar peptide GPCRs.

Docking simulations of the clinically used antihyper-
tensive ARBs show that they bind in similar orienta-
tions and interact with the three critical residues,
Arg167(ECL2), Trp

84(TM2), and Tyr35(TM1) in the AT1 re-
ceptor ligand-binding pocket (Fig. 3). Details of the
interactions with residues Phe77(TMII), Tyr87(TMII),
Ser105(TMIII), Val108(TMIII), Ser109(TMIII), Leu112(TMIII),
Ala163(TMIV), Phe182(ECL2), Ile288(TMVII), and Tyr292(TMVII),
which shape the ligand-binding pocket of the AT1 re-
ceptor, are different for different ARBs. For example,
one of the common features among these ARBs is a short
alkyl tail with 2–4 carbons extending into a narrow
hydrophobic pocket formed by Tyr35(TM1)

, Phe
77(TM2),

Val108(TM3), Ile288(TM7), and Tyr292(TM7). Losartan is a
surmountable antagonist with lower binding affinity to
AT1 receptor compared with the later developed ARBs
(Takezako et al., 2004; Miura et al., 2011). Docking
results suggest that Arg167(ECL2) forms a salt bridge
with only the tetrazole moiety of losartan but lacks other
polar interaction and its interaction with Tyr35(TM1);
distances and angles for hydrogen bonding are sub-
optimal. The lower binding affinity and surmountable
property of losartan for AT1 receptor is likely due to
this. In contrast, candesartan docking results indicate
that it forms optimal interaction with the pocket.
Lys199(TM5) may form an additional salt bridge with the
tetrazole moiety and further stabilize candesartan
binding. Crystal structure and docking analyses sug-
gest that Lys199(TM5) provides conformational heteroge-
neity in the AT1 receptor; the amino group of this
residue may reach the acidic moieties of ARBs by
forming salt bridges (as in the cases of candesartan
and telmisartan) or through water-mediated inter-
actions with other ARBs (Zhang et al., 2015). The
structure of nonpeptide antagonists mimics the con-
tact points of AngII side chains, and their binding
sites overlap with the AngII binding pocket in AT1

receptor as also supported by mutagenesis and cross-
linking experiments (Yamano et al., 1992; Ji et al.,
1994; Noda et al., 1995b; Vanderheyden et al., 2000a;
Takezako et al., 2004).

Current literature is dominated by studies on losartan,
candesartan, valsartan, irbesartan, olmesartan, and
azilsartan that share a common biphenyl-tetrazole
scaffold. Two ARBs in clinical practice differ, however.
Telmisartan (also known as BIBR 277) structure is
unusual, with two benzimidazole moeities attached
(Fig. 4A). Eprosartan (also known as SK&F 108566),
is the other ARB with the most differentiated struc-
ture. Telmisartan and eprosartan treatment benefits
are not fully characterized, but potential benefits due
to differences in their structural features are possi-
ble. These ARBs interact Arg167ECL2, Tyr35TM1, and
Trp84TM2 similar to other biphenyl-tetrazole ARBs,
and mutants of these residues dramatically reduced
their binding. However, the three-dimensional struc-
ture modeling studies predicted that telmisartan and
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eprosartan bind, interacting with significantly different
residues (Fig. 4B). Eprosartan extends interaction into
the hydrophobic subpocket consisting of Ile288TM7 and
Tyr292TM7. Alanine substitution of both Ile288TM7 and
Tyr292TM7 specifically decreased eprosartan-binding
affinities. Two consecutive benzimidazole moieties in
telmisartan were predicted to make additional p-p
contacts with Tyr92ECL1 (Fig. 4B). Mutation of Tyr92ECL1

to alanine, althoughmostly neutral for other ARBs tested,
significantly lowered affinity for telmisartan. Further-
more, Ile288Alamutation also has a discriminating effect
on telmisartan binding. Structural analysis reveals a
novel paradigm, molecular recognition through ex-
tended interaction with receptor subpockets. This may
suggest possible difference in outcome from blockade of
AT1 receptor function using different ARBs (Zhang et al.,
2015).
2. Inverse Agonism. Classic competitive antagonism

model does not easily explain pharmacological behav-
ior of most ARBs, therefore, more recent models to de-
scribe drug properties have been adopted. It is now
generally accepted that AT1 receptor has small but
functionally significant constitutive activity (Unal and
Karnik, 2014), and perhaps most ARBs do reduce con-
stitutive activity of receptor in the absence of agonist,
a phenomenon called inverse agonism. Inverse agonism
of most ARBs is detected using constitutively active
mutants of AT1 receptor created by site-directed muta-
genesis (Unal and Karnik, 2014). Inverse agonism has
been shown for EXP3174, olmesartan, telmisartan,
valsartan, and azilsartan (Noda et al., 1996; Miura
et al., 2003a, 2006, 2013; Feng et al., 2005; Bhuiyan
et al., 2009; Ojima et al., 2011). Whether losartan
possesses inverse agonist properties remains contro-
versial, because it was noted in one report (Bhuiyan
et al., 2009) but not in further studies (Miura et al.,
2003b; Feng et al., 2005). Clinical relevance of inverse
agonism of ARBs is still debated. Kiya et al. (2010)
studied nephroprotective properties of olmesartan and
its analog lacking inverse agonism in Dahl salt-sensitive
rats. Olmesartan lowered urinary protein excretion by
;25%, but its close structural analog that lacked inverse
agonism did not show nephroprotective effect. Differ-
ential effect of inverse agonist ARBs on proteinuria
remains to be systematically studied.
3. Insurmountable and Reversible Antagonism.

Most clinically used ARBs exhibit an atypical compet-
itive and reversible interaction with AT1 receptor. The
AngII concentration-response curves in the presence
of ARBs shift toward higher concentrations, but with
reduced maximal response. In experimental settings,
a very high concentration of AngII cannot overcome the
ARB inhibition fully. Most clinically used ARBs harbor
this behavior (van Liefde andVauquelin, 2009), but insur-
mountable antagonism of ARBs remains a rather descrip-
tive term. Site-directed mutagenesis studies to identify
receptor mechanisms have not provided a satisfactory

answer (Vanderheyden et al., 2000b; Verheijen et al.,
2003; Van Liefde and Vauquelin, 2009). Insurmount-
able antagonism of candesartan (Noda et al., 1993;
Ojima et al., 1997), olmesartan, or EXP3174 was shown
to increase with duration of preincubation with the
receptor (Mizuno et al., 1995). Antagonism lasted for
hours upon washout for many ARBs, including can-
desartan, EXP3174, olmesartan, telmisartan, and
azilsartan. In insurmountable antagonism, the slow
dissociation rates from the receptor may suggest con-
formational effects of ARB bindingwith clinically relevant
functional consequences. The dissociation half-lives of
the hAT1 receptor has beenmeasured, and the order of
dissociation was found to be telmisartan, olmesartan,
candesartan, valsartan, and losartan, respectively, with
t1/2 of 213, 166, 133, 70, and 67 minutes (Vanderheyden
et al., 2000b; Verheijen et al., 2000; Kakuta et al.,
2005)

4. Biased Agonism. The ability of a given receptor
to selectively activate a signaling path compared with
another is defined as “biased agonism” or “ligand-directed”
signaling. Biased ligands, also known as functionally se-
lective agonists, can involve a subset of a receptor’s nor-
mal signaling repertoire by stabilizing different receptor
conformational states than are stabilized by endoge-
nous “unbiased” ligands (Kenakin, 2007; Violin and
Lefkowitz, 2007; DeWire and Violin, 2011; Godin and
Ferguson, 2012). Functional selectivity exhibited by
several AngII analogs has forced redefinition of re-
ceptor agonism paradigm to allow discrete receptor ac-
tivation states from ligands with different efficacy for
individual responses (Kenakin, 2005; Galandrin et al.,
2007; Urban et al., 2007; Hansen et al., 2008; Lyngso
et al., 2009). AngII peptide modification led to the de-
scription of agonists, partial agonists, and antagonists
(Miura et al., 1999; Miura and Karnik, 1999; Oliveira
et al., 2007). Hormone AngII is a full agonist with
pluridimensional efficacy for all signals activated by
AT1 receptor, whereas AngII analog such as [Sar1,Ile4,Ile8]
AngII (SII-AngII) is a biased agonist that does not
activate G protein signaling but allows receptor phos-
phorylation and subsequent b-arrestin–mediated sig-
naling (Kenakin, 2003, 2005; Urban et al., 2007). This
discovery has opened the possibility for novel designer
ligands that may activate only some of AT1 receptor
signals. This development holds great promise for the
treatment of diseases such as HF and hypertension
(Holloway et al., 2002; Wei et al., 2003; Daniels et al.,
2005; Aplin et al., 2007a,b; Hansen et al., 2008; Shukla
et al., 2008; Sauliere et al., 2012).

Insight into the pluridimensional efficacy of AngII-
analogs was initially described by Thomas et al. (2000)
and Holloway et al. (2002). These authors studied the
IP3 signaling, MAPK signaling, phosphorylation, and
internalization of AT1 receptor in response to AngII
and several AngII analogs. Internalization of AT1

receptor-EGFP was unaffected by substitution of Tyr-4
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and Phe-8 in AngII that abolish IP3 signaling (Holloway
et al., 2002). On the other hand, substitution of Asp-1
with alanine and substitutions of Phe8 with alanine,
isoleucine, diphenylalanine, and b-cyclohexylalanine
significantly inhibited phosphorylation. The activa-
tion of MAPK was inhibited by Phe-8 substitutions,
which did not equally inhibit IP3 production or receptor
phosphorylation, indicating overlapping but distinct
AngII-AT1 receptor interactions. Yee et al. (2006) de-
scribed three distinct activated states of AT1 receptor
based on the response of several AT1 receptor mutants
to AngII and SII-AngII. Three active states proposed
include AngII-mediated G-protein signaling, AngII-
mediated G-protein–independent ERK1/2 signaling,
and II-AngII–mediated G-protein–independent ERK1/2
signaling (Yee et al., 2006), thus linking receptor ligand
combinations to generation of observed functional se-
lectivity. SII-AngII is extensively studied for engage-
ment of GRKs, antiapoptotic signals, chemotaxis, cell
growth, and proliferation (Hunton et al., 2005; Yee et al.,
2006; Aplin et al., 2007a,b; DeWire et al., 2008). An
analog such as TRV120027 is a 30-fold more potent
b-arrestin–biased AT1 receptor ligand that has been
studied in vitro and in vivo in rats and dogs and is now
in Phase II clinical studies for the treatment of acute
HF. The preclinical data are reported to indicate that
TRV120027 has the potential to support heart, vascu-
lature, and kidney function in acute HF (Violin et al.,
2010; Boerrigter et al., 2011). TRV120027may block the
effects of elevated AngII on the vasculature and kidney,
while protecting or enhancing prosurvival and contrac-
tility signals in the heart.
As seen in the case of many GPCR antagonists, ARBs

do not cause internalization of the AT1 receptor and
block agonist-induced internalization. Unbiased antago-
nism by losartan, telmisartan, and valsartan are reported
in internalization and desensitization (Violin et al.,
2010). However, candesartan, losartan, telmisartan, and
valsartan allow substantial internalization of consti-
tutively active AT1 receptor mutants (Bhuiyan et al.,
2010). This phenomenon may reflect hidden biased
agonism by these ARBs, a phenomenon that needs to be
rigorously evaluated. Instances of a compound acting as
an antagonist for one response and an agonist for a
different response mediated by the same receptor are
known (Patel et al., 2012). These findings contrast with
studies in which candesartan binding did not induce
internalization of a GFP-AT1 receptor in Chinese hamster
ovary (CHO) cells (Le et al., 2005). However, these aspects
are yet to be described for AT1 receptor and its peptide
as well as nonpeptide ligands.

C. Mouse Models

No major abnormalities of the cardiac and vascu-
lar system are reported in mice lacking the AT1a re-
ceptor (AT1a receptor-null). These mice develop normally
but show a marked reduction of systolic blood pressure

(Yang et al., 2010). In contrast, the AT1b receptor-null
mice are normal, confirming that AT1b receptor has
a negligible role normally. For instance, in the AT1aR
deleted mice, AT1b receptor substitutes by mediating
calcium signaling in vascular smoothmuscle cells (VSMC)
(Zhu et al., 1998). Animals with both AT1a receptor and
AT1b receptor deletion have increased mortality, im-
paired growth, hypotension, and marked abnormali-
ties in renal structures (Ito et al., 1995; Sugaya et al.,
1995; Chen et al., 1997; Oliverio et al., 1998). There is
a complete absence of pressor responses to AngII in
the double knockout mice. Kidney functions are mostly
affected in AT1a receptor mice, with mild mesangial
expansion and juxtaglomerular cell hypertrophy. How-
ever, circulating AngII levels are not elevated in these
mice. Similarly, vascular tone is not altered through
other systems. AngII can elicit an attenuated renal
vasoconstriction in AT1a receptor-null mice (Ruan et al.,
1999). AT1a receptor knockout causes polyuria and de-
fective urine concentration in mice by reducing vaso-
pressin signaling in the innermedulla (Li et al., 2009c).
Structural abnormalities in the vascular system are
observed in AT1a receptor mice. Dysfunction in the
renal vascular system and change of VSMC prolifera-
tion rate, altering the circular mechanical integrity of
vessels, and increased synthesis of extracellular ma-
trices are observed (Inokuchi et al., 2001). Ischemia-
induced angiogenesis was also impaired, suggesting
that AT1a receptor-null condition affects early angio-
genesis through inflammatory cell infiltration and
angiogenic cytokine expression (Sasaki et al., 2002)
and a delay in wound healing (Kurosaka et al., 2009).
Reduced differentiation and hypertrophy of adipocytes
in AT1a receptor-null mice was also observed (Sasaki
et al., 2002). Heart tissue appears to show decrease of
risk in the AT1a receptor-null mice, with reduced remod-
eling of left ventricular wall associated with improved
survival after experimental myocardial infarction
(Harada et al., 1999). In aortic regurgitation models of
AT1a receptor-null mice, long-term survival is improved
by attenuating the progression of left ventricule di-
latation, hypertrophy, and fibrosis (Nakanishi et al.,
2007). Restoring the expression of AT1a receptor in the
C1 neurons of AT1a receptor knockout mice reinstates
the sympathoexcitation response to AngII in the rostral
ventrolateral medulla (Chen et al., 2010).

Transgenic mice overexpressing AT1a receptor in
specific tissues and cells have been developed. Cardiac
targeted AT1a receptor overexpression generated a wide
spectrum of effects, some of which appear to be strain
dependent. Severe cardiac hypertrophy, failure, and
death observed at fetal stage is associated with hyper-
plasia myocytes and heart block (Hein et al., 1997). In
rats, similar transgenesis, however, appear to produce
normal heart functions. However, cardiac hypertrophy
and contractile response to AngII was augmented after
volume and pressure overload in these rats (Hoffmann
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et al., 2001). Pressure- or volume-overload causes more
pronounced hypertrophy in transgenic rats than in
normal rats. Cardiac targeted AT1 receptor overexpres-
sion in C57BL/6 mice induces cardiac hypertrophy and
remodeling with increased atrial natriuretic factor
secretion and interstitial collagen deposition and pre-
mature HF. Systolic blood pressure and the heart rate
was normal in the transgenicmice (Paradis et al., 2000).
Impaired excitation-contraction coupling in heart be-
fore the development of cardiac hypertrophy is reported
(Rivard et al., 2011). A decrease in myocardial micro-
vessel density after experimental myocardial infarc-
tion was observed. Therefore benefit of ARB treatment
of myocardial infarction may be due to a stimulatory
effect onmyocardial angiogenesis (de Boer et al., 2003).
Overexpression of AT1 receptor in the cardiac myo-
cytes of angiotensinogen-knockout mice presented spon-
taneous systolic dysfunction, chamber dilatation, and
severe interstitial fibrosis. Treatmentwith candesartan,
an inverse agonist for the AT1 receptor, prevented
progressive cardiac remodeling in thismodel. This proof-
of-principle study demonstrated that the basal constitu-
tive activity of the AT1 receptor contributes to the cardiac
remodeling, in complete absence of AngII, when level
of AT1 receptor is increased in the heart (Yasuda et al.,
2012).
Overexpression of AT1a receptor restricted to brain

enhanced cardiovascular responsiveness to intracere-
broventricular injection of AngII without a change in
baseline blood pressure. However, with intracerebro-
ventricular injection of losartan to block the central
AT1a receptor reduced basal blood pressure, suggesting
an enhanced contribution of central AT1a receptor to the
maintenance of baseline blood pressure (Lazartigues
et al., 2002). Renovascular hypertension in thesemice is
buffered by increased nitric oxide production in the
peripheral vasculature (Lazartigues et al., 2004). An
enhanced salt appetite and altered water intake is
observed upon brain-selective overexpression of AT1a

receptor (Lazartigues et al., 2008).
AT1 receptor overexpression in transgenic rats di-

rected to podocytes induces protein leakage and struc-
tural damage to podocytes, progressing to focal segmental
glomerulosclerosis (Hoffmann et al., 2004). Mice over-
expressing a constitutively active AT1 receptor trans-
gene in renal proximal tubule caused increased baseline
blood pressure. Depletion of endogenous AT1a receptor
in the proximal tubule reduced blood pressure. How-
ever, there was no difference in the blood pressure re-
sponse to a pressor dose of AngII in either experimental
model, suggesting that the AT1a receptor in the renal
proximal tubule is a regulator of systemic blood pressure
under baseline conditions (Li et al., 2011).
Transgenic overexpression of the constitutively ac-

tive N111Gmutant AT1 receptor restricted to vascular
endothelium significantly reduced the pressor response
of carotid artery to acute infusion of AngII, resulting in

hypotension and bradycardia (Ramchandran et al.,
2006). Increased nitric oxide synthase expression in
the endothelial cells seems to increase NO in blood
and moderate response of smooth muscle cells to AngII.
Gene knock-in expression of the constitutively active
N111S mutant of AT1 receptor with a C-terminal de-
letion produced long-lasting pressor response to in-
fused AngII and a moderate and stable increase in
blood pressure (Billet et al., 2007). These mice develop
diastolic dysfunction without developing significant
cardiac hypertrophy but show progressive renal and
cardiac fibrosis. Overexpression of the constitutively
active N111G mutant of AT1 receptor in cardiac myo-
cytes produced enhancedmyocyte growth from the onset
of adolescence associated with cardiac hypertrophy in
the adult without progressing to pathologic remodeling
or HF (Ainscough et al., 2009). However, AngIV peptide
infusion induced adverse ventricular remodeling within
4 weeks characterized by increased interstitial fibrosis,
dilatation of the left ventricle, and impaired cardiac
function.

Transgenesis for inhibition of the RAS at a genetic
level, which involves an antisense targeting AT1 re-
ceptor, has been proposed as therapy for chronic con-
trol of blood pressure. A retrovirus-based delivery of
AT1 receptor antisense was reported to prevent hyper-
tension in the spontaneously hypertensive rats (Reaves
et al., 2000; Wang et al., 2000b) and protects normo-
tensive rats from developing AngII-infused hyper-
tension (Pachori et al., 2000). Intracerebroventricular
injections of antisense oligonucleotides targeting AT1

receptor in the brain decreased the blood pressure in
chronic 2-kidney, 1-clip hypertensive rats (Kagiyama
et al., 2001). Antisense inhibition of the AT1 receptor
in human pulmonary artery smooth muscle cells has
powerful inhibitory effects on AngII-inducedmigration,
proliferation of, and promotion of apoptosis (Tu et al.,
2005). These studies suggest that antisense inhibition
targeting to AT1 receptor has therapeutic potential for
the treatment of vascular diseases, including hyper-
tension and hypertension-associated cardiac and vas-
cular pathophysiology.

D. Genetic Polymorphism

The AGTR1 gene is highly polymorphic (Duncan
et al., 2001; Mottl et al., 2008). In particular, nucleotide
1166 A/C transversion in the 39 untranslated region of
the gene (Bonnardeaux et al., 1994) has been associ-
ated with essential hypertension, increased aortic stiff-
ness (Benetos et al., 1995), and myocardial infarction
(Berge et al., 1997), with large interethnic, age, and sex
differences in the frequencies. At least 50 single nucle-
otide polymorphisms (SNPs) have been described,
among which nine of them are in the functional pro-
moter region of the gene having the potential to influ-
ence AT1 receptor gene expression (Erdmann et al.,
1999). The significance of AT1 receptor polymorphisms in

State of the Angiotensin Receptors 767



essential hypertension remains controversial (Griendling
et al., 1996; Luft, 2004). Association of A1166C with
increased sensitivity for AngII was reported in hyperten-
sive patients on a high-salt diet (Spiering et al., 2000).
A1166Cpolymorphismwas associatedwith hypertension-
related impairment of renal function (Buraczynska et al.,
2002; Coll et al., 2003). A1166C was associated with
enhanced vasoconstriction by AngII in isolated human
arteries (van Geel et al., 2000). The A1166C polymor-
phism may increase the risk of coronary heart disease in
patients with familial hypercholesterolemia (Wierzbicki
et al., 2000). The association of A1166C polymorphism
with losartan treatment in hemodynamic response mea-
surement should be important for further research to
understand the individual responses to a variety of AT1

receptor blockers (ARBs) and develop personalized anti-
hypertensive therapy (Baudin, 2002).
Naturally occurring amino acid variations in hAT1

receptor are reported in genome databases (http://www.
uniprot.org/uniprot/P30556). These include miss-sense
variations, L48V, A163T, L222V, A244S, T282M, C289W,
T336P, P341H. Of these miss-sense variations, A163T,
T282M, and C289Wmay directly affect ligand binding,
and L48V, L222V, and A244S may indirectly influence
ligand binding or signaling by AT1 receptor (see Fig. 5).
Variant residues, T336P and P341H are located in the
C-terminal tail that is not included in the crystalized
AT1 receptor. However, these residues are known to be
phosphorylated, an event that is necessary for b-arrestin
recruitment to AT1 receptor and subsequent receptor
trafficking to endosomes. The T282M variant is linked

to renal tubular digenesis syndrome by an unknown
mechanism (Gribouval et al., 2005) and the Thr163
variant lowered affinity for losartan (Arsenault et al.,
2010b). The AT1 receptor crystal structure indicated
that 14% of Ala163TM4 side-chain surface interacted
with ARBs. Cys289TM7 faces ARB binding pocket but
does not interact with ARBs, and Thr282TM7 is not in
the ARB pocket. Mutagenesis studies have shown that
residues located closely to the binding site reduce the
affinity of ARBs and AngII but not Thr282TM7 and
Cys289TM7, suggesting that variants may not directly
alter ligand-receptor interactions (Zhang et al., 2015).
However, the variant residues in humans are different
from those evaluated inmutagenesis studies; therefore
variant residue effects on ligand binding need to be
determined through experiments. Phenotypic effects of
other variant residues are difficult to predict, but may
affect AngII and antihypertensive response in individ-
uals carrying these variations.

E. Signaling

Over the past 15 years, the AT1 receptor signaling has
been studied in great detail (see Fig. 6) to understand
mechanism of regulation of vasoconstriction, sodium
reabsorption, cell proliferation, extracellular matrix for-
mation, inflammation, and oxidative stress by RAS and
how ARBsmight intercept signaling during pathology
(De Gasparo, 2002; Lefkowitz and Shenoy, 2005;
Rajagopal et al., 2005; Hunyady and Catt, 2006; Mehta
and Griendling, 2007; Oliveira et al., 2007; Oro et al.,
2007; Violin and Lefkowitz, 2007; Aplin et al., 2009;
Lyngso et al., 2009). AT1 receptor is the lead example for
establishing a novel cell signaling principle that a sin-
gle GPCR ligand can activate multiple signaling path-
ways both dependent and independent of heterotrimeric
G-proteins with differing efficacies (Kenakin, 2001;
Lefkowitz and Shenoy, 2005; Violin and Lefkowitz,
2007; Patel et al., 2010).

The traditionally portrayed signaling mechanism
of the AT1 receptor is dependent on heterotrimeric G
proteins (Hunyady and Catt, 2006). In addition to cou-
pling with the heterotrimeric G-proteins, AngII activates
both nonreceptor and receptor tyrosine kinases (Ishida
et al., 1995; Sadoshima and Izumo, 1996; Bernstein et al.,
1998; Eguchi et al., 1998; Sadoshima, 1998; Heeneman
et al., 2000; Saito and Berk, 2001; Higuchi et al., 2007).
These interactions orchestrate pleotropic signaling in cells
that include enzymes, adapter proteins, transcription
factors, and small GTP binding proteins and downstream
kinases, accounting for a wide spectrum of responses to
AngII (Marrero et al., 1995b; Venema et al., 1998b).

1. G-protein–Mediated Signaling. Multiple hetero-
trimeric G-proteins interact with the AT1 receptor, in-
cluding Gq/11, Gi, G12, and G13, leading to activation of
downstream effectors including phospholipase C (PLC),
phospholipase A, and phospholipase D (Shirai et al.,
1995; Ushio-Fukai et al., 1999a; Higuchi et al., 2007).

Fig. 5. Single residue variations of hAT1 receptor in population. Location
of reported variant residues are shown in an ARB bound three-
dimensional model of the receptor.
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The AT1 receptor-Gq/11-phospholipase Cb (PLCb) cou-
pling results in inositol triphosphates (IP3) and di-
acylglycerol (DAG) (Yusuf et al., 2000) signals. IP3
causes release of Ca2+ from the intracellular store.
Intracellular Ca2+ cycling is the primary trigger for
excitation-contraction of both cardiac and vascular myo-
cytes. In addition, cytosolic Ca2+ does trigger intracel-
lular signaling through calcineurin/nuclear factor of
activated in T-cells or the calcium/calmodulin-dependent
protein kinase II (CamK II) cascades, which are rele-
vant to hypertrophy (Heineke and Molkentin, 2006).
Histone deacetylase-5 has emerged as an important
substrate of CamK II. A scaffold protein, GIT1, medi-
ates AngII-induced VSMC gene transcription via CamK
II-dependent phosphorylation and activation of HDAC5
(Pang et al., 2008). DAG activates PKC (Vallega et al.,
1988), which also contributes to the vasoconstrictive
and growth promoting effects of AngII. Phospholipase
D–mediated phosphatidylcholine to choline and phos-
phatidic acid production is considered a second wave of
signal by AngII activated AT1 receptor. PA is rapidly
converted to DAG, leading to sustained muscle con-
traction (Mehta and Griendling, 2007). AT1 receptor
causes activation of phospholipase A2 by phosphory-
lation and production of arachidonic acid and its metab-
olites. This signal is important in maintaining a balance
between vasoconstriction and vasodilation in various
vascular beds (Sarkis et al., 2004; Campbell et al., 1996)
and NAD(P)H oxidation in VSMC (Griendling et al.,
2000).

The Gbg subunits released upon AT1 receptor activa-
tion have been shown to activate tyrosine kinases such
as SHC, pp60c-src, and JAK2 (Gutkind, 1998; Gschwind
et al., 2001; Kranenburg andMoolenaar, 2001;Luchtefeld
et al., 2001), leading to downstream phosphatidylino-
sitol 39-kinase g (PI3Kg) activation (Lopez-Ilasaca et al.,
1997). AngII-induced activation of AT1 receptor specif-
ically augmented Gb2 levels in the nucleus, where Gb2

interacts with specific nucleosome core histones and
specific chromatin bound transcription factors such as
myocyte enhancer factor 2 and thereby regulates func-
tional gene networks (Bhatnagar et al., 2013).

2. G-Protein–Independent b-Arrestin-Mediated
Signaling. Multiple lines of observations led to thedis-
covery that AT1 receptor can directly recruit b-arrestin
and mediate ERK1/2 signaling without G-protein acti-
vation (Holloway et al., 2002; Gaborik et al., 2003; Wei
et al., 2003; Ahn et al., 2004a; Lee et al., 2008). The
classic concept is that b-arrestin terminates G-protein
signaling by blocking the receptor and stimulating recep-
tor desensitization and endocytosis. However, b-arrestin–
bound receptor can engage in G-protein–independent
signaling, leading to distinct cellular responses (DeWire
et al., 2007; Violin et al., 2013). Thismode of signaling is
recognized in a number of in vitro and in vivo settings;
AT1 receptor recruited b-arrestin1/2 engage a wide range
of cellular responses.

The AT1 receptor coupled b-arrestin mediates delayed
ERK1/2 signaling confined to the cytoplasm for pro-
longed time (t1/2 . 25 min). In contrast, both nuclear

Fig. 6. Schematic representation of AT1 receptor as a pluridimensional signal transducer. Discoveries made in the past 15 years suggest that AT1
receptor as a transmembrane transducer capable of sensing multiple modes of stimuli and elicit diverse responses as shown.
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and cytoplasmic localization of activated ERK is G-
protein–mediated (Gaborik et al., 2003; Tohgo et al.,
2003; Ahn et al., 2004a). The AT1 receptor-b-arrestin
complex inhibits ERK-dependent transcription by bind-
ing to phospho-ERK and its retention in the cytosol
(Tohgo et al., 2002). The cytoplasmic pool of ERK1/2
failed to phosphorylate the transcription factor Elk-1
and increase transcription of the immediate-early gene
c-Fos (Tohgo et al., 2002; Aplin et al., 2007b). The
b-arrestin2–dependent ERK activationmay be respon-
sible for distinct physiologic endpoints (Wei et al.,
2004), such as increased survival of cardiac myocytes
without entailing pathogenic myocyte hypertrophy.
The beneficial effects of the b-arrestin–dependent path-
way on enhancing cardiomyocyte survival was confirmed
in a physiologic study in which a transgenic mouse with
cardiac-specific overexpression of AT1 receptor with
second intracellular loop mutations that prevent G-protein
coupling showed marked ventricular dilation and ec-
centric hypertrophy accompanied by diminished cardi-
omyocyte apoptosis in comparisonwithmice overexpressing
a wild-type AT1 receptor (Zhai et al., 2005).
Mechanistic details of activation of b-arrestin sig-

naling by AT1 receptor are emerging. AT1 receptor can
bind both b-arrestin1 and 2 (Oakley et al., 2000). Ahn
et al. (2004b) demonstrated that physiologic levels of
b arrestin1 might antagonize b-arrestin2–mediated
ERK activation. Zimmerman et al. (2012) showed that
AngII analogs selectively promotedb-arrestin–dependent
effects in VMSCs. A mass spectrometry-based proteomics
approach discovered thatb-arrestin interactswith several
proteins selectively after stimulation of the AT1 receptor,
indicating its potential for signaling (Xiao et al., 2007). In
another study, activation by the b-arrestin biased ligand
SII-AngII showed that unique phosphoproteins are acti-
vated (Christensen et al., 2010; Xiao et al., 2010). There
are 34 differentially phosphorylated proteins, of which 16
were unique to SII-AngII and 8 were unique to AngII
stimulation. Bioinformatics analysis of phosphorylated
sites on these proteins identified downstream protein
kinases activated by the AT1 receptor-b-arrestin sig-
naling (Kendall et al., 2011; Bogebo et al., 2014).
3. Reactive Oxygen Species Signaling. AngII is a

potent mediator of oxidative stress and oxidant signal-
ing (Ushio-Fukai et al., 1999b; Taniyama and Griendling,
2003; Yan et al., 2003a; Touyz, 2004). AngII activates
membrane NAD(P)H oxidase mainly via AT1 receptor
and PKC to produce reactive oxygen species (ROS) like
superoxide and hydrogen peroxide (H2O2) (Rajagopalan
et al., 1996; Ushio-Fukai et al., 1996; Zafari et al., 1998;
Griendling et al., 2000; Seshiah et al., 2002; Touyz
et al., 2005). ROS are involved in many pleiotropic
effects of AngII such as activation of signalingmolecules
(e.g., c-Src, EGFR, p38MAPK, Akt) and transcription
factors [e.g., nuclear factor kB (NFkB), NF-kB, AP-1,
Nrf2], which are involved in atherosclerosis pathology
(Sen and Packer, 1996; Chen et al., 2006; Papaiahgari

et al., 2006; Wu et al., 2005). In endothelial cells, a low
amount of superoxide production by eNOS maintains
a supply of NO, contributing to vasodilation and vascu-
lar health. In disease state, eNOS is uncoupled, leading
to excessive superoxide that reacts with NO to form
peroxynitrite, a toxic radical, which directly contrib-
utes to disease (Schena et al., 1999; Zhao et al., 2005a;
Taguchi et al., 2011).

4. Nonreceptor Type Tyrosine Kinase Signaling. Non-
receptor tyrosine kinases associate with AT1 receptor
and target several intracellular proteins for phosphor-
ylation. C-Src is a key player in AngII-mediated cellular
effects. C-Src tyrosine kinase activity is also activated
by ROS and it is involved in sustained calcium release
(Sadoshima, 1998). Src is activated by AngII in an AT1

receptor mutant lacking G-protein coupling ability, in-
dicating that the carboxyl terminus of the AT1 receptor
is required for activation (Seta et al., 2002) because
C-terminal truncation (310–359) abolished Src activa-
tion. VSMC growth is mediated by hyperactivation of
c-Src-ERK1/2–dependent pathways by AT1 receptor,
leading to c-fos and AP-1 DNA-binding activity (Touyz
et al., 2001b). AngII-stimulation of human monocyte
migration is c-Src–dependent (Ishida et al., 1999) forma-
tion of focal adhesion complexes in the actin cytoskel-
eton (Polte et al., 1994). AT1 receptor induces tyrosine
phosphorylation of FAK, which then form a complex
with Pyk2, p130Cas, paxillin, and talin, all of which
interact to enable activation of cytoskeletal proteins
facilitating adhesion of cells to extracellular matrix,
and regulation of cell shape and movement (Leduc
andMeloche, 1995; Sabe et al., 1997; Cary et al., 1998;
Sayeski et al., 1998; Eguchi et al., 1999; Kintscher
et al., 2001). Pyk2 is another kinase activated in
response to AT1 receptor and has been implicated
in the regulation of ion channels, cellular adhesion,
cell growth, and mitogenic and hypertrophic reactions
(Sabri et al., 1998; Tang et al., 2000; Taniyama et al.,
2003).

AT1 receptor activates the JAK/STAT pathway via
scaffolding by Src homology phosphatase-2 (SHP-2),
a tyrosine phosphatase. The conserved YIPP motif in
the AT1 receptor interacts with SHP-2 and helps dock-
ing JAK2 and stimulates JAK2 phosphorylation at
Tyr1007/Tyr1008 (Marrero et al., 1995a; Doan et al., 2001;
Frank et al., 2002; Godeny et al., 2007). Upon activation
of JAK2 by AT1 receptor, STAT proteins are activated
in order to mediate gene transcription of early growth
response genes, such as c-fos and c-myc (Berk and Corson,
1997; Ishida et al., 1999; Luttrell et al., 1999;Madamanchi
et al., 2001). Another tyrosine phosphatase, SHP-1,
causes JAK2 dephosphorylation and termination of the
AngII-induced JAK/STAT signaling (Marrero et al.,
1998). A calcium/PYK2 and PKC pathway also exists
for JAK2 activation in VSMCs (Frank et al., 2002).
AnAT1 receptormutantwith tyrosine 292, 302, 312, 319,
and 339 mutated to phenylalanine uncoupled from
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G-proteins was found to still activate tyrosine kinases
and phospho-STAT1 signaling, indicating G-protein
independence of these signals. JAK2 activation indu-
ces the expression of SOCS-3, which, in turn, blocks
further activation of the pathway and consequently
leads to desensitization of this signaling path (Torsoni
et al., 2004).
5. Activation of Small G-protein Signaling. AngII

also activates family of small G-proteins, such as Ras,
Rho, and Rac through the AT1 receptor (Ohtsu et al.,
2006c), which regulate the MAPK cascades in cardio-
vascular remodeling induced by AngII. Ras is activated
in both cardiac myocytes and VSMCs (Eguchi et al.,
1996; Sadoshima and Izumo, 1996) by SHP-2 phos-
phorylation, which leads to Shc/Grb2 complex and
recruitment of the guanine nucleotide exchange factor,
son of sevenless. Subsequently son of sevenless acti-
vates the Ras/Raf/MEK/ERK1/2 pathway and c-fos
transcriptional activity (Sugden and Clerk, 1997;
Ohtsu et al., 2006c). PKC can also associate with Ras
and activate ERK1/2 (Liao et al., 1996; Liao et al.,
1997). Accumulating evidence suggests that the Rho/
ROCK (Rho-kinase) pathway is crucial for AngII-
induced remodeling of vasculature (Aoki et al., 1998).
Rho pathways are involved in cell migration (Seko
et al., 2003). Rac is implicated in activation of p21-
activated kinase 1 by AngII in VSMCs, which sub-
sequently mediates JNK activation and hypertrophy
(Seko et al., 2003; Woolfolk et al., 2005; Ohtsu et al.,
2006a). Rho pathway is involved in the Ca2+ sensitiza-
tion of smooth muscle contraction, pre-myofibril forma-
tion, and expression of atrial natriuretic factor in cardiac
myocytes. Rac is an important component of the reduced
NADPH oxidase complex to produce ROS by AngII
in VSMCs (Gregg et al., 2003). ERK1/2, JNK, and
p38MAPK activated downstream of AT1 receptor-
NADPH pathway are implicated in VSMC differenti-
ation, proliferation, and migration (Sugden and Clerk,
1997; Taniyama et al., 2004), as well as in fibrosis and
target-organ damage (Ishida et al., 1998; Ishida et al.,
1999). The phosphatase MAPK phosphatase-1 (MKP-1)
serves as a negative feedback control, inactivating
ERK1/2 (Bokemeyer et al., 1998).
6. Transactivation of Receptor Tyrosine Kinase

Signaling. AT1 receptor-induced transactivation of
platelet derived growth factor receptor (PDGFR) mod-
ulates cell growth and migration (Heeneman et al.,
2000; Suzuki and Eguchi, 2006) in VSMCs and mesan-
gial cells (Linseman et al., 1995; Mondorf et al., 2000).
This response is blocked by losartan and other ARBs.
Upon acute AngII infusion, activation of PDGFR occurs
in the vasculature of mice and rats. ACE-inhibitor in-
fusion reduced aortic PDGFR phosphorylation and ERK
activity (Kim et al., 2000), implicating PDGFR as down-
streammodulator of hypertensive vascular remodeling
in vivo (Linseman et al., 1995; Heeneman et al., 2000;
Mondorf et al., 2000; Gao et al., 2006).

AngII infusion also leads to activation of epidermal
growth factor receptor (Zhang et al., 2009) in the vas-
culature (Kim et al., 2000). A major mechanism by
which AngII influences growth-signaling pathways
is through transactivation of EGFR by AT1 receptor.
AngII-induced renal deterioration involves EGFR trans-
activation mediated by ADAM17 (Lautrette et al., 2005)
and second messengers such as Ca2+ and ROS (Diaz-
Rodriguez et al., 2002; Mori et al., 2003; Seals and
Courtneidge, 2003; Fischer et al., 2004; Tanaka et al.,
2004; Mifune et al., 2005; Ohtsu et al., 2006a; Zhang
et al., 2006). AT1 receptor activation enhances the release
of heparin-binding epidermal growth factor, which is
dependent on A Disintegrin and Metalloproteinase
(ADAM) family metalloproteinases (ADAM17) and Src
(Andreev et al., 2001; Eguchi et al., 2001; Uchiyama-
Tanaka et al., 2001; Schafer et al., 2004; Shah et al., 2004;
Blobel, 2005; Mifune et al., 2005; Ohtsu et al., 2006a,b).
Furthermore, dominant-negative ADAM17 mutant dis-
tinctly inhibited VSMC hypertrophy, which was stim-
ulated by AngII (Ohtsu et al., 2006b). Heparin-binding
epidermal growth factor activates EGFRs, allowing
autophosphorylation on tyrosine (Prenzel et al., 1999).
AngII-induced EGFR transactivation requires ROS and
upstream kinases, such as c-Src, c-Abl, or Pyk2 (Dikic
et al., 1996; Bokemeyer et al., 2000; Seshiah et al., 2002;
Gratton et al., 2004) and leads to activation of the Ras/
Raf/ERK pathway. AngII activation of Akt/PKB, p70S6K,
and p38MAPK and induction of c-Fos leading to growth
and migration of VSMCs, survival, and remodeling are
mediated by EGFR (Che and Carmines, 2002; Seshiah
et al., 2002; Suzuki et al., 2005).

A b-arrestin–dependent mechanism for transactiva-
tion of EGFR by AT1 receptor has been reported (Kim
et al., 2009). Calcium-independent AngII pathways also
cause EGFR transactivation (Murasawa et al., 1998;
Wang et al., 2000a) and the biased AngII analog [Sar1,
Ile4,Ile8]AngII activated Gq-independent EGFR sig-
naling in human coronary artery smooth muscle cells
(Miura et al., 2004). It was also reported that phos-
phorylation of tyrosine 319 and the YIPP motif of the
AT1 receptor is required for transactivation of EGFR
(Seta and Sadoshima, 2003; Zhai et al., 2006). Cardiac-
specific overexpression of an AT1 receptor with a muta-
tion in the YIPPmotif (Tg-Y319F) did not cause cardiac
hypertrophy in transgenic mice, and expression of
fetal-type genes was significantly lower in these mice.
Infusion of AngII failed to induce hypertrophy in Tg-
Y319F mice, also significantly less apoptosis and fibrosis
was reported (Zhai et al., 2006; Smith et al., 2011). EGFR
activation is reported to be necessary for AngII-mediated
hypertension and left ventricular hypertrophy (Ahmad
et al., 2009).

7. Signaling through AT1 Receptor Interacting Scaffold
Proteins. AT1 receptor signaling occurs through the
recruitment of scaffolding regulatory proteins. The
carboxyl-terminal cytoplasmic region of the AT1 receptor
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recruits different proteins to regulate different aspects
of AT1 receptor physiology (Mogi et al., 2009; Horiuchi
et al., 2012). AT1 receptor-associated protein (ATRAP1)
is a transmembrane protein expressed in various tissues
including the kidney, aorta, heart, lung, testis, and at
a lower level in the lung, liver, spleen, and brain. It
interacts specifically with the C-terminal tail and en-
hances AngII-induced internalization of AT1 receptor
(Daviet et al., 1999; Cui et al., 2000; Guo et al., 2003;
Oshita et al., 2006; Azuma et al., 2007). ATRAP1 is
a negative regulator of classic G-protein signaling by
AT1 receptor (Lopez-Ilasaca et al., 2003; Tamura et al.,
2007) and VSMC growth (Cui et al., 2000) and cardio-
myocyte hypertrophy (Tanaka et al., 2005). ATRAP1
prevents VSMC senescence (Wislez et al., 1998; Guo
et al., 2005). ATRAP1 transgenic mice exhibited de-
crease in cardiac hypertrophy, neointima formation,
inflammatory response, and NADPH oxidase activity
in the injured artery (Oshita et al., 2006; Wakui
and Tamura, 2012). In contrast, ATRAP1-deficient
(ATRAP12/2) mice showed increased mean systolic
blood pressure and plasma volume, which was associ-
ated with increased surface expression of AT1 receptors
in the renal cortex and increased proximal tubular func-
tion (Oppermann et al., 2010). Kidney-specific ATRAP1
transgenic mice exhibit hypertension and renal hyper-
trophy and failure (Oppermann et al., 2010), suggesting
that renal ATRAP1 plays an important role in regulat-
ing intrarenal RAS.Mechanistic aspects of AT1 receptor
interaction with ATRAP1 and transfer of signal are not
clear at this time (Cook et al., 2008).
8. Mechanical Stretch. AT1 receptors were identi-

fied as mechanosensors in the myocardium by Issei
Komuro’s team by demonstrating agonist-independent
activation of AT1 receptor when stretch-stress is applied
(Hunyady and Turu, 2004; Yasuda et al., 2008a;Mederos y
Schnitzler et al., 2011). Mechanical stretch activated
ERKs in the cardiomyocytes prepared from both neo-
natal and adult angiotensinogen-deficient mice (Zou
et al., 2004), which could be inhibited by inverse agonist
ARBs, such as candesartan. Mechanical stretch in-
duces Janus kinase 2 and translocation of G-proteins
into the cytosol (Zou et al., 2004; Yasuda et al., 2008a).
The conformational changes in mechanically activated
AT1 receptor have been mapped (Shyu et al., 2001;
Karnik et al., 2003; Yasuda et al., 2008b).
Sadoshima et al. (1993) initially reported that me-

chanical stretch causes secretion of AngII from cyto-
plasmic storage granules in cultured cardiac myocytes
and that stretch-induced hypertrophic responses are
completely dependent on the secreted AngII. However,
several studies later showed that AngII partly medi-
ates mechanical stress-induced hypertrophic responses
(Yamazaki et al., 1995; Kijima et al., 1996). Therefore,
mechanical stretch seems to directly activate unique
intracellular signaling molecules. Yasuda et al. (2008b)
showed that cell stretch leads to activation of the AT1

receptor, which could be suppressed by candesartan, an
inverse agonist. Thus, mechanical stress can directly
change the conformation of the AT1 receptor to increase
the receptor’s basal activity. This was followed by Zou
et al. (2004), demonstrating that the AT1 receptor can be
activated by mechanical stress inducing cardiac hyper-
trophy in vivo in an AGT-null background.

Stretch-induced activation of the AT1 receptor pro-
tects cells against induced apoptosis involving PKB/Akt
signaling (Kippenberger et al., 2005). Mechanical stretch
potentiates AngII-induced VSMCs proliferation in spon-
taneously hypertensive rat through an AT1 receptor/
EGFR/ERK-dependent pathway. These findings may
provide new insights into growth-promoting mecha-
nisms in vasculature in a hypertensive state (Liu et al.,
2010). Mechanical stretch triggered an AT1 receptor-
dependent conformational change in b-arrestin similar
to that induced by a b-arrestin–biased ligand (Rakesh
et al., 2010). These findings were unique to the AT1 re-
ceptor (and not seen with the b1 adrenergic receptors)
and suggest that AT1 receptor is able to sensemembrane
stretch and transmit the activated receptor signal to
b-arrestin.

9. Signaling through Heterodimerization. The cur-
rent view is that homo- and heterodimer formation of
GPCRs could be important for some of the receptor
functions (Lyngso et al., 2009). For example, the AT1

receptor dimerizes with the bradykinin B2 receptor
(Fig. 6), which enhances AngII signaling (AbdAlla et al.,
2000, 2001b, 2005), contributing to AngII hypersensi-
tivity in womenwith preeclampsia (AbdAlla et al., 2000,
2001b). The arrestin-biased ligand [Sar1,Ile4,Ile8]AngII
negatively regulates AT1 receptor-B2R heterodimers
by promoting sequestration of AT1 receptor-B2R het-
erodimers (Wilson et al., 2013). Heterodimerization of
AT1 receptor with the MAS receptor and AT2 receptor
decreases AT1 receptor-specific signaling (AbdAlla
et al., 2001a; Kostenis et al., 2005; Canals et al., 2006;
Santos et al., 2007). The AT1 receptor can also form
complexes with the b2 adrenergic receptors, and it is
possible to effectively block dual receptor signaling
using only a single receptor antagonist (Barki-Harrington
et al., 2003). The AT1 receptor also coimmunoprecipitates
with the epidermal growth factor receptor (EGFR); dopa-
mine D1, D3, and D5; and the endothelin B receptors (Zeng
et al., 2003a,b, 2005a,b, 2006; Olivares-Reyes et al., 2005).

Evidence that AT1 receptors can form dimers is sup-
ported by BRET analysis, suggesting homo- or oligo-
meric complexes in living cells that are unaffected by
both agonists and antagonists (Hansen et al., 2004). Co-
expression of signaling-deficient mutants results in
functional receptors. AT1 receptor wild-type G-protein
coupling was diminished when coexpressed with de-
fective mutant receptors, indicating “cross-inhibitory”
association (Karip et al., 2007). Covalently crosslinked
homodimer formation for AT1 receptor is reported in
isolated monocytes (AbdAlla et al., 2004) induced by
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factor XIIIA transglutaminase involving Gln315 in the
carboxyl-terminal tail of the AT1 receptor. Hyperten-
sive patients have increased homodimer levels (AbdAlla
et al., 2004; Ogawa and Glass, 2004). Aldosterone
produces a nongenomic endothelium-independent va-
soconstrictor effect by enhancing intracellular trans-
glutaminase activity and presumably inducing AT1

receptor dimer formation in mesenteric arterioles per-
haps due to transglutaminase-induced AT1 receptor
dimer formation (Yamada et al., 2008).
10. AngiotensinII Type 1 Receptor Signaling by

Phosphorylation, Desensitization, and Internalization.
G-protein signaling by activated AT1 receptor is accom-
panied by rapid phosphorylation and internalization of
AT1 receptor (Thomas, 1999; Hunyady et al., 2000; Guo
et al., 2001; Thomas and Qian, 2003). Defects in de-
sensitization are implicated in vascular diseases; for
example, hypertensive rats overexpress GRK5, altering
AngII responsiveness (Ishizaka et al., 1997). AngII-
induced desensitization of AT1 receptor is dependent on
carboxyl-terminal residues 329–347 (Conchon et al.,
1998). This region is Ser and Thr rich, and phosphory-
lation of these residues plays a key role in the de-
sensitization of AT1 receptor responses. AngII-induced
phosphorylation of the AT1 receptor is mediated by both
PKC and G-protein–coupled receptor kinases (GRK),
mainly GRK2 and GRK5 (Oppermann et al., 1996a,b;
Smith et al., 1998a; Qian et al., 1999). Mutation of
the key serine and threonine residues in 332–338 re-
gion significantly inhibits AT1 receptor internalization
(Hunyady et al., 1994; Thomas et al., 1995, 1998; Smith
et al., 1998b; Qian et al., 2001). Mutating hydrophobic
residues in helix VIII in C terminus also inhibits AT1

receptor internalization (Thomas et al., 1995). A di-
acidic motif of Asp236-Asp237 in the ICL3 of the AT1

receptor is required for optimal AngII-induced phos-
phorylation of AT1 receptor by GRKs and internaliza-
tion (Olivares-Reyes et al., 2001). Complete deletion of
the cytoplasmic tail inhibits internalization of AT1

receptor (Chaki et al., 1994; Hunyady et al., 1994;
Balmforth et al., 1995), and an STL motif (Ser335-
Thr336-Leu337) in this region plays a critical role but
also requires residues Leu316 and Tyr319 (Hunyady
et al., 1994; Thomas et al., 1995).
Internalization of the AT1 receptor follows both

b-arrestin–dependent and –independent mechanisms
(Lefkowitz, 1998; Somsel Rodman and Wandinger-
Ness, 2000; Kim et al., 2005a). Alanine substitution
for Thr332, Ser335, Thr336, and Ser338 preclude agonist-
induced b-arrestin recruitment by AT1 receptor and
attenuated internalization (Luttrell et al., 2001; Qian
et al., 2001; Kule et al., 2004). Dramatically reduced AT1

receptor internalization was observed in mouse embry-
onic fibroblasts lacking both b-arrestin 1 and b-arrestin
2 (Kohout et al., 2001). b-Arrestins target AT1 receptor
to clathrin-coated pits by interacting with clathrin and
the clathrin adapter 2 (AP2), which directly interact

with the AT1 receptor carboxyl terminus (Fessart et al.,
2005). These interactions are regulated by c-Src and
the ADP-ribosylation factor 6 (ARF6), a small GTP-
bindingprotein (Fessart et al., 2005; Poupart et al., 2007;
Zimmerman et al., 2009).

After endocytosis, the receptor induces specific
b-arrestin–mediated cell signaling pathways, distinct
from G-protein signaling (Kim et al., 2005a). Shah et al.
(2002) showed that b-arrestin–mediated ERK activa-
tion is regulated by transactivation of the EGFR and
activation of GRK 5 and GRK6 (Kim et al., 2005a) but
not GRK 2 and 3. The selective receptor phosphoryla-
tion on different sites by the various GRK isoforms may
have important implications. For example, GRKs 5 and
6 seem to mediate effects associated with physiologic
consequences, which are different from GRK 2–mediated
effects (Kim et al., 2005a). Inhibition of GRK 5 or 6
attenuates b-arrestin–mediated ERK activation, whereas
it is not affected by knockdown of GRK 2 or 3 (Kim et al.,
2005a). An internalization-deficient mutant of the AT1

receptor with truncated carboxyl terminus can also pro-
duce these responses, implying that internalization per se
is not necessary for b-arrestin–mediated signaling (Turner
et al., 2001).

AT1 receptors are internalized within 10 minutes,
and 25% of internalized receptors are recycled back to
plasma membrane and the remainders are degraded
in lysosomes (Gunther et al., 1980; Griendling et al.,
1987). The Rab family of proteins, specifically Rab 1, is
associated with transport of AT1 receptor from endo-
plasmic reticulum to Golgi to cell surface (Wu et al.,
2003). AT1 receptor traffic to early endosomes is de-
pendent on Rab 5 interaction with the carboxyl termi-
nus of the receptor (Daviet et al., 1999; Somsel Rodman
and Wandinger-Ness, 2000; Seachrist et al., 2002). Rab
7-positive late endosomes promote AngII dissociation.
Rapid receptor recycling back to the plasma membrane
takes place in Rab 11-positive vesicles by a rapid PI3K-
dependent pathway (Garcia-Caballero et al., 2001;
Hunyady et al., 2002; Seachrist et al., 2002; Dale et al.,
2004).

In addition to clathrin-dependent pathway, AT1 re-
ceptor can be internalized via specializedmicrodomains
called caveolae, associated with caveolin (Ishizaka et al.,
1998). In VSMCs, AngII regulates the expression, bio-
synthesis, and phosphorylation of caveolins and promotes
the translocation of AT1 receptor to caveolin-enriched
membrane fractions (Ishizaka et al., 1998).

F. Expression and Regulation

AT1 receptors in all organs are sensitively regulated
by a number of physiologic and pathophysiological factors
(Kaschina and Unger, 2003; Elton and Martin, 2007;
Higuchi et al., 2007). AngII, interferon, growth factors,
estrogens, statins, nitric oxide, thyroid hormone, retinoic
acid, and peroxisome proliferator-activated receptor
can suppress transcription of the rat AT1a receptor gene
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in cultured rat VSMCs. In contrast, glucocorticoids,
insulin-like growth factor, interleukin (IL)-6, erythro-
poietin, and progesterone induced an upregulation of
expression in VSMCs. AngII accelerates AT1 receptor
mRNA decay in VSMCs, which is governed by interac-
tion of phosphorylated calreticulin with the 39 untrans-
lated segment 2175–2195 of the AT1 receptor mRNA
(Nickenig et al., 2002). Regulation of rat AT1a receptor
promoter by cyclic AMP (Chen et al., 2002), free radicals
(Nickenig et al., 2000; Chen et al., 2002), tumor necro-
sis factor-alpha (TNFa), interleukin-1 beta (Cowling
et al., 2002), and purinergic P2Y(Dorn and Force, 2005)
receptor in cardiomyocytes (Nishida et al., 2011) are
observed.
Human and rodent genes for the AT1 receptor are

thought to be regulated by different mechanisms, be-
cause the promoter regions are divergent. Expression
of the hAT1 receptor is regulated predominantly by Sp1
and Sp3. MEF-2 and Sp1 regulate basal expression of
the rat AT1a receptor gene. PPAR suppresses rat AT1a

receptor gene the transcription by inhibiting Sp1 bind-
ing. Thus PPAR ligands may inhibit AngII-induced cell
growth and hypertrophy in VSMCs by inhibiting hAT1

receptor expression. In contrast, PPAR and CBP en-
hanced activity of Sp1 increase transcription of rat AT1a

receptor gene. Oxidized low-density lipoprotein (LDL)
upregulates AT1 receptor expression in cultured human
coronary artery endothelial cells (Li et al., 2000).

G. Pathophysiological Aspects of AngII Type 1
Receptor Activation

AngII signaling through the AT1 receptor promotes
pathogenic processes such as ROS production, inflam-
mation, altered vasoreactivity, growth,migration, platelet
activation, and fibrosis. Ultimately these cause diseases
such as hypertension, atherosclerosis, thrombosis, chronic
kidney disease, and insulin resistance, with the final
development of cardiovascular disease. Improved clinical
outcomes after treatment with ARBs proves the caus-
ative role of AT1 receptor in the pathogenesis of these
diseases (Garg and Yusuf, 1995; Yusuf et al., 2000;
Igarashi et al., 2001).
1. Cardiovascular Remodeling and Hypertrophy.

In vitro and in vivo experiments have shown growth
promoting actions of AngII, causing cardiac and vas-
cular hypertrophy, cell differentiation, and apoptosis
(Pfeffer and Braunwald, 1990; Lombardi et al., 1999;
Lips et al., 2003; Dorn and Force, 2005). In general,
ARBs effectively prevent cardiac, vascular, and renal
hypertrophy (Kim et al., 1995, 1998). Involvement of
ERK1/2, PI3K, and CDK2 inhibition pathways, lead-
ing to G1-phase arrest, causes myocyte hypertrophy
(Braun-Dullaeus et al., 1999). Increase in protein syn-
thesis involves activation of translation elongation factor-2
in cardiac myocytes via dephosphorylation by PP2A by
a process that involves both PI3K and MAPK (Everett
et al., 2001). Increased protein synthesis through AT1

receptors in human cardiac fibroblasts did not induce
hypertrophy of cardiac fibroblast (Hou et al., 2000). In
the vasculature, DNA synthesis is enhanced upon
AngII infusion through the activation of cyclin D1 and
cdk4 and reduction in the expression of cell cycle kinase
inhibitors p21 and p27 (Diep et al., 2001; Guillemot
et al., 2000, 2001). Thus, in the myocardium, regulation
of growth effects by AT1 receptor in myocytes and
fibroblasts differs. Cardiac hypertrophy includes car-
diac myocyte enlargement and proliferation of cardiac
fibroblasts. Now it is generally believed that both hyper-
trophic response of myocytes and proliferative response
of fibroblast may depend on other modifying factors
such as production of ROS and secretion of various
types of factors.

For instance, in pressure overload due to hyperten-
sion and myocardial infarction, cardiac remodeling
process includes cardiomyocyte hypertrophy, extracel-
lular matrix synthesis, fibrosis, and loss of compliance,
leading to fatal outcomes. TGF-b1 expression is increased
in myocytes and fibroblasts of heart, which transdiffer-
entiate into a myofibroblast phenotype, resulting in
myocardial remodeling (Campbell and Katwa, 1997).
The AT1 receptor directly increases TGF-b1 expression
(Kupfahl et al., 2000; Schultz et al., 2002), translocation
of Smad proteins Smad 2 and 4 into the nucleus, resulting
in expression of fibrotic marker proteins, collagen, fibro-
nectin, and connective tissue growth factor (CTGF)
(Hao et al., 2000; Rodriguez-Vita et al., 2005; Lim and
Zhu, 2006; Zhang et al., 2009). CTGF is a profibrotic
factor that stimulates both AngII- and TGF-b-1–mediated
fibrosis and apoptosis (Abreu et al., 2002; Perbal, 2004;
Cabello-Verrugio et al., 2011). CTGF is involved in myo-
cardial remodeling mediated via AT1 receptors during
transition to HF (Iwanciw et al., 2003; Ahmed et al.,
2004). AngII-induced CTGF production is also shown
in the aorta of AngII-infused rats (Ruperez et al.,
2003). AngII-stimulated collagen synthesis in aortic
adventitial fibroblasts, which is actively involved in
vascular remodeling, is mediated by CTGF (Che et al.,
2008). Gene expression analysis detected high CTGF
mRNA expression in coronary artery biopsies from
ischemic injury and coronary artery disease. Proteins
involved in extracellular matrix remodeling, such as
thrombospondin 4, collagen type 1 and 2, and fibronec-
tin, and the inflammatory cytokines, such as IL-8, IL-6,
vascular cell adhesion molecule-1, and monocyte che-
moattractant protein-1 (MCP-1), are believed to couple
cardiac remodeling with chronic angiotensin receptor
stimulation (Gabrielsen et al., 2007). IL-6 secretion by
cardiac myocytes is regulated by AngII. The effects of
IL-6 on cardiomyocyte hypertrophy and fibroblast pro-
liferation is inhibited by the AT1 receptor antagonist
losartan, suggesting that IL-6 contribution to cardio-
myocyte hypertrophy is mediated by the AT1 receptor
(Fredj et al., 2005). AngII-induced activation of the
JAK/STAT pathway is involved in tissue remodeling
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after vascular injury and myocardial ischemia in rats
(Seki et al., 2000; Omura et al., 2001). The AT1 receptor
activates STAT1 and GATA4 transcription factors in
the development of myocyte hypertrophy (Wang et al.,
2005). Chronic activation of the AT1 receptor in myo-
cytes induces transcription of the Stat3 gene by pSTAT3
and overproduction of STAT3 protein, leading to nuclear
accumulation of STAT3 without tyrosine phosphoryla-
tion, which alters the transcriptional program of cardiac
hypertrophy (Yue et al., 2010).
VSMC hypertrophy induced by AngII involves PKC

delta activation through Src-dependent Tyr phosphor-
ylation, leading to Akt activation and signifying a novel
molecular mechanism for enhancement of cardiovas-
cular diseases induced by AngII (Nakashima et al.,
2008). Antiapoptotic effects of AngII in cardiomyocytes
and VSMCs are regulated by a mechanism involving
PI3-kinase/Akt activation, subsequent upregulation of
survivin, and suppression of caspase-3 activity (Ohashi
et al., 2004). Inhibitors of Akt and a dominant-negative
mutant of Akt selectively block AngII-induced prolifer-
ation of CHO-AT1a cells (Dugourd et al., 2003). AngII
activated reactive oxygen species acting through Src/
caveolin-EGFR signaling pathway induces epithelial-
to-mesenchymal transition in renal epithelial cells. This
may be a novel molecular mechanism involved in pro-
gressive renal injury caused by chronic exposure to
AngII (Chen et al., 2012). Adenoviral-directed expres-
sion of the AT1 receptor has defined the EGFR trans-
activation pathway for cardiac hypertrophy via PI3K/Akt
signaling (Ebert et al., 1995; Thomas et al., 2002).
2. Vascular Inflammation and Atherosclerosis. The

role of AngII in atherosclerosis has been well estab-
lished. Atherosclerotic risk factors such as hypercholes-
terolemia and hypertension also increase production of
angiotensinogen (Daugherty et al., 2004). Inhibition of
AT1 receptor s by losartan prevents lipid peroxidation,
decreasing atherosclerotic lesion formation n apolipo-
protein E–deficient mice (Keidar et al., 1997). Con-
versely, AngII infusion increases aortic atherosclerosis
and aneurysm formation, independent of blood pressure
(Daugherty et al., 2000; Weiss et al., 2001; AbdAlla
et al., 2001a). Male apoE/AT1a receptor double knockout
mice have reduced atherosclerosis (Wassmann et al.,
2004a). This relationship between AT1 receptor and
atherosclerosis is conserved in hypercholesterolemic
rabbits (Yang et al., 1998). Stimulation of inflammatory
mediators including IL-1b, IL-6, and TNFa through
NFkB activation (Sanz-Rosa et al., 2005) and RAS
activation appears to be the pathogenic mechanism in
the atherosclerotic process. AngII and/or IL-6 infusion
induces oxidative stress and endothelial dysfunction in
mice and these effects are completely abolished in AT1

receptor knockoutmice (Schieffer et al., 2000; Ruiz-Ortega
et al., 2001b; Wolf et al., 2002; Skurk et al., 2004;
Wassmann et al., 2004b). In VSMCs, the activation of
NAD(P)H oxidase by the AT1 receptor produces IL-6

(Marui et al., 1993; Chen et al., 1998; Kranzhofer et al.,
1999) and AT1 receptor blockers decreases TNFa, IL-6,
and soluble adhesionmolecules (Tsutamoto et al., 2000).
Secretion of inflammatory factors, such as P-selectin and
MCP-1 that are involved in the vascular inflammation
and atherogenesis is AT1 receptor-dependent, and ARBs
attenuate P-selectin and MCP-1 expression with con-
current reduction in intimal proliferation in mice (Chen
et al., 2001). In hepatocytes, CARMA3/Bcl10/MALT1-
dependent NFkB activation mediates AngII-responsive
inflammatory signaling promoting pathologic liver fi-
brosis (McAllister-Lucas et al., 2007). CARMA1 and 3
are expressed in VSMC and endothelial cells, suggest-
ing the potential for pathway similar to hepatocytes
playing a role in vascular inflammation and atheroscle-
rosis. The AT1 receptor stimulates myofibroblasts to
proliferate through activation of the NFkB transcrip-
tion factor via a signaling pathway composed of
CARMA3, Bcl10, and MALT1 (McAllister-Lucas et al.,
2007).

Under chronic liver injury, AngII promotes pathologic
liver fibrosis by stimulating hepatocytes and hepatic
stellate cells to synthesize extracellular matrix proteins
and secrete secondary cytokines. In rats, experimental
models of liver fibrosis induced by bile duct ligation or
carbon tetrachloride or choline deficiency, administra-
tion of irbesartan, olmesartan, telmisartan, candesartan,
or losartan inhibited expression of collagens and TGFb
in stellate cells and reduced established liver fibrosis
(Kurikawa et al., 2003; Ueki et al., 2006; Hirose et al.,
2007; Yoshiji et al., 2009; Moreno et al., 2010; Kato
et al., 2012). In clinical practice, however, the usefulness
of treating liver fibrosis with ARBs remains contradic-
tory (Schneider et al., 1999; Gonzalez-Abraldes et al.,
2001; Lee, 2014). A handful of randomized controlled
trials suggest that ARB treatment is a potentially useful
therapeutic approach in patients with nonalcoholic fatty
liver disease (Paschos and Tziomalos, 2012). The non-
alcoholic fatty liver disease patients benefited from
telmisartan and olmesartan treatment (Enjoji et al.,
2008; Colmenero et al., 2009). In two independent pilot
studies, administration of candesartan or losartan was
shown to have an antifibrotic effect on patients with
chronic hepatitis C (Sookoian et al., 2005; Ueki et al.,
2009).

3. Endothelial Dysfunction. Endothelial dysfunction
refers to impairment of endothelium-dependent vaso-
dilation associated with progressive changes in cell
adhesion and barrier function. Inactivation of NO by
AT1 receptor–induced ROS is at the center of endothe-
lial dysfunction in hypertension, atherosclerosis, and
cardiovascular diseases. In endothelial cells, eNOS pro-
duces NO and a low amount of superoxide to maintain
vasodilation and a healthy vasculature. In disease state,
redox-uncoupled eNOS is responsible for disproportionate
production of superoxide relative to NO. The excessive
superoxide reacts with NO to form peroxynitrite, a toxic
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radical, which directly contributes to disease state.
Endothelial cells in a disease state express adhesion
molecules, which increase adhesion of circulating in-
flammatory blood cells into the vessel wall, leading to
further increase in ROS production (Rajagopalan et al.,
1996; Schena et al., 1999; Zhao et al., 2005a). ROS
increases local RAS activation in the vasculature, en-
hancing AngII production in ECs, VSMCs, and fibro-
blasts and creates a mutual reinforcement loop between
local RAS and ROS. The AT1 receptor induces LDL
receptor expression in ECs (Gryglewski et al., 1986;
Rubanyi and Vanhoutte, 1986; Li and Mehta, 2000)
and enhances the modification of LDL and the expres-
sion of its lectin-like receptor (LOX-1), which are critical
events in atherosclerotic lesion formation (Chen et al.,
2000a; Figueroa and Vijayagopal, 2002). Overall endo-
thelial dysfunction is characterized by blunted endothelium-
dependent vasodilation associated with enhanced
contraction in hypertensive diseases (Dasgupta and
Zhang, 2011).
4. Oxidative Stress. AT1 receptor–regulated oxida-

tive stress plays a major part in the initiation and progres-
sion of hyperlipidemia, diabetesmellitus, hypertension,
ischemic heart disease, and chronic HF (Marui et al.,
1993; Taniyama and Griendling, 2003). ROS activates
nuclear factor kB (NFkB) and stimulates degradation of
its cytoplasmic inhibitor, IkB, an essential step in the
proinflammatory process (Pueyo et al., 2000). Blockade
of NFkB ameliorates myocardial hypertrophy in re-
sponse to infusion of AngII, and the effect of AngII was
attenuated in mice with targeted disruption of the p50
subunit of NFkB (Kawano et al., 2005). NFkB gene
expression results in increased levels of vascular
cell adhesion molecule-1 and probably other genes
involved in the early stages of atherosclerosis (Pueyo
et al., 2000). AngII/AT1 receptor/ NFkB pathway
may be involved in brain ischemia by stimulating
intercellular adhesion molecule-1 expression in brain
microvascular ECs (Liu et al., 2006). Thus, AT1 receptor-
induced ROS production can change structure-function
properties of the vasculature that is the central aspect of
vascular pathology in hypertension and diabetes. Treat-
ment with ARBs stimulates NO release in platelets and
ECs indicating arterial antithrombotic effects of ARBs
(Kalinowski et al., 2002).
5. Extracellular Matrix Deposition. AngII is a risk

factor implicated in cardiac remodeling, and ARB treat-
ment is protective (Nagata et al., 2002). AT1 receptor
signaling is increasingly recognized for its profibrotic
effects in other tissues as well. Mechanism of fibrosis
may differ in different tissues. In the heart, the AT1

receptor upregulates TGF-b1, laminin, and fibronectin
expression and contributes to increased cardiac fibro-
blast attachment to collagens I and III and increased
focal adhesion kinase activity. Synthesis of the extra-
cellular matrix proteins upon AT1 receptor activa-
tion (Kato et al., 1991; Mifune et al., 2000) involves

transactivation of EGFR-MAPK–dependent pathways
(Ju and Dixon, 1996; Touyz et al., 2001a). Abnormal
accumulation of proteoglycans is known in atheroscle-
rotic lesions (Evanko et al., 1998; Iozzo, 1998), and
treatment with ARBs induces proteoglycan changes
that favor healthier cell adhesion, migration, and dif-
ferentiation (Iozzo, 1998;Moriguchi et al., 1999; Sasamura
et al., 2001). In aortic VSMCs and ECs as well as in
cardiac cells, the AT1 receptor–EGFR transactivation
pathway also regulates fibronectin synthesis, produc-
tion of matrix metalloproteinases and breakdown of
collagen IV, expression of plasminogen activator inhibitor-1
(Feener et al., 1995; Chen et al., 2000b; Kawano et al.,
2000; Nakamura et al., 2000). Regulation of PAI-1 by
the AT1 receptor seems to be important inmany contexts;
for instance, in human adipocytes, impairment of the
fibrinolysis has been implicated in obesity (Skurk
et al., 2001) and in reduced trophoblast invasion (Xia
et al., 2002; Abbasi et al., 2005). AT1 receptor blockade
effectively reduces AngII-stimulated PAI-1 secretion
(Sironi et al., 2001). In skinwound healing, AT1 receptor–
stimulated keratinocyte and fibroblast migration me-
diated by EGFR transactivation (Yahata et al., 2006)
causes an increase in TGF-b1 and integrin protein
levels (Thibault et al., 2001). This wound-healing path-
way is attenuated in AT1 receptor-knockout mice. Thus,
the AT1 receptor regulates formation of ECM compo-
nents and turnover of matrix. The mechanisms and
pathways that integrate ECM formation and turnover
in relation to AngII signaling are still being discovered.

6. Insulin Resistance. Patients with an imbalance in
RAS homeostasis exhibit decreased insulin sensitivity
(Nickenig et al., 1997; Kurtz and Pravenec, 2004), and
treatment with ARBs improves insulin resistance and
diabetic complications (Henriksen et al., 2001; Igarashi
et al., 2001; Kurtz and Pravenec, 2004). Studies in rats
show that AT1 receptor activation hinders insulin sig-
naling upon infusion of AngII to cause insulin resis-
tance (Patiag et al., 2000; Ogihara et al., 2002). Normally,
insulin binding to insulin receptor enhances its tyro-
sine kinase activity and tyrosine phosphorylation of
the insulin receptor substrates (IRS) and activation of
phosphatidylinositol-3 kinase (PI3K). In rat VSMCs,
AngII impairs coupling of the insulin receptor (IGF-1R)
to PI3K and inhibits insulin-mediated IRS-1 tyrosine
phosphorylation and association of IRS-1 with p85 (Folli
et al., 1997). Alternatively, AngII increases serine phos-
phorylation of IRS-1 (Ser616 via ERK and Ser312 via
JNK), thus interfering with insulin signaling (Andreozzi
et al., 2004). Another mechanism described for interfer-
ence with insulin signaling involves AngII-dependent
tyrosine phosphorylation of PDK1 and ROS-sensitive
Src activation (Taniyama et al., 2004; Taniyama et al.,
2005). PKC is another kinase that may interfere with
insulin signaling (Motley et al., 2003). Thus, AT1 receptor
signals may hamper insulin action at multiple levels.
Hypertension and diabetes are frequently seen together,
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indicating that interaction between AngII and insulin
signaling plays an important role in cardiovascular
pathology. ACE inhibitors are effective in the treat-
ment of neuropathy found in diabetes (Malik et al.,
1998; Malik, 2000). Coppey et al. (2006) showed that
L-158809 (2-ethyl-5,7-dimethyl-3-[[4-[2-(2H-tetrazol-5-yl)
phenyl]phenyl]methyl]imidazo[5,4-b]pyridine), an AngII
receptor blocker, attenuated diabetic neuropathy in
streptozotocin-induced diabetic rats. Until now, there
are no clinical studies on the effect of ARBs in diabetic
neuropathy, although the results suggest that ARB
application may bear promise for treating neuropa-
thy associated with vascular dysfunction and diabetic
condition.
7. Angiogenesis and Cancer. AT1 receptor–regulated

cell proliferation and angiogenesis has biologic and
therapeutic implications in cancer (Escobar et al., 2004;
Deshayes and Nahmias, 2005; Uemura et al., 2005,
2006, 2011; Ino et al., 2011; Lau and Leung, 2011;
Uemura and Kubota, 2012). Local AngII production is
a proangiogenic stimulus in tumor microenvironment.
Tumors implanted in wild-type mice developed in-
tensive angiogenesis with vascular endothelial growth
factor (VEGF) induction in tumor stroma. Systemic
administration of an ARB reduced tumor-associated
angiogenesis and VEGF expression in tumor stroma.
In comparison, tumor-associated angiogenesis was re-
duced in AT1aR null mice, which was characterized by
reduced expression of VEGF in the stroma and also
reduced infiltration by macrophages. AngII-induced
angiogenic factors production involves AT1 receptor/
JAK2/STAT3/SOCS3 signaling pathway. These results
suggest that host stromal VEGF induction by AT1 re-
ceptor is a key regulator of tumor growth and blockade
of VEGF production by ARBs may be a novel thera-
peutic strategy against cancers (Egami et al., 2003;
Fujita et al., 2005). AngII has been shown to function
as a key role in neovascularization of hepatocellular
carcinoma (Tamarat et al., 2002) in human breast carci-
noma cells (Greco et al., 2002) as well as in invasive
ductal breast cancer (Jethon et al., 2012). Both lisinopril
and losartan treatment resulted in elevation in VEGF
expression and angiogenesis, confirming the relation-
ship between AT1 receptor, VEGF, and vessel growth
(Tamarat et al., 2002).
The choriocarcinoma cell proliferation is enhanced by

AngII through the AT1 receptor and activation of pro-
tein kinase C– and mitogen-activated protein kinase
(Ino et al., 2003). AngII plays a role in the growth and
chemoresistance of AT1 receptor-positive pancreatic
cancer cells through its action as a potent mitogen and
antiapoptotic molecule (Amaya et al., 2004). AngII may
promote prostate tumorigenesis via upregulation of
PAX2 expression (Bose et al., 2009; Zhao et al., 2010).
Thus, in the context of cancers of multiple tissues,
AngII/AT1 receptor signaling may favor tumor growth
and may also contribute to aggressive etiology of

cancers. Consideration of ARBs to restrict tumor growth
should be a front line antitumor growth approach.

8. Autoantibodies and Malignant Hypertension.
Autoantibodies that bind to and activate the AT1 re-
ceptor exist in patients with hypertensive disorders and
contribute to disease pathophysiology in preeclampsia,
in kidney transplant recipients who develop refrac-
tory vascular rejection, and in patients with malignant
hypertension (Roberts, 2000; Lodwick, 2001; Dechend
et al., 2004; Herse et al., 2008; LaMarca et al., 2011;
Herse and LaMarca, 2013; Xia andKellems, 2013).More
recently, AT1 receptor–directed autoantibodies have
been seen in patients with the autoimmune diseases,
including systemic sclerosis, featuring autoimmunity,
vasculopathy, and tissue fibrosis (Fu et al., 2000; Liao
et al., 2002; Ansari et al., 2005; Dragun et al., 2005;
Riemekasten et al., 2011). The AT1 receptor autoanti-
bodies found in preeclampsia, renal allograft rejection,
andmalignant hypertension are directed to an epitope,
-AFHYESQ-, in the second extracellular loop of the AT1

receptor (Wallukat et al., 1999). Treatment with AT1

receptor blocker reverses the pathophysiological effects
of AT1 receptor autoantibodies in these diseases, sug-
gesting the ability of autoantibodies to activate AT1

receptors (Dechend et al., 2000; Dorffel et al., 2003).
Autoantibody-induced production of reactive oxygen spe-
cies (ROS) by the placenta and maternal tissues likely
contributes to the oxidative stress associated with
preeclampsia (Hubel, 1999;Many et al., 2000; Sikkema
et al., 2001; Dechend et al., 2003; Thway et al., 2004).
Injection of pregnant mice with IgG from preeclamptic
patients leads to hypertension, proteinuria, and pre-
eclampsia in mice (Zhou et al., 2008b). These features
were prevented by an antibody-neutralizing, seven-
amino-acid epitope peptide (Zhou et al., 2007, 2008a).
The presence of AT1 receptor autoantibodies was also
confirmed in the experimental rat models of pre-
eclampsia as extensively reviewed by Xia and Kellems
(2013) recently.

III. The Angiotensin II Type 2 Receptor

Despite the controversial role it plays, the literature
on the AT2 receptor is quite extensive and confusing
as reflected by 1061 peer-reviewed articlesmined in our
search (Fig. 1; Kemp, Karnik et al., 2014, http://www.
guidetopharmacology.org/GRAC/ObjectDisplayForward?
objectId=35.). TheAT2 receptor is a seven-transmembrane
helical receptor that shares approximately 34% amino
acid sequence homology with the AT1 receptor. Its dis-
covery in the 1980s as the dithiothreitol-potentiated or
the PD123319-binding AngII receptor in vivo, cDNA
cloning, identification of the gene, and generation of gene-
knockout and transgenic mice in 1990s highlight the
history of the AT2 receptor (de Gasparo et al., 2000). The
AGTR2 gene is localized in thehuman chromosomeXq22-
q23. GeneAgtr2 in the rat is located on chromosomeXq34
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and in mouse on chromosome at X12.5 cM. Gene orga-
nization is conserved in human and rodents, consisting
of three exons, two introns, and the entire protein-
coding frame contained in the third exon (de Gasparo
et al., 2000). The first two exons contain a 59-untrans-
lated region (Vervoort et al., 2002). The AT2 receptor
is evidently different from the AT1 receptor in terms
of gene, genetic variations, protein sequence, tissue-
specific expression, signaling mechanisms, regulation
of receptor function, and pharmacological property. The
in vivo physiologic functions of the AT2 receptor are still
not clearly defined. Fifteen years of research and.2500
publications devoted to AT2 receptor delineate the
discovery of unconventional ligand selectivity, agonist-
independent signaling, and cGMP/NO signaling by AT2

receptor. Identification of novel AT2 receptor–interacting
proteins and pharmacological agonists in recent years
rekindled interest in this enigmatic receptor that could
be therapeutically exploited for a possible protective
role. This aspect of the AT2 receptor is focused on in
this review.

A. Structure

The human, rat, and mouse AT2 receptor cDNAs
encode a 363-amino acid protein that harbors hall-
marks of a typical GPCR (Nakajima et al., 1993;
Kambayashi et al., 1994; Koike et al., 1994). The AT2

receptor amino acid residues show 72% divergence
between rodents and humans, whereas the sequence
is 99% conserved between rat and mouse. The AT2

receptor encodes five potential N-glycosylation sites,
which account for diversemolecularweights (68–113 kDa)
observed in different tissues. Two potential disulfide
bonds located in the AT2 receptor extracellular region
account for its characteristic DTT potentiation, which
distinguishes it from the AT1 receptor (Speth et al.,
1991; Feng et al., 2000). The amino acid sequence iden-
tity between regions of the AT2 receptor and AT1 re-
ceptor varies between 24 to 34% in the transmembrane
domain. The sequence of the third intracellular loop
and the carboxyl terminal tail in AT2 receptor diverge
substantially from AT1 receptor. These structural fea-
tures of the AT2 receptor form a potential basis for its
poor coupling to G-proteins and lack of phosphoryla-
tion by GRKs as well as lack of desensitization after
AngII binding. Although it was cloned over 15 years
ago, little progress has beenmadewith regard to solving
the three-dimensional structure and identifying ligand-
binding residues of the AT2 receptor. The mechanism
of ligand recognition and transmembrane signaling by
the AT2 receptor remains unexplored, which should be
a priority in light of the possible protective role of the
AT2 receptor.

B. Pharmacology

Natural peptide hormone ligands AngII and AngIII
bind the AT2 receptor with nanomolar affinity and do

not distinguish it from the AT1 receptor. Although the
semipeptide CGP42112 is an agonist for the AT2 re-
ceptor, it is a nonspecific agonist for AT1 receptor at
high concentration (Ki 1.7 mM) (Brechler et al., 1993;
Macari et al., 1994; de Gasparo et al., 2000). The analog,
[p-amino-Phe6] AngII is a classic ligand used to discrim-
inate between AT1 and AT2 receptors. An additional
potential endogenous agonist of the AT2 receptor is
vasoconstriction-inhibiting factor (VIF), which was iso-
lated from human adrenal glands. VIF is a vasoregula-
tory peptide that modulates the vasoconstrictive effects
of AngII by acting on the AT2 receptor (Salem et al.,
2015). VIF has been shown to inhibit AngII-induced
phosphorylation of the p38 mitogen-activated protein
kinase pathway but not of extracellular-regulated
kinase 1/2 (Salem et al., 2015). A previously held view
that AngI is a natural ligand for the AT2 receptor is
incorrect. Despite recognizing the same physiologic li-
gand, the pharmacophore for the AT2 receptor is dis-
tinct from that of the AT1 receptor (Miura and Karnik,
1999). Molecular recognition of AngII by the AT2 re-
ceptor is "relaxed," operating upon a Lilliputian princi-
ple in that side-chain modifications of AngII that are
detrimental to AT1 receptor binding affinity are well
tolerated by the AT2 receptor. The discovery that in-
teraction of no individual residue in AngII is critical for
affinity of binding explains the ability of this receptor to
engage analogs and metabolites of AngII (Miura and
Karnik, 1999).

The nonpeptide antagonists PD123319 (ditrifluoro-
acetate) and PD123177 (trifluoroacetate salt) are widely
used tools. PD123319 has a high affinity for the AT2

receptor (Ki ;12 nM) and is approximately 10,000-fold
more selective for AT2 than AT1 receptors. AT2 receptor
selectivity has been an important tool in defining the
pharmacology and functions of this receptor in several
different types of cells and tissues (Chiu et al., 1989;
Chang and Lotti, 1990; Dudley et al., 1990; Wiest et al.,
1991; Dudley and Summerfelt, 1993). Experimentally,
the AT2 receptor has been observed to bind a variety of
ligands with an affinity order, CGP42112 . AngII $
AngIII . Compound 21 $ PD123319 .. AngIV . Ang
(1-7) in the AT2 receptor-transfected HEK-293 cells
(Jones et al., 2011; Sipahi et al., 2011). Shorter angiotensin
peptides may act as endogenous ligands at the AT2 re-
ceptor; therefore, defining the physiology as well as the
concept of separate receptors forAngII-metabolite peptides
should formally rule out AT2 receptor–mediated effects.

Research on the AT2 receptor, specifically defining
the beneficial effect, has long been hampered because
of its low expression level in the adult and lack of li-
gands with pharmacological specificity. However, an
AT2 receptor–selective nonpeptide agonist, Compound
21 (Wan et al., 2004), and its application for defining in
vivo function of this receptor is attracting attention to
expound the distinct roles of the AT2 receptor in many
physiologic and pathophysiological states.
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The AT2 receptor is a new target for development of
novel therapeutic agents to treat neuropathic pain. Hu-
man sensory neurons selectively express AT2 receptor
and not AT1 receptor and hence may play a role in
nociception (Anand et al., 2013; Smith et al., 2013a,b).
In general, treatments for neuralgia and neuropathic
pain are limited by poor efficacy and unfavorable side
effects. The AT2 receptor antagonist PD123319 and
some analogs have been developed into orally active
drugs for neuropathic pain (Smith et al., 2013a,b). EMA401
((S)-2-(diphenylacetyl)-1,2,3,4-tetrahydro-6-methoxy-5-
(phenylmethoxy)-3-isoquinolinecarboxylic acid), a highly
selective AT2 receptor antagonist, has been shown to
inhibit capsaicin-evoked calcium influx in human and
rodent sensory neuron cultures (Anand et al., 2013). In
a phase-two clinical trial, EMA401 was found to pro-
vide superior relief of postherpetic neuralgia compared
with placebo and was well tolerated by patients (Rice
et al., 2014). EMA300 (5-[2,2-di(phenyl)acetyl]-4-[(4-
methoxy-3-methylphenyl)methyl]-1,4,6,7-tetrahydroimidazo
[4,5-c]pyridine-6-carboxylic acid), another small molecule
antagonist of the AT2 receptor, was found to alleviate
neuropathic pain in mice with a chronic constriction in-
jury of the sciatic nerve. Smith et al. (2013a,b) also showed
that augmented Ang II/AT2 receptor signaling in the
dorsal root ganglia of chronic constriction injury rats
was attenuated by EMA300, blocking p38 MAPK and
p44/p42 MAPK activation and producing analgesia.
Recently, EMA200 and EMA300 were assessed in a rat
model of dideoxyxytidine-induced antiretroviral toxic
neuropathy (ATN) (Smith et al., 2014). ATN is com-
monly observed in individuals infected with HIV and
taking certain antiretroviral drugs to suppress viral
replication. These individuals have a high prevalence
of neuropathic pain and, therefore, a great need for
new analgesics with $1000-fold selectivity over the
AT1 receptor. Administration of EMA200 and EMA300
induced dose-dependent analgesia in dideoxyxytidine
rats, suggesting that these AT2 receptor–specific anal-
gesics should be investigated further for the relief of
ATN (Smith et al., 2014). Further assessment of these
and additional small molecule antagonists will advance
the field of neuralgia management to develop promising
therapeutics aimed at targeting the AT2 receptor.
Based on the relaxed “conformation” hypothesis,

AT2 receptor was predicted to harbor high constitutive
activity (Miura and Karnik, 1999). Several lines of evi-
dence have indeed confirmed that AT2 receptor functions
in the absence of its ligand. The AT2 receptor induces
apoptosis in the absence of AngII stimulation, and this
effect is not modulated by PD123319 (Miura and Karnik,
2000). Similarly, in neonatal cardiomyocytes, adenoviral-
mediatedAT2 receptor expression inducesmyocyte growth,
which is an effect not modulated by AngII, PD123319,
or CGP42112 (nicotinic acid-Tyr-N-benzoxyl-carbonyl-
Arg-Lys-His-Pro-Ile-OH) (D’Amore et al., 2005). In hu-
man coronary artery endothelial cells, lentiviral delivery

of the AT2 receptor changes expression of a large number
of genes without AT2 receptor ligands, and many fewer
genes were differentially expressed when the AT2 receptor–
specific ligand CGP42112 was added (Falcon et al., 2005).
Kemp et al. (2014b) found that AT2 receptor expression
antagonized regulation of microRNAs by AT1 receptor
and AngII stimulation of AT2 receptor affected expres-
sion of only a few microRNAs, whereas the same treat-
ment caused a robust response from AT1 receptor. These
findings suggest that altered expression of AT2 receptor
itself is a stimulus for function and that many cellular
effects of AT2 receptor expression are not contingent on
ligand interaction with this receptor.

C. Mouse Models

Mouse models of AT2 receptor deletion and over-
expression have been useful tools for researchers to
dissect the role of this receptor in cardiovascular and
renal disease states. AT2 receptor null mice have in-
creased blood pressure compared with wild-type ani-
mals along with a host of other consequences, including
increased sensitivity to injected AngII, attenuation of
exploratory behavior, delay in VSMC differentiation,
and increased susceptibility to renal-tubular develop-
mental disease (Hein et al., 1995; Ichiki et al., 1995;
Ichihara et al., 2001).

There are no gross developmental abnormalities in
AT2 receptor null mice, but blood pressure was found to
be either unchanged (Hein et al., 1995) or increased
(Ichiki et al., 1995) in these AT2 receptor–null mice. Based
on blood pressure elevation and augmented vascular
sensitivity to AngII observed in the AT2 receptor–null
mice, AT2 receptor action in vasculature has been
suggested to be protective, counteracting blood pres-
sure regulation by the AT1 receptor (Hein et al., 1995;
Ichiki et al., 1995). Several mechanisms may contrib-
ute to the protective effect, including regulation of
AT1 receptor expression (Tanaka et al., 1999), vascu-
lar bradykinin, and cGMP/NO production (Padia and
Carey, 2013). The changes in exploratory behavior
and greater stimulation of dipsogenesis in the AT2

receptor null mice suggest neurologic dysfunction (Hein
et al., 1995; Ichiki et al., 1995). The AT2 receptor is
prominently expressed in distinct brain areas such as
the locus coeruleus (Rowe et al., 1990) and the amyg-
daloid nucleus (Song et al., 2002). Using riboprobe in
situ hybridization histochemistry, Lenkei et al. (1997)
mapped the distribution of AT2 receptor mRNAs in the
adult rat and found a predominant expression in the
brain regions of the subfornical organ, the hypothala-
mus, and the lateral septum. They reported very limited
overlap between the brain expression of AT1A and AT2

receptor mRNAs. de Kloet et al. (2014) used bacterial
artificial chromosome transgenic AT2 receptor-enhanced
green fluorescent protein (eGFP) reportermouse to localize
AT2 receptors at a cellular level. The authors examined for
colocalized eGFP and AT2 receptor mRNA within the
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brain. This mapping approach localized AT2 receptors to
neurons within the nucleus tractus solitarius and median
preoptic nuclei that regulate blood pressure, metabolism,
and fluid balance, as well as limbic and cortical areas
known to impact stress responding and mood. The para-
ventricular nucleus of the hypothalamus did not display
AT2 receptor-eGFP neurons, but efferent neurons termi-
nating in the paraventricular nucleus and the GABA neu-
rons surrounding the paraventricular nucleus did. The
authors concluded those central AT2 receptors are posi-
tioned to regulate blood pressure, metabolism, and stress
responses in their transgenic mouse model.
Behavioral effects reported in AT2 receptor null mice

may be due to loss of AT2 receptor regulation in these
areas. Although developmental apoptosis of mesen-
chymal cells is not altered in AT2 receptor null mice, an
increased risk for renal diseases has been observed in
AT2 receptor null mice (Kakuchi et al., 1995). The
massive expression of AT2 receptor in the mesenchy-
mal tissues was previously thought to regulate ontogeny
of metanephros and tubulogenesis during develop-
ment through apoptosis. However, nephrogenesis is
not significantly altered by the AT2 receptor null
condition. More detailed and long-term follow up studies
have demonstrated that the loss of the AT2 receptor in
mice may cause congenital anomalies of the kidneys
and urinary tract (CAKUT syndrome) with a .23%
penetrance.
Deletion of the AT2 receptor inmicewas also observed

to cause inhibition of pressure natriuresis, vascular
hypertrophy, and exacerbation of HF (Gross et al., 2000;
Brede et al., 2001; Adachi et al., 2003). Renal vascular
differentiation and the vascular smooth muscle con-
traction was altered because of the delayed expression
of caldesmon and calponin, suggesting that the AT2

receptor enhances the differentiation of VSMCs and
therefore plays an important role in vasculogenesis
(Yamada et al., 1998). Role of AT2 receptor in cardiac,
renal, and adrenal function is still unclear; its role in
modulating pressure natriuresis is controversial as well
(Keiser et al., 1992; Lo et al., 1995; Siragy and Carey,
1996). Pharmacological modulation of AT2 receptor
with agonists or antagonists in rats suggested an anti-
diuretic and antinatriuretic function of the AT2 re-
ceptor. In rats and mice, AT2 receptor activation by the
selective agonist C21 induced pressure natriuresis and
lowered blood pressure (Kemp et al., 2014a). However,
studies in AT2 receptor-knockout mice indicated ex-
actly the opposite effects (Siragy, 2010).
Cardiac overexpression of the AT2 receptor in mice

did not cause obvious morphologic or functional
changes, but AngII infusion decreased blood pressure
and produced a negative chronotropic effect (Masaki
et al., 1998). Stimulation of bradykinin activity and
nitric oxide production after inhibition of the Na+/H+

exchanger in AT2 receptor transgenic mice is attributed
to this paradoxical phenotype (Tsutsumi et al., 1999).

Unequivocally defining the physiologic functions of
the AT2 receptor through transgenic and knockout
mouse models did not occur. However, the findings with
these models as well as physiologic explanations have
been controversial and raise questions regarding a
"yin-yang" paradigm invoked to explain the regulatory
roles of the two AngII receptor types.

D. AGTR2 Genetic Polymorphism

In humans, gene polymorphisms that persist in pop-
ulations and cause variable phenotypes in the indi-
viduals are widely studied. Genotyping humans for
functional, single nucleotide polymorphisms (SNPs)
within theAGTR2 have been used in association studies
to elucidate the pathogenic role of the AT2 receptor in
cardiovascular, neurologic, and renal diseases in vari-
ous populations. Many of nonsynonymous changes have
been associated with X-linked mental retardation (e.g.,
G21V, R324Q, I337V, and I53F). In addition, a base-
pair deletion at position 395 causes a frame shift at
Phe133 in the third transmembrane domain of the AT2

receptor, resulting in a truncated protein, which is also
associated with intellectual deficit (Vervoort et al.,
2002; Bienvenu et al., 2003; Renieri et al., 2005). The
effect of the +1675 G/A SNP has been associated with
left ventricular structural changes in young men with
arterial hypertension (Schmieder et al., 2001). In
addition, the intronic polymorphismG allele in patients
was reported to modulate left ventricular mass under
high sodium intake (Ott et al., 2007). In hypertrophic
cardiomyopathy patients, there is an association be-
tween this polymorphism and hypertrophy, which could
potentially be used as a marker for genetic predisposi-
tion to left ventricular hypertrophy (Carstens et al.,
2011). A second SNP, A/C 3123, has been linked to
metabolic disorders such as blood pressure and body
mass index among the diabetic population in Japan
(Miyaki et al., 2006; Kotani et al., 2007). Further
analysis showed that this SNP could be a marker for
glycemic control (i.e., via HbA1c level) among Japanese
women (Kotani et al., 2009). Finally, a C to A conversion
at position 4599 was linked to preeclampsia associ-
ated with bodymass index$25 kg/m (Dorn and Force,
2005), suggesting a gene-environment interaction (Zhou
et al., 2013). Polymorphisms in intron 1 of the AGTR2
gene (A-1332G) occur with higher frequency in human
patients with congenital urinary tract abnormalities,
suggesting that theAT2 receptormay play an important
role in the development of the urinary tract (Hohenfellner
et al., 1999).

E. Signaling

The intracellular signal transduction processes ac-
tivated by the AT2 receptor, which govern cellular and
physiologic responses, are atypical for a GPCR and
distinctly different from those mediated by the AT1 re-
ceptor (Fig. 7). Elucidating AT2 receptor–specific signaling
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pathways has been difficult and unsolved in most aspects,
including receptor-proximal proteins that mediate the
signaling by the AT2 receptor.
1. G-Protein Involvement. All of the classic motifs

and signature residues of a GPCR are present in the
AT2 receptor; however it fails to demonstrate classic
features of G-protein signaling. Robust activation of
heterotrimeric G-proteins, second messenger signals (cal-
cium, DAG, cAMP, and IP3), desensitization by phosphor-
ylation, and receptor regulation by internalization is not
observed in AT2 receptor transfected cells (Kambayashi
et al., 1993; Mukoyama et al., 1993; Miura and Karnik,
2002) or the native cells R3T3, PC12W, ovarian gran-
ulosa cells (Dudley et al., 1991; Pucell et al., 1991;
Bottari et al., 1992a; Leung et al., 1992a; Webb et al.,
1992). This behavior is consistent with observations of
affinity of AngII binding, which is not affected by GTP
or its analog GTPgS in tissues exclusively expressing
theAT2 receptor, such ashumanmyometrium, rat adrenal
glands, and bovine cerebellar cortex (Bottari et al.,
1992a). Lack of agonist-induced desensitization and
recycling of the AT2 receptor is also observed in adult
mice (Unger, 1999).
Multiple reports suggesting potential AT2 receptor

coupling to Gi/Go have directly linked downstream
signals to activation of this class of G-proteins (Fig. 7).
For instance, AT2 receptor s sensitive to GTPgS and
pertussis toxin have been described in the locus coeru-
leus of the rat brain and thalamic or geniculate nuclei
implying a coupling to heterotrimeric G-proteins, Gi and
Go (Tsutsumi and Saavedra, 1991). The AT2 receptors

appear to bind to Gia2 or Gia3 in developing fetus in rat
(Zhang and Pratt, 1996) and in adult rat kidney cells.
The intracellular third loop (ICL3) of the AT2 receptor
was shown to be important for its coupling to Gi

(Hayashida et al., 1996). Evidence of ICL3 involvement
was also shown in AT2 receptor induction of apoptotic
responses in the PC12W neuronal lineage cells (Lehto-
nen et al., 1999) and in AT2 receptor–mediated in-
hibition of IP3 generation in Xenopus oocytes (Kumar
et al., 2002). More recent studies implicated the in-
volvement of Gi in AT2 receptor–dependent increases in
nitric oxide synthase expression (Li et al., 2007a) and the
inhibition of proximal tubule Na+-ATPase by Ang(1-7)
(Siragy and Carey, 1996; Siragy et al., 1996; Gohlke
et al., 1998; Siragy, 2000). The production of prosta-
cyclin in differentiated adipocytes was blocked by
PD123177 and not by losartan, which suggests that
this is an AT2 receptor–mediated signal (Darimont et al.,
1994). Whether this mechanism involved a G-protein,
a Gi signaling pathway remains to be clarified. Direct
G-protein activation assays in heterologous expression
systems remain difficult with the AT2 receptor. Whether
ICL3 is important for coupling of the full-length receptor
to Gi has not been validated by mutations in ICL3.
Discrepant findings regarding G-protein coupling with
the AT2 receptor is an unresolved research challenge
that constrains a full understanding of AT2 receptor
signaling mechanisms.

2. Protein Phosphatase Involvement. Depending on
the tissues, activation of the AT2 receptor can stimulate
protein phosphatases (MKP-1, PP2A, SHP-1) and protein

Fig. 7. Diverse signaling by AT2 receptor. Each tile represents signaling pathways reported in different cellular and tissue context leading to
physiologic or pathologic consequences. See main text for details.
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dephosphorylation (Fig. 7). The activation of vanadate-
sensitive tyrosine phosphatase as well as Ser/Thr phos-
phatases has emerged as a key mechanism accounting
for the antigrowth and apoptotic effects of the AT2 re-
ceptor (Bottari et al., 1992a; Horiuchi et al., 1997; Elbaz
et al., 2000). The activation of the protein tyrosine
phosphatase SHP-1 mediated by AT2 receptor is per-
tussis toxin insensitive, thus a Gi-independent signal
(Bedecs et al., 1997). SHP-1 coupling may actually in-
volve an atypical G-protein scaffolding mechanism,
Gbg-independent constitutive association of the recep-
tor with Gs and SHP-1 (Feng et al., 2002). In contrast to
these studies, a Gi-coupled activation of PTP by AT2

receptor in VSMCs was reported. Activation of Gi/Go in
these cells by a peptide corresponding to the third
intracellular loop of the AT2 receptor was inhibited by
pertussis toxin, as well as by sodium orthovanadate a
tyrosine phosphatase inhibitor. The serine/threonine
phosphatase inhibitor okadaic acid did not block it
(Hayashida et al., 1996). Similarly, activation of solu-
ble SH-PTP1 to attenuate MAPK activation and DNA
synthesis through thymidine incorporation observed
in NIE-115 neuronal cells was suggested to be Gi/Go

dependent.
Activation of PTPases by the AT2 receptor in cells

may limit mitogen-activated protein kinase (MAPK)
signaling and dephosphorylation of extracellular signal-
regulated kinases 1 and 2 (ERK1/2) (Huang et al., 1995;
Hayashida et al., 1996; Bedecs et al., 1997; Fischer et al.,
1998; Akishita et al., 1999). The AT2 receptor is a gener-
alized negative regulator of intracellular kinase sig-
naling, and thus it may antagonize growth stimulation
by AngII, EGF, PDGF, or serum. AT2 receptor knock-
out mice confirm this aspect, because elevated levels of
ERK1/2 were reported at baseline and in response to
serum (Akishita et al., 1999). ERK1/2 dephosphoryla-
tion may occur through three phosphatases: SHP-1,
mitogen-activated protein kinase phosphatase 1 (MKP-1),
and protein phosphatase 2A (PP2A) (Huang et al., 1995;
Horiuchi et al., 1997; Yang et al., 1999). The AT2

receptor–mediated suppression of MAPK activation in
vessels is reported (Nakajima et al., 1995). The carotid
artery expresses low levels of theAT2 receptor (Viswanathan
and Saavedra, 1992), but re-expressed AT2 receptor at
the edge of neointima during carotid injury or in a healing
wound of the skin suppresses AngII-induced MAPK
activity in a PD123319-sensitive manner to facilitate
remodeling of these tissues (Nakajima et al., 1995). AT2

receptor activation is linked to upregulation of SHP-1 in
vascular-targetedAT2 receptor transgenicmice (Matsubara
et al., 2001). The AT2 receptor in the neonatal hypo-
thalamic neurons is reported to inactivate MAPK, and
the presence of the AT2 receptor antagonist PD123319
enhanced MAPK activity in these neurons. The ERK
inactivated by the AT2 receptor plays a physiologic role
in vivo, depending upon the biologic context in which
AT2 receptor is engaged. For instance, in PC12W cells,

which express only AT2 receptor, AngII-regulated
short-lived ERK phosphorylation plays a role in neu-
ronal differentiation by AngII and nerve growth factor
costimulation (Stroth et al., 2000). In the heart of AT2

receptor transgenic mice, the antihypertrophic state of
myocytes is associated with ERK dephosphorylation,
which indicates that ERK inactivated by the AT2

receptor plays a physiologic role in vivo (Masaki et al.,
1998).

Conflicting reports also exist regarding phosphatase
activation in AT2 receptor–mediated proapoptotic effects.
Dephosphorylation of Bcl-2 by MKP-1 was observed in
AT2 receptor–induced apoptosis in PC12W cells, which
was ligand dependent (Horiuchi et al., 1997); apoptosis
was shown to be a constitutive function of theAT2 receptor
that involves activation of p38MAPK (Miura and Karnik,
2000). Overexpression of the AT2 receptor in neonatal
cardiomyocytes promoted growth (D’Amore et al., 2005).
Overexpression andAngII stimulation of theAT2 receptor
in porcine cardiac fibroblasts inhibited protein tyrosine
phosphatases (Warnecke et al., 2001). Observed contra-
dictions further highlight the context-specific effects of the
AT2 receptor overexpression.

3. Scaffolding Protein Involvement. Choosing an un-
biased approach to understanding how the AT2 receptor
suppresses cellular growth in different contexts yielded
intriguing leads (i.e., yeast 2-hybrid “fishing”with the AT2

receptor C-terminal tail as bait), which are indicative of
completely novel signaling modalities (Fig. 7); however,
these are in-progress studies that might lead to novel
physiologic endpoints.

Negative regulation of several receptor tyrosine ki-
nases (RTKs) including fibroblast growth factor, epi-
dermal growth factor (Zhang et al., 2009) and insulin
receptors by AT2 receptor is described as transinactiva-
tion by AT2 receptor activation of PTPases as well as
inhibition of autophosphorylation of the RTKs (Elbaz
et al., 2000; De Paolis et al., 2002). Possible mechanisms
suggested for the transinactivation of RTKs include a
direct physical interaction between the two receptors.
The ErbB3 EGF receptor as an interacting partner with
C terminus of the AT2 receptor was identified. These
authors also showed that replacing ICL3 of the AT2

receptor with that of AT1 receptor abolishes the in-
teraction with ErbB3 and the inhibitory effects on cell
proliferation and the activation of apoptosis (Pulakat
et al., 1998, 2002).

The AT2 receptor C-terminal tail interaction with
the transcription factor promyelocytic zinc finger pro-
tein (PLZF) is one of the most surprising discoveries.
After AngII stimulation, PLZF translocates from the
cytosol to the plasma membrane and then promotes
internalization of the AT2 receptor with PLZF, leading
to accumulation of AT2 receptor in the perinuclear
membrane. PLZF enters the nucleus where it activates
the p85a subunit gene of PI3K and enhances p70S6

kinase activity, which is essential for protein synthesis
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(Senbonmatsu et al., 2003). The finding that AT2 receptor
internalizes when associated with PLZF is an interesting
phenomenon, given that AT2 receptor does not normally
internalize (Mukoyama et al., 1995; Turu et al., 2006).
PLZF is a highly expressed transcription factor in the
heart; however, its expression is not affected in the AT2

receptor–knockoutmice. AT2-knock–outmice do not show
a hypertrophic response to pressure overload after aortic
banding, this phenotype is associated with a failure to
upregulate p70S6 kinase after pressure overload. The AT2

receptor–null hearts also fail to activate p85a transcription
in response to AngII infusion. These data strongly suggest
that the AT2 receptor-PLZF-p85a-p70S6 kinase–signaling
axis might be important in the induction of cardiac
hypertrophy (Senbonmatsu et al., 2000).
Two independent groups identified ATIP/ATBP50

(AT2 receptor interacting protein) (Nouet et al., 2004;
Wruck et al., 2005). At least four members are known to
date for the ATIP-family (ATIP1-4). They all conserve
an AT2 receptor–interacting domain and can inhibit
insulin, epidermal growth factor, and basic fibroblast
growth factor-induced ERK1/2 activation and DNA
synthesis in CHO cells in a similar manner to AT2 re-
ceptor (Nouet et al., 2004). The ATIP-mediated inhibition
of ERK1/2 requires AT2 receptor expression but not
treatment with AngII (Nouet et al., 2004). Li et al.
(2007b) showed that siRNA-mediated knockdown of ATIP
inhibits AT2 receptor–mediated expression of methane
methylsulfonate–sensitive 2, which plays an important
role in the ubiquitin proteasome systemandDNA repair.
Methane methylsulfonate–sensitive 2 expression is in-
creased in occluded/remodeling cerebral arteries, which
is consistent with a protective role for the AT2 receptor in
brain injury. The siRNA-mediated knockdown of ATIP is
also reported to reduce cell surface expression of the AT2

receptor and suppress the antiproliferative effect (Wruck
et al., 2005).
Although these studies yielded novel and interesting

directions to pursue, the rationale for choosing the AT2

receptor C-terminal tail as bait is not fully justified.
There is no evidence to suggest that the AT2 receptor
C-terminal tail mediates the functions ultimately de-
scribed for each scaffold protein. Rather surprisingly,
involvement of Gs/Gi/Go proteins and the ICL3 appear to
be an important determinant of AT2 receptor coupling
to PLZF as well as for interactions with ErbB3. These
findings again point to G-protein requirement at least
in unconventional mode and raise doubts about the
mechanisms of scaffold signaling by the AT2 receptor .
4. Nitric Oxide/cGMP Involvement. Nitric oxide (NO)–

stimulated soluble guanylyl cyclase catalytic activity
generates cGMP to generally exert protective effects
in various tissues (Toda et al., 2007). Initial in vitro
studies in neuronal cell lines suggested that AngII via
the AT2 receptor reduced cGMP levels in neuronal cells
(Sumners andMyers, 1991; Sumners et al., 1991; Bottari
et al., 1992b; Brechler et al., 1993). In other in vitro

studies cGMP was not detected (Leung et al., 1992b;
Webb et al., 1992; Mukoyama et al., 1993, 1995; Siragy
and Carey, 1996). The studies by Liu et al. (1997) dem-
onstrated that beneficial effects of AT2 receptor in-
volved kinin stimulation and cGMP production. Gohlke
et al. (1998) also showed that AT2 receptor stimulation
increased cGMP levels in the rat aorta, which was
further corroborated in AT2 receptor–null mice studies
(Siragy et al., 1999). The AT2 receptor transgenic mice
have elevated levels of cGMP in the aorta (Tsutsumi
et al., 1999).

Whether theAT2 receptor directly couples toNO/cGMP
system especially in AT2 receptor transgenic and knock-
out mice or through an indirect bradykinin B2-receptor
dependent mechanism has been controversial. Tsutsumi
et al. (1999) showed that the AT2 receptor stimulates
bradykinin production in VSMCs, and AngII-mediated
cGMP response could be blocked with the bradykinin
receptor antagonist. AT2 receptor stimulates bradykinin
production and promotes the NO/cGMP pathway in a
paracrine manner, and this mechanism is important
in AT2 receptor–mediated vasodilatation of human coro-
nary arteries (Batenburg et al., 2004).Different signaling
circuitry may be involved in AT2 receptor–dependent
NO/cGMP production. In the thoracic abdominal aor-
tic constriction mice model, AT2 receptor activation
induces phosphorylation of eNOS via a PKA-mediated
signaling pathway (Yayama et al., 2006). Bradykinin
acting on the bradykinin B2 receptor can also induce
PKA-dependent phosphorylation of eNOS. Evidences
for a functional heterodimerization of the AT2 re-
ceptor and B2R receptors have been reported, which
suggest that these receptors may physically associate
and possibly increase NO production (Abadir et al.,
2006).

5. Ion-Channel Protein Involvement. A highly re-
producible signal from the AT2 receptor seems to be
coupling to ion-channel proteins (Fig. 7), such as the
hypothalamic neuronal delayed rectifier potassium
channel (Kang et al., 1993, 1994), the T-type calcium
channel (Buisson et al., 1992, 1995) in other cells, which
can suppress or induce cellular growth and differenti-
ation (Nakajima et al., 1995; Stoll et al., 1995; Laflamme
et al., 1996; Meffert et al., 1996; Munzenmaier and
Greene, 1996; Tsuzuki et al., 1996a,b; Gallinat et al.,
1998; Stroth et al., 1998; Cote et al., 1999; Gendron
et al., 1999) as well as support apoptosis (Yamada et al.,
1996; Chamoux et al., 1999; Gallinat et al., 1999).

Cardiac ventricular myocytes express both the AT1

receptor and AT2 receptor. Expression of AT1 receptor
alongwith AT2 receptor is increased in the hypertrophic
ventricles of SHR and two-kidney one-clip hypertensive
rats (Suzuki et al., 1993; Busche et al., 2000). AngII-
stimulated arachidonic acid production in cardiac myo-
cytes is fully blocked by the AT2 receptor antagonist
PD123317, suggesting that AT2 receptor mediates the
activation of phospholipase A2 (Lokuta et al., 1994). The
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AT2 receptor–arachidonic acid signal activates the
Na/HCO symporter system, which maintains pH in myo-
cytes. The arachidonic acid–induced symporter acti-
vation in the heart is a unique function of the AT2

receptor (Sandmann et al., 1998). In rats after myo-
cardial infarction, the postinfarct upregulation of the
Na1/H1-exchanger (NHE-1) and NBC ion transporter
systems are differentially regulated by AT1 and AT2

receptors. ACE inhibitors prevent this regulation in
heart tissue. However, the AT1 receptor antagonists
block NHE-1 upregulation, and the AT2 receptor antag-
onists block the increase of the NBC (Horiuchi et al.,
1999; deGasparo et al., 2000;Nouet andNahmias, 2000).
This difference may be important in evaluating thera-
peutic intervention.
6. Involvement of Constitutive Activity. Ligand-

independent actions of the AT2 receptor (Miura and
Karnik, 2002) is recognized as an important mode
of its in vivo function in several scenarios. Upregu-
lated AT2 receptor expression as seen in remodeling
adult tissues and developing fetal tissue can initiate
constitutive signal transduction without AngII stim-
ulation, leading to apoptosis (Miura and Karnik, 2000).
Stimulation of apoptosis in prostate cancer cells was
mediated by increased expression of the AT2 receptor
(Li et al., 2009b). AT2 receptor gene transfer in the same
cells mediated increased expression of bradykinin and
iNOS in VSMCs. Downregulation of the AT1 receptor
was also observed by the same treatment (Jin et al.,
2002). In another gene transfer study, Porrello et al.
(2009) found that the AT2 receptor constitutively
antagonized AT1 receptor–mediated cardiomyocyte
autophagy. Homooligomerization of the AT2 receptor
through disulfide exchange between Cys35 in one AT2

receptor andCys290 in its dimerization partnerwas shown
to be important for induction of apoptosis without AngII
stimulation (Miura et al., 2005). Augmented release of
bradykinin in mouse coronary artery endothelial cells
was constitutive function (Zhu et al., 2010). Repression of
ERK activity mediated by ATIP requires AT2 receptor
expression but not activation by AngII (Nouet et al.,
2004). Feng et al. (2002) provided a potential mecha-
nism for the constitutive function of the AT2 receptor.
They documented that constitutive association of Ga with
SHP-1 and the AT2 receptor is Gbg independent and
this association is essential in AT2 receptor-mediated
ITIM-independent activation of SHP-1.
At the cellular level, a clear mechanistic model of AT2

receptor signal transduction and cell physiology has yet
to emerge. Despite intensive investigation, the AT2

receptor is one of the inadequately understood compo-
nents of the renin-angiotensin system.

F. Expression and Regulation

Expression of the AT2 receptor is regulated in vivo in
response to environmental cues. Both transcriptional
and translational regulation seems to take place, but

low AT2 receptor expression levels are maintained in
normal nongrowing cells. Growth factors, inflamma-
tory mediators, and the growth phase of the cells regu-
late the AT2 receptor gene. Extended serum depletion
combined with insulin or IGF-1 or interleukin-1b (IL-1b)
stimulate the expression of AT2 receptor in VSMCs,
whereas growth factors, like PDGF and phorbol ester,
inhibit expression of AT2 receptor (Kambayashi et al.,
1993, 1996). The plasma insulin concentrations reg-
ulate AT2 receptor expression in aorta (Kambayashi et al.,
1996). Tissue-specific expression of the AT2 receptor
has been traced to enhancer elements in the AT2 re-
ceptor gene promoter consisting of the AP-1 (inhibitor),
C/EBP, NF/IL-6, IRS, and interferon regulatory factor
IRF-2 (activator).

1. Developmental Regulation. Human tissue expres-
sion of AT2 receptor has been documented by immuno-
cytochemistry, reverse transcriptase–polymerase chain
reaction, and microarray analyses (Ichiki and Inagami,
1995; de Gasparo et al., 2000; Herradon et al., 2004;
Kim et al., 2005b; Chakrabarty et al., 2008; Petracco
et al., 2012). In most tissues, the AT1 receptor and AT2

receptor coexist. The AT2 receptor mRNA expression
analysis provided a better picture of the tissue- and
species-specific distribution (Kakuchi et al., 1995;
Shanmugam et al., 1995; Johren and Saavedra, 1996).
TheAT2 receptor is abundantly and ubiquitously expressed
in the developing rat fetus and neonatal tissues, which
lead to early speculation of a developmental role for the
AT2 receptor (Suzuki et al., 1993; Bastien et al., 1996).

In mouse fetal mesenchymal cells,.95% of the AngII
binding is due to the AT2 receptor. Regulation of its
expression in relation to fetal developmental stages
may suggest a potential role for this receptor in de-
velopmental processes. AT2 receptor expression levels
increase at embryonic days E11–E13. Maximal AT2

receptor expression levels are seen on E19 followed
by a rapid decline in the newborn animals to undetect-
able expression. The AT2 receptor–null genotype has
only a marginal effect, if any, on the development of
mesenchyme-rich tissue or organs in the mouse such as
skin, tongue, kidney, or adrenal (Kakuchi et al., 1995).
However, a high incidence of urological abnormalities
(Graham et al., 1997) and delay in vasculogenesis was
reported in AT2 receptor null mice (Yamada et al.,
1998). The AT2 receptor is the exclusive AngII re-
ceptor in the fetal rat aorta, which decreases by;85%
at 2weeks of age and to 25%at 8weeks of age (Viswanathan
and Saavedra, 1992). AT2 receptor blockade with
PD123319 from E16 to E21 significantly decreases DNA
synthesis in the developing aorta (Nakajima et al., 1995),
and theAT2 receptor–nullmice have reduced levels of the
VSMC differentiation markers calponin and caldesmon
up to 4 weeks after birth (Yamada et al., 1999). In a
similar fashion, stimulating the AT2 receptor induces
neurite outgrowth and regulates neurofilament expres-
sion in neural cells (Laflamme et al., 1996) as well as
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promotes apoptotic effects neuronal cell lines (Yamada
et al., 1996;Horiuchi et al., 1997). Increase inneuronal cell
number in certain brain structures associated with
central neurologic abnormalities, learning, and memory
deficit have been reported for AT2 receptor knockout mice
(Hein et al., 1995; Ichiki et al., 1995; von Bohlen und
Halbach et al., 2001).Whether the increase in cell number
in thesemice is due to increased neuronal proliferation or
a suppression of apoptosis is not clear. The proapoptotic
effect of the AT2 receptor is not found in the cardiomyo-
cytes of AT2 receptor transgenic mouse (Sugino et al.,
2001).
2. Adult Tissue Regulation. Receptor expression

declines after birth, but the AT2 receptor is expressed
at low levels in the normal adult cardiovascular system,
adrenal gland, kidney, brain, uterine myometrium, and
skin. The capacity for regulated changes in expression
of AT2 receptor is retained in many adult tissues and
often in remodeling tissues, a finding that suggests
a potential role for this receptor in human cardiovascu-
lar disease as well.
The expression of both AT1 receptor and AT2 receptor

in the adrenal gland, nonpregnant uterus, ovarian follic-
ular granulosa cells, and cerebellar cortex is conserved in
allmammals including humans (David, 1976;Whitebread
et al., 1989; Criscione et al., 1990; Bottari et al., 1991;
Pucell et al., 1991; Cox et al., 1993). There are some
examples of tissues that containmore AT2 receptor than
AT1 receptor. In the uterus, for example, expression of
AT2 and AT1 receptors changes reversibly depending on
pregnancy and parturition in human and sheep (Cox
et al., 1993). The expression switching from high AT2

receptor levels to a low-level AT2 receptor and to com-
pletely AT1 receptor is a fascinating developmental phe-
nomenon that is not clearly understood.
The AT2 receptor density increases in tissues under

pathologic conditions in which inflammation and tissue
remodeling occur. Such changes have been observed in
tissues, such as skin wound, balloon-catheterized vas-
culature, infarcted myocardium, and ischemic brain
during pathogenesis of hypertension, atherosclerosis,
diabetes mellitus, nephropathy, and pulmonary fibro-
sis (Booz and Baker, 1996; Lemarie and Schiffrin,
2010). The observed increase in AT2 receptor expres-
sion during pathology can be viewed as fetal gene re-
activation, which is a prominent feature of various disease
states, and this response may indicate that the AT2

receptor has a definitive regulatory function in these
instances (Paul et al., 2006). In rodents, AT2 receptor
expression is upregulated in HF (Ohkubo et al., 1997;
Steckelings et al., 2005) and is up- and downregulated
in a temporally dependent manner postinfarction (Nio
et al., 1995; Lax et al., 2004). Expression of AT2 re-
ceptors in humans is less clear. A decrease in AT2 re-
ceptor expression during HF was reported (Matsumoto
et al., 2000), whereas, an increase in expression was seen
during atrial fibrillation (Goette et al., 2000). Myocardial

AT2 receptor expression is upregulated in patients with
dilated cardiomyopathy. In the nonfailing human heart
;40% of AngII receptors are AT2 receptor (Tsutsumi
et al., 1998), and the AT2 receptor constitutes 50–70% of
angiotensin binding sites in the adult myocardium in
humans (Regitz-Zagrosek et al., 1995). In the adult rodent
myocardium, ;10% of adult cardiomyocytes express AT2

receptor (Busche et al., 2000; Steckelings et al., 2005), but
AT1 receptor blockade increases AT2 expression levels in
rodents.Hence, under conditions ofAT1-inhibitor therapy,
circulatingAngII levels increase, creating the potential for
increased AT2 receptor function and facilitation of thera-
peutic tissue remodeling. This is the basis for targeting
AT2 receptors for therapy in patients treated with AT1

receptor blockers to treat hypertension and HF. Adult
brain AT2 receptor may regulate central effects of angio-
tensin peptides in osmoregulation, cognitive functions,
and behavioral functions (Hein et al., 1995; Hohle et al.,
1995). Additionally, the role of the AT2 receptor in re-
generation and protection of neuronal tissue has been
suggested (Steckelings et al., 2011a).

In the vasculature, a ratio of 80% AT1 receptor to 20%
AT2 receptor exists in coronary endothelial cells de-
rived from spontaneously hypertensive rats (SHR) (Stoll
et al., 1995). Adult vasculature has low levels of AT2

receptor, which may increase the sensitivity of vascu-
lature to AngII when an AT2 receptor-specific antago-
nist is present via the vascular AT1 receptor (Verlander
et al., 2011). The inhibitory effect of the AT2 receptor on
neointima formation after balloon catheterization of
carotid artery has been extensively studied. The growth
of the neointima was reduced by the AT2 receptor
antagonist PD123319 (Nakajima et al., 1995). Chronic
AngII infusion increased the wall thickness-to-lumen
ratio of mesenteric arteries associated with increase of
both AT1 receptor and AT2 receptor (Cao et al., 1999).
End-stage ischemic heart disease and dilated cardio-
myopathy increased the density of the AT2 receptor in
endocardial, interstitial, perivascular, and infarcted
regions of the ventricle of patients. That AT2 receptor
smay play a role in vessel formation is suggested by rich
microvessels found in the border zone between nonin-
farcted and infarcted myocardium (Wharton et al., 1998).

In the kidney, 10 to 20% of total AngII receptors are
AT2 receptor, and no AT2 receptors are detected in the
rat renal cortex and glomeruli. Dietary sodium may
modulate expression levels of AT2 receptor in glomeru-
lar and interstitial tissue. The AT2 receptor is present in
large preglomerular vessels of the renal cortex and in
the tubular interstitial cells in human kidney (Chansel
et al., 1993; Goldfarb et al., 1994; Kaufman et al., 1999;
Carey et al., 2001).

G. Pathophysiological Aspects of AngII Type 2
Receptor Activation

In the last 10 years, strides have been made toward
understanding the pathologic and physiologic roles of
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the AT2 receptor (Knowle et al., 2000; Miura and
Karnik, 2000; De Paolis et al., 2002). The AT2 receptor
has been implicated in cardiovascular disease as a ben-
eficial moiety due to its proposed functions that, overall,
appear to counterbalance the actions of the AT1 receptor
(Berk, 2003; Miura et al., 2010). Activation of the AT2

receptor inhibits autophagy mediated by the AT1 re-
ceptor in cardiomyocytes (Porrello et al., 2009). Over-
all, the AT2 receptor may play a role in several AT1

receptor–independent biologic processes as well (Ruiz-
Ortega et al., 2000, 2001a;Mifune et al., 2000;Weidekamm
et al., 2002; Benndorf et al., 2003; Gingras et al., 2003;
Caballero et al., 2004; Zhao et al., 2005b; Zhu et al., 2000;
Mertens et al., 2010). Notably, activation of the AT2

receptor in cells of neuronal origin, induced neurite out-
growth, and elongation mediated cellular excitability and
migration and, in some cases, caused neuronal cell death
(Guimond and Gallo-Payet, 2012). Taken together, it has
become clear that the signaling mechanisms of the AT2

receptor are diverse and require further studies to fully
elucidate the role of this receptor in biologic processes.
1. Regulation of Vascular Response. Physiologic

effects of AT2 receptor function in the vasculature are
complex and can be both vasoconstricting and vaso-
dilatating depending on the context. AT2 receptor ac-
tivation causes vasodilatation in most isolated arteries
and it exerts a vasodepressor effect in vivo, when a
concomitant, low-dose AT1R blockade is also adminis-
tered (Widdop et al., 2003). Actions of the AT2 receptor
antagonist PD123319 and agonist CGP42112 consis-
tent with this expectation have been demonstrated in
rodent arteries as well as in human coronary micro-
arteries (Carey et al., 2001; Batenburg et al., 2004).
The pressor response toAngII is greater inAT2 receptor–
null mice than normal controls. VSMC-targeted over-
expression of AT2 receptor in transgenic mice causes
vasodilatation in vivo (Tsutsumi et al., 1999). That the
AT2 receptor also mediates vasoconstriction in mesen-
teric resistance arteries of SHR and senescent rats is
a recent finding (You et al., 2005). Antihypertensive
treatment of 4 weeks restored AT2 receptor expression
and vasodilator function in SHR resistance arteries.
Pinaud et al. (2007) reported that the AT2 receptor
induces a vasodilator effect in young rats and vasocon-
strictive effects in old rats. Resolving the apparently
conflicting roles of the AT2 receptor in different vascular
beds should be a focus for future studies.
2. Regulation of Cardiac Growth Response. The AT1

receptor induces mitogenic effects in many tissues and
cell types. Regulation of cell proliferation by the AT2

receptor through an antiproliferative action opposed to
the AT1 receptor activation first discovered in coronary
endothelial cells is also observed in microvascular endo-
thelial cells, VSMCs, neuronal cells, pheochromacytoma
cells, and fibroblasts (Stoll et al., 1995; Steckelings
et al., 2005). The potential clinical ramifications of
an AT2 receptor-agonist therapy for the treatment of

proliferative pathologies including cardiac fibrosis are
vast. But the literature reports are confusing, for in-
stance, AT1 receptor–dependent stimulation of DNA
and protein synthesis by AngII in neonatal cardio-
myocytes and cardiac fibroblasts is observed only when
the AT2 receptor–selective antagonist PD123319 is
present, suggesting that the cellular AT1 receptor/AT2

receptor ratio determines the outcome (Schorb et al.,
1993; Crawford et al., 1994; van Kesteren et al., 1997).
Increasing AT2 receptor expression in neonatal cardi-
omyocyte cultures mediates myocyte hypertrophy in-
dependent of AngII (D’Amore et al., 2005), indicating
that the AT2 receptor is prohypertrophic. Studies of
AT2 receptor knockout and transgenic mice are am-
biguous on the physiologic role of the AT2 receptor in
fibrosis. The myocardial perivascular fibrosis is in-
creased in AT2 receptor null mice (Wu et al., 2002), and
an opposite outcome was observed in a different AT2

receptor knockout mouse model (Kurisu et al., 2003).
Overexpression of the AT2 receptor in the heart signifi-
cantly inhibited AngII-induced increases in perivas-
cular fibrosis (Kurisu et al., 2003) in one model, whereas
in another mouse model interstitial collagen increased
(Yan et al., 2003b).

With regards to hypertrophy of myocardium, AT2

receptor manipulation experiments in vivo yielded con-
flicting results. AT2 receptor knockout prevents the
induction of hypertrophy upon AngII infusion (Ichihara
et al., 2001). However, transgenic mice overexpressing
the AT2 receptor in cardiomyocytes are normal and
after AngII infusion they develop the same degree of
hypertrophy as normal controls (Masaki et al., 1998;
Moore et al., 2001; Yan et al., 2003b). Surprisingly the
hypertrophic response to pressure overload is suppressed
in AT2 receptor–null mice, suggesting the AT2 receptor
is essential for hypertrophic process (Senbonmatsu et al.,
2000). In a ventricular myocyte directed AT2 receptor
overexpression model, the AT2 transgenic mice have
an impaired Ca2+-dependent inotropic response to AngII,
associated with reduced activity of the Na+/H+ ex-
change (Nakayama et al., 2005). Transgene copy number
influenced cardiac hypertrophy in this model. Hypertro-
phy under basal conditions was observed in MLC2v-
AT2TG mice with 18 copies of transgene with highest
level of AT2 receptor expression, whereas mice with
9 transgene copies did not display any signs of car-
diac hypertrophy or HF (Yan et al., 2003b). Subject-
ing the 9 transgene copy mice to pressure overload
by aortic banding significantly reduced left ventric-
ular myocyte diameter, systolic pressure, and collagen
compared with aortic-banded nontransgenic controls
(Yan et al., 2003b). Thus, the role played by AT2 re-
ceptor in heart is essential for both AngII-induced and
pressure-overload myocardial hypertrophy, again rais-
ing doubts about the “yin-yang” paradigm that this
receptor is a physiologic antagonist of AT1 receptor
actions.

786 Karnik et al.



3. Regulation of Fibrosis Response in Other Tissue.
In vivo, PD123319 increases renal fibrosis, supporting
the notion that the AT2 receptor is anti-fibrotic in kidney
as well. However, there are also conflicting reports that
chronic PD123319 administration reduces collagen con-
tent in rats (Levy et al., 1996). Aggravated renal injury is
observed inAT2 receptor–knockoutmice (Benndorf et al.,
2009). The AT2 receptor–deficient mice had exaggerated
mortality accompanied with increased risk of albumin-
uria, renal fibrosis, glomerular injury, lymphocyte in-
filtration, and chemokine expression compared with renal
ablation control mice. The blood pressure and RASme-
tabolites were similar in these groups.
Studies in disease models carrying the AT2 receptor-

null genotype show greater susceptibility for pathogen-
esis of cerebral infarction and atherosclerosis (Iwai
et al., 2005). Angiotensin AT2 receptor protects against
cerebral ischemia induced neuronal injury (Li et al.,
2005; Kaschina et al., 2008). In cerulean-induced pan-
creatitis, expression of AT2 receptor is associated with
pancreatic fibrosis, which is increased through a TGF-b–
mediated mechanism (Ulmasov et al., 2009).
In the last 10 years, strides have been made toward

understanding the role of the AT2 receptor in various
pathogenic models (Knowle et al., 2000; De Paolis et al.,
2002; Miura and Karnik, 2002). The AT2 receptor has
been implicated in cardiovascular disease as a benefi-
cial moiety due to its proposed vasodilatory role, ability
to inhibit cell growth, induce apoptosis, and inhibit
activation of MAPK functions that, overall, appear to
counterbalance the actions of the AT1 receptor (Berk,
2003; Miura et al., 2010). Overall, the AT2 receptor may
play a role in several AT1 receptor–independent biologic
processes (Mifune et al., 2000; Ruiz-Ortega et al., 2000,
2001a; Zhu et al., 2000; Weidekamm et al., 2002;
Benndorf et al., 2003; Gingras et al., 2003; Caballero
et al., 2004; Zhao et al., 2005b; Mertens et al., 2010).
Furthermore, activation of the AT2 receptor inhibits
autophagy mediated by the AT1 receptor in cardiomyo-
cytes (Porrello et al., 2009). Notably, activation of the
AT2 receptor in cells of neuronal origin, induced neurite
outgrowth and elongation, mediated cellular excitabil-
ity, and migration and, in some cases caused, neuronal
cell death (Guimond and Gallo-Payet, 2012). Taken
together, it has become clear that the AT2 receptor
signaling mechanisms are diverse and require further
studies to fully elucidate the role of this receptor in
biologic processes.

H. Drug Targeting the AngII Type 2 Receptor

Wan et al. (2004) developed a highly selective, orally
accessible nonpeptide AT2 receptor agonist, called
Compound 21 (C21). A potential therapeutic role for
the AT2 receptor is being propagated since the dis-
covery of C21; it can confer acute vasorelaxation in
vitro and has been shown to have organ protection ef-
fects in vivo. Specifically, C21 was observed to improve

postmyocardial infarction (Kaschina et al., 2008) and
provide vasodepressor effects in spontaneously hyper-
tensive rats (Bosnyak et al., 2010). In addition, the ligand
was shown to reduce myocardial fibrosis and vascular
injury in hypertensive stroke-prone rats (Rehman et al.,
2012). Controversy surrounds the use of C21 for thera-
peutic intervention, however. It was recently speculated
whether the effects of C21 were AT2 receptor specific or
just off-target effects as others have cautioned (Guimond
and Gallo-Payet, 2012; Verdonk et al., 2012). Therefore,
development of additional AT2 receptor–specific agonists
and antagonists is crucial and will expand the field,
supporting an important role for targeting of the AT2

receptor in disease states.
The increased knowledge of the expression pattern

and mechanisms of action of the AT2 receptor has
substantially contributed to understanding the role of
AngII in physiologic and pathologic conditions. Synthe-
sis of additional highly selective AT2 receptor ligands
will allow for the exploration of novel receptor-dependent
effects in the cardiovascular, renal, and nervous systems.
The ability of the AT2 receptor to be a therapeutic target
is promising and provides insight into the complexities
of RAS.

IV. Angiotensin II Type 3 Receptor

In addition to AT1 receptor and AT2 receptor, the
presence of an AT3 subtype was reported by Chaki and
Inagami (Chaki and Inagami, 1992a; Inagami et al.,
1993). Unique pharmacological properties observed in
mouse neuroblastoma cells (Neuro-2A) led to the desig-
nation of new subtype, AT3 receptor. Binding affinity of
this subtype is ;12.0 nM for [125I]AngII, which was
inhibited by AngII with a Ki value of;7 nM. [125I]AngII
binding to this subtype was not inhibited by AngIII, the
AT1 receptor antagonist Dup753 or the AT2 receptor
antagonist PD123319. [125I]AngII binding was in
sensitive to GTP analogs. This subtype expressed in
differentiated Neuro-2A cells was shown to stimulate
cGMP formation in these cells. The stimulation was
blocked by the [Sar1,Ile8]AngII but not by Dup753 or
PD 123319 (Chaki and Inagami, 1992b). A 2.2-kb full-
length cDNA encoding a putative AT3 receptor was
cloned by screening an adrenal cortex library (Inagami
et al., 1993). The putative AT3 receptor cDNA encodes
a 40-kDa protein with 95% amino acid identity to rAT1

receptor. The overall nucleotide similarity is 71% be-
cause of low homology in the 59 (58%)- and 39 (62%)-
untranslated regions. A different receptor subtype,
rAT1C, was reported to be 95% homologous to the
rAT3 receptor nucleotide sequence and less so to rAT1 AR
(90%) and rAT1R (82%) subtypes. Expressed AT3 receptor
in COS-7 cells mediates agonist-induced calcium mobili-
zation that is not inhibited byAT1 receptor inhibitors. The
AT3 receptor mRNA is reported to be most abundant in
the adrenal cortex and pituitary and differs from AT1
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receptor mRNA tissue distribution. The AT3 receptor
sequence contains two additional potential phosphoryla-
tion sites for protein kinase C (Sandberg et al., 1992).
Despite these initial efforts, further characterization of
putativeAT3 receptor has stalled. Furthermore, a gene for
encoding the putative AT3 receptor is not annotated
despite the availability of a cDNA clone, possibly suggest-
ing further uncertainty for an AT3 receptor .

V. Angiotensin IV Binding Site(s)

Defined as novel “non-AT1 and non-AT2”, angiotensin
IV (AngIV: VYIHPF) binding entity associated with
neuronal cognitive processes and renal vascular func-
tions (Fig. 8) was initially nominated as the AT4 re-
ceptor in 1995 (de Gasparo et al., 2000). A specific
membrane-binding site for the [125I]AngIV peptide was
defined as the AngIV binding site (Swanson et al.,
1992). This AngIV binding site was found to be concen-
trated in brain, heart, kidney, adrenals, and blood
vessels (Wright et al., 1993, 2008). Functional distinc-
tion of AngIV binding to the AngIV binding site was
demonstrated. AngIV analogs induced several marked
biologic effects in central nervous, renal, pulmonary,
and vascular tissues (Handa, 2001; Li et al., 2002; Vinh
et al., 2008; Wright et al., 2008). Human LNPEP gene
(Lnpep in rodents) product IRAP/AngIV binding site
was identified and is believed to be the sole AngIV
binding site until recently. Nearly 20 years of research
only shows the complexity associated with the concept
of a unique AngIV binding site in vivo that prevent
unambiguously defining a receptor molecule that satis-
factorily accounts for pharmacology and function as the
AngIV receptor (the IUPHAR Nomenclature Committee,
Karnik et al., 2014; http://www.guidetopharmacology.org/
GRAC/FamilyIntroductionForward?familyId=6.).

A. Functional Definition of AngIV Binding Sites

Existence of a heat resistant receptor that reversibly
bound [125I]AngIV with high affinity (Kd � 1–5 nM) in
bovine adrenal membranes was described (Harding
et al., 1992; Jarvis et al., 1992; Swanson et al., 1992;
Sardinia et al., 1993). This receptor did not bind the
peptide analogs of AngII, [Sar1] AngII, [Sar1,Ile8] AngII,
[Sar1,Ala8] AngII, Ang(1–7), AngIII, and the nonpeptide
inhibitors of AT1 and AT2 receptor Dup753 (losartan),
PD123177, and CGP42112A (Harding et al., 1992;
Swanson et al., 1992; Hanesworth et al., 1993). Histo-
autoradiographic mapping techniques determined the
greatest concentrations of [125I]AngIV specific binding
sites in the brain. The brain distribution of AngIV
binding sites was distinct from that of both AT1 and
AT2 receptors. These criteria lead to the term AngIV
binding site, which is by definition, linked to regulation
of cognitive, sensory, and motor functions. These AngIV
binding sites are not associated with functions where
AT1 receptor or AT2 receptor play a predominant role in

physiologic functions, such aswater-electrolyte balance,
cardiovascular regulation, and control of thirst behav-
iors. However, AngIV effects observed in the cardiovas-
cular and renal tissue, which was initially thought to be
mediated by the AngIV binding site, may actually be
mediated through the AT1 receptor. Therefore, defini-
tion of AngIV binding site excludes functions associated
both AT1 and AT2 receptors.

B. Structure of the AngIV Binding Protein, Insulin
Regulated Amino Peptidase

The putative AngIV binding site was biochemically
identified as a ;160- and ;190-kDa glycoprotein on
reducing SDS-polyacrylamide gel (Bernier et al., 1995a;
Wright and Harding, 1995). The adrenal and bovine
endothelial AngIV binding sites were reported as di-
meric on nonreducing gels at 225 kDa (Bernier et al.,
1998). Similarly, the AngIV binding site polypeptides
from bovine heart, thymus, kidney, bladder, aorta, and
hippocampus were dimers (Zhang et al., 1999). Soon
after its characterization, AngIV binding site was
thought not to be a GPCR because of its mobility on
SDS gels as well as lack of GTPgS effect on [125I]AngIV
binding in rabbit heart, guinea pig brain, and rat
vascular smooth muscle (Hall et al., 1993). That AngIV
binding site is not a GPCR now seems to be unanimous.

By purifying and sequencing the putative AngIV
binding protein, Albiston et al. (2001) identified it as
insulin regulated aminopeptidase (IRAP, E.C. 3.4.11.3
also called LNEP for leucyl-N-exopeptidase). IRAP is a
Type 2 transmembrane protein of the gluzincin amino-
peptidase family (Rogi et al., 1996; Nomura et al., 2005).
This family includes homologs such as aminopeptidases
A and N (AP-N: endothelial cell 3.4.11.2). Reflecting
distinct activities, themammalian IRAP/AngIV binding
site has many names, oxytocinase, cystinyl aminopep-
tidase, placental leucine aminopeptidase, gp-160, or vp-
165, depending on its independent cloning (Vauquelin
et al., 2002a; Albiston et al., 2004a; Nomura et al., 2005;
Tsujimoto and Hattori, 2005). Human IRAP/AngIV
binding site contains 1025 residues with N-terminal
110-amino acid-long intracellular domain, a 21-residue-
long transmembrane segment (111–131), and an 871-
residue-long extracellular C-terminal domain (132–1025),
which contains the catalytic and zinc binding sites. The
catalytic site is composed of a GXMEN motif that is
crucial for the exopeptidase activity and includes the
Zn2+-binding motif HEXXH-X18-E (Kandror and Pilch,
1994; Kandror et al., 1994; Keller et al., 1995; Ross
et al., 1996). HEK 293T cells transfected with IRAP
expression plasmid specifically bind the AngIV binding
site ligands, AngIV and LVV-hemorphin 7, and compete
for the binding of 125I-[Nle1] AngIV with IC50 values of
32 and 140 nm, respectively. Both immunohistochem-
istry and mRNA hybridization histochemistry analysis
determined in parallel on the brain matched that of the
AngIV binding site determined by radioligand binding.
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The AngIV binding site ligands dose dependently in-
hibit the IRAP catalytic activity. In vivo, IRAP hydro-
lyzes the N-terminal amino acid from neuropeptides
including arginine-vasopressin, cholecystokinin-8, dynor-
phin, met-enkephalin, lysine-bradykinin, neurokinin A,
neuromedin B, oxytocin and somatastatin, (Herbst et al.,
1997; Matsumoto et al., 2001; Lew et al., 2003). Accord-
ingly, IRAP was proposed as the first AngIV binding site
(see Fig. 8 and Supplemental Material).
Albiston et al. (2001) proposed that the AngIV bind-

ing site ligands may exert their effects by inhibiting
the catalytic activity of IRAP and extending the half-
life of its neuropeptide substrates to potentiate cognitive

functions attributed to AngIV binding to the AngIV
binding site. The LNPEP gene product (Lnpep gene in
rodents) was considered the sole AngIV binding site until
recently (Vauquelin et al., 2002a).

C. Pharmacology of AngIV Analogs

1. Agonists of the AngIV Binding Site. The charac-
teristics of the AngIV molecule critical for high-affinity
binding to the AngIV binding site in tissue include
preservation of residues at positions 1, 2, or 3 of the
AngIV, whereas positions 4, 5, and 6 can be replaced
(Sardinia et al., 1993; Wright et al., 1995). A detailed
study (see Supplemental Material) of position 1 of AngIV

Fig. 8. IRAP/AngIV binding site. See main text for details and Supplemental Material.
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revealed that high-affinity AngIV binding requires a
primary amine in position 1 and L-hydrophobic resi-
dues at position 1 favor binding. Thus, L-norleucine1-
AngIV resulted in a very high-affinity analog (Kd in the
picomolar range). The CH2-NH isostere substituted
at 1–2 peptide linkage produced a high-affinity analog
that increases rotation of peptide bond (Sardinia et al.,
1993). An L-aromatic amino acid at position 2 and
L-hydrophobic amino acid at position 3 of the AngIV
molecule are critical to bind to AngIV binding site.
Deletion of the C-terminal phenylalanine from of AngIV
does not alter binding affinity, but this derivative is
inactive in manipulating physiologic blood flow (Wright
et al., 1995). The minimal AngIV-like peptide ligand to
bind AngIV binding site with high affinity requires a
sequence, Val1-Tyr2-Ile3-R1-R2. An agonist requires
a phenylalanine in addition at the C-terminal position,
a structural feature of AngIV, which would also permit
activation of signaling through the ubiquitously pres-
ent AT1 receptor. In most studies of AngIV analogs,
inadvertent activation of the AT1 receptor may have
to be carefully ruled out. The peptide LVV-hemorphin-7
binds and activates the AngIV binding sites in vivo.
LVV-H7 specifically displaced [125I]AngIV binding to
adrenal and brain membranes.
2. Antagonists of the AngIV Binding Site. Harding’s

laboratory made early strides overcoming the diffi-
culties of design and synthesis of AngIV binding site
antagonists. They had success with Val substitution
coupled with reducing peptide bonds in the Val-Tyr-
Val segment generating divalinal-AngIV (Sardinia et al.,
1993; Sardinia et al., 1994; Krebs et al., 1996). A second
antagonist with norleucine in position 1, leucine in
position 3, and reduced peptide bonds at the first and
third bond positions (Norleual-AngIV) was subse-
quently created and characterized. This analog binds
the AngIV binding site with high affinity and has been
reported to not bind AT1 receptor and AT2 receptor.
Divalinal-AngIV prevented c-Fos expression, blood
flow induced by AngIV in brain, as well as the inhibition
of proximal tubule sodium transport by AngIV (Handa
et al., 1998).
3. Inhibitors of the Insulin Regulated Amino Peptidase

Activity. Concept of IRAP as the potential AngIV bind-
ing site stimulated development of newer and more
selective analogs and resulted in the development of
a new class of cognitive enhancers, which target the
catalytic site of IRAP (Albiston et al., 2008) (see Supple-
mental Material). Efforts were taken to develop AngIV-
derived IRAP inhibitors with improved selectivity versus
AP-N and the AT1 receptor, as well as resistance to pro-
teolytic degradation. Lukaszuk et al., 2008) reported
that the AngIV analog AL-11 (pKi 7.25 for IRAP enzyme
activity) in which the b-homo amino acid b2hVal is
responsible for stability and the b3hPhe for selectivity.
Further improvement was obtained by substitution of
His4-Pro5 with a constrained Trp analog (Aia-Gly) to

obtain AL-40 with a pKi is 8.07 for IRAP (Lukaszuk et al.,
2009). Substitution of the latterGly5 by norvaline led to an
analog (IVDE77) with further increased affinity (pKi is
8.77 for IRAP) (Lukaszuk et al., 2011;Nikolaou et al., 2013).
The latter compound was also 3H-labeled and character-
ized as a useful tool for the detection of IRAP/AngIV
binding site under physiologic conditions, i.e., in the
absence of anymetal ion chelators (Nikolaou et al., 2013).

Synthesis of peptidomimetics targeting IRAP activ-
ity lead to successful replacement of the C-terminal
His-Pro-Phe in AngIV replaced by small aromatic g-turn
mimetics (Compound 29,Ki = 26 nM). Compounds with
low nanomolar inhibitory activity and enhanced selec-
tivity for IRAP over the structurally related amino
peptidase, AP-N, were obtained. Additional studies are
needed to elucidate bioactive conformation for IRAP in-
hibition and presumably functional selectivity for AngIV
binding site–mediated cognitive effects (Anderson et al.,
2010, 2011; Axen et al., 2006). With a bioinformatics in
silico screening approach, a large library of compounds
against a structure homology of IRAP (Ye et al., 2008;
Albiston et al., 2011) benzopyran compounds were
identified, synthesized, and optimized; the highest affin-
ity compound HFI-437 has a pKi of 7.70 for IRAP. The
latter nonpeptide inhibitors were found to enhance the
performance of rats in different memory paradigms
(Mountford et al., 2014).

Yang et al. (2008) used IRAP/AngIV binding site-
selective ligands, LVV-hemorphin-7 and AT4-16, for
intravenous, intrarenal, and intracerebroventricular in-
fusion to discriminate AngIV effects through AT1 and
AngIV binding sites. They observed that AngIV had no
effects on mean arterial pressure, renal blood flow, or
urinary sodium excretion in the presence of IRAP in-
hibitors. In addition, they reported that the majority of
the AngIV-sensitive aminopeptidase activity in kidney
membranes is due to AP-N and not the IRAP/AngIV
binding site. Some of the central and peripheral vaso-
active effects of AngIV were mediated through the
AngIV binding sites in other studies (Lew et al., 2003;
Axen et al., 2007). Increase in blood pressure from
chronic AngIV elevation in the brain was found to be
AT1 dependent in a transgenic mousemodel, although
specificity of action of AngIV in this model should be
a question (Lochard et al., 2004). Thus, central and
peripheral pressor and vasoconstrictor effects of AngIV
are very likely mediated through AT1 receptor in vascu-
lature. The activation of the AT1 receptor by AngIV is
a well established pharmacological effect, but this ef-
fect is distinct from the memory-enhancing effects of
AngIV (Yang et al., 2008). Stragier B. et al. (2006)
independently demonstrated that AngIV and LVV-H7
did not significantly alter hippocampal blood flow as
determined by laser Doppler flow measurement, ex-
cluding the vascular effects responsible for cognitive
functions of either peptide (Jewett et al., 1991) (see Fig.
8 and Supplemental Material).
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D. Signaling

1. Effects on Insulin Regulated Amino Peptidase
Signaling as a Transmembrane Receptor. Prior to the
identification of IRAP as AngIV binding site, the AngIV
binding site was thought to be a multimeric, 225-kDa
complex in bovine tissues (Bernier et al., 1995b; Zhang
et al., 1999). It is now clear that AngIV binding sites are
not coupled to G-proteins in tissues such as bovine
endothelium, guinea pig brain, and rat vascular smooth
muscle (Hall et al., 1992). The N-terminal domain of
IRAP may participate in signal transduction with AngIV
acting as an agonist in the activation of intracellular
signaling, which may mediate the physiologic effects of
AngIV. Vauquelin et al. (2002b) proposed that IRAP is
a classic transmembrane receptor, with an intracellular
tail that would interact with intracellular signaling
molecules. This idea is based on the finding that AngIV
interacts with a juxta-membrane domain of IRAP/AngIV
binding site in bovine heart membranes. This putative
binding site for AngIV is different from that of the active
site of IRAP, which implies that AngIV binding may
modulate transmembrane signal transduction by AngIV
binding site and the IRAP activity by an allosteric
mechanism (Caron et al., 2003). In the structurally related
AP-N, binding of monoclonal antibodies activates IP3-
linked increase of intracellular calcium and phosphor-
ylation of MAPK (Navarrete Santos et al., 2000a,b,c).
Expression of c-Fos is induced by intracerebroventricu-
lar infusion of AngIV in brain centers of rats, which are
associated with cognition (Roberts et al., 1995). Several
studies have shown that AngIV binding site ligands
are capable of activating different intracellular signal-
ing pathways. These include a variety of mechanism(s),
including an increase of the intracellular calcium concen-
tration, modulation of MAPK activation of NFkB signal-
ing, increased cGMP production, and more downstream
changes in DNA synthesis. It should also be noted that in
no classic signaling could be demonstrated in CHO cells
despite the presence of AngIV binding sites (Albiston
et al., 2007). In pulmonary artery endothelial cells, AngIV
binding to AngIV binding sites activates eNOS and
stimulates cGMP accumulation and causes pulmo-
nary arterial vasodilation (Patel et al., 1998). This ef-
fect was blocked by divalinal AngIV as well as by the
phosphoinositide 3-kinase inhibitors (Patel et al.,
1998). Induction of PAI-1 by AngIV has been impli-
cated in the pathogenesis of renal interstitial fibrosis
in several forms of chronic glomerulonephritides
(Gesualdo et al., 1999). AngIV stimulates cell prolifer-
ation in rat anterior pituitary without requiring AT1

receptor (Ptasinska-Wnuk et al., 2003) and also acti-
vates NFkB, leading to the transcription of proinflam-
matory genes, intercellular adhesion molecule-1, IL-6,
MCP-1, PAI-1, and TNFa in VSMCs. These effects were
blocked by treatment with AngIV binding site antag-
onist, suggesting that signal transduction activated by

AngIV may underlie pathogenesis of cardiovascular dis-
eases (Esteban et al., 2005).

IRAP inhibitors, such as divalinal-AngIV and LVV-
hemorphin-7, which bind to the IRAP active site di-
rectly, produce similar effects. For instance, increasing
the extracellular dopamine levels in the striatum of the
rat by these inhibitors was comparable to AngIV. This
finding suggests that active-site binding of the inhib-
itors mediates modulation of extracellular dopamine
levels in striatum (Stragier et al., 2004). In a related
study, the authors hypothesized that IRAP and/or
AP-N possibly act as receptors for IRAP inhibitors and
AngIV in mediating dopamine release in the striatum
by receptor-mediated signaling (Stragier et al., 2007).
High-affinity binding of AngIV to only the Zn-depleted
IRAP apoenzyme may inhibit IRAP activity by stabi-
lizing an inactive apoenzyme. AngIV binding to the cat-
alytic domain of IRAP has been clearly established
in vitro, and the evidence for AngIV binding to an
allosteric site in the juxtamembrane region has been
questioned. [125I]AngIV binds in an a 1:1 ratio to in the
presence and absence of the juxtamembrane region,
suggesting that there is only one AngIV binding site
but the site is not located in the juxtamembrane region.
AngIV binding to the apoenzyme can be measured in
vitro, reflecting possibly a different mechanism of
binding and stabilization of AngIVwhen Zn is removed.
Taken together, AngIV appears to bind better to the
IRAP apoenzyme than the native IRAP. AngIV bind-
ing to native AP-N or to the AP-N apoenzyme is poor
(Demaegdt et al., 2006), indicating that AP-N as an in
vivo receptor for AngIV is poorly supported by data.
Thus, redundancy of mechanism of AngIV receptors is
possible.

2. Effects on Insulin Regulated Amino Peptidase-
Dependent Neuropeptide Potentiation. On the basis of
the kinetics of inhibition, AngIV and its analogs have
been proposed as in vivo inhibitors of neuropeptide ca-
tabolism by IRAP (Ye et al., 2007). AngIV and divalinal
display competitive kinetics, indicating that AngIV
binding site ligands mediate their peptidase inhibitor
effects by binding to the catalytic site of IRAP (Lew
et al., 2003). IRAP is known to play a role in the in vivo
metabolism of vasopressin and Lys-bradykinin bound
to the enzyme (Herbst et al., 1997; Wallis et al., 2007).
Substrates identified in vitro for IRAP include vaso-
pressin (AVP), oxytocin, somatostatin, Leu- and Met-
enkephalin, and Lys-bradykinin (Herbst et al., 1997;
Matsumoto et al., 2001; Lew et al., 2003). These neuro-
peptides enhance memory consolidation and retrieval
(Vauquelin et al., 2002b; Wallis et al., 2007). The
physiologic effects of AngIV binding site ligands there-
fore may result from the inhibition of cleavage of neuro-
peptides by IRAP altering memory processing (Lew
et al., 2003). Accumulation of neuropeptides when
AngIV binds to IRAP has been suggested as a mech-
anism for cognitive enhancement. In a recent study it
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was shown that the increase of extracellular dopamine
concentration and the anticonvulsant effect of AngIV
could be inhibited by a somatostatin receptor antago-
nist administered in the rat striatum (Li et al., 2009a).
Accumulation of somatostatin to mediate these effects
may be one possible mechanism for the observed phe-
nomenon, although somatostatin cleavage by IRAP was
not confirmed. At the moment there is no direct in vivo
evidence that supports the IRAP/AngIV binding-mediated
neuropeptide potentiation hypothesis.
3. AngIV Effects on IRAP Trafficking. Although

AngIV and its analogs are not cleaved by IRAP, they
competitively inhibit the in vitro catalytic activity of
IRAP. On this basis, it has been suggested that IRAP
inhibitor binding may prolong the cell surface localiza-
tion of IRAP/AngIV binding sites in neurons to poten-
tiate cognitive and memory functions (Heimfeld et al.,
1992; Demaegdt et al., 2004a,b). In tissues not directly
involved in cognitive functions, insulin and some IRAP
substrates peptide hormones have been shown to regu-
late kinetics of cell-surface trafficking of IRAP. For
instance, in vascular endothelial cells in placenta, in-
tracellular vesicle-bound IRAP responds to oxytocin by
translocating the IRAP vesicles to the plasma mem-
brane. By catabolizing oxytocin and vasopressin, trans-
located intracellular vesicle-bound IRAP regulates
oxytocin and vasopressin levels in serum during preg-
nancy and thereby prevents early contractions and
premature delivery. Cotranslocation of IRAP and the
glucose transporter GLUT4 associated vesicles to the
plasmamembrane in adipocytes is stimulated by insulin
(Demaegdt et al., 2011). The cytosolicN-terminal domain
of IRAP binds p115, a protein that mediates transport
vesicle fusion and is cotranslocated with IRAP and
GLUT4 to the plasma membrane (Hosaka et al., 2005).
The intracellular domain of IRAP plays a role in
regulating GLUT4 vesicle trafficking through interac-
tion with specific proteins including AS160 (Larance
et al., 2005; Peck et al., 2006; Albiston et al., 2007).
GLUT4 has a critical role in insulin-stimulated glucose
uptake in these cells (Keller et al., 1995; Ross et al.,
1996). The subcellular localization of IRAP in neurons
demonstrated striking parallels with distribution of
IRAP in insulin responsive adipocytes andmuscle cells,
where the enzyme plays a role in insulin-regulated glucose
uptake. Therefore, the function of IRAP in neurons
may be similar to that in insulin responsive cells
(Fernando et al., 2007). Relevant to cognitive function
of IRAP/AngIV binding site in brain, the majority of
IRAP was localized in intracellular vesicles in mouse
brain neurons (Fernando et al., 2005, 2007). The binding
of IRAP inhibitors may prolong the cell surface local-
ization of IRAP/AngIV binding site and GLUT4 in
neurons. The resulting increase of glucose uptake may
be responsible for IRAP ligands to facilitate memory in
hippocampus-dependent memory deficits in models for
amnesia (Fernando et al., 2007; Stragier et al., 2008).

The IRAP inhibitors enhance cAMP-stimulated or
depolarization-evoked glucose uptakemediated byGLUT4
(Fernando et al., 2008). Although both AngIV and LVV-
H7 potentiate glucose uptake into cultured hippocampal
neurons in culture, these effects were not confirmed in
vivo. Extracellular hippocampal glucose levels signifi-
cantly decreased while the animals explored the maze.
When the animals were not in a maze, glucose levels in
their hippocampus remained constant. However, the
same analysis performed in the plus maze test showed
that both AngIV and LVV-H7 did not significantly alter
hippocampal glucose levels compared with control. In-
creased glucose availability for hippocampal neurons as
the basis of enhanced memory seems unlikely.

E. Distribution of the of AngIV Binding Sites

Consistent with the functional definition, the
[125I]AngIV autoradiographic mapping demonstrated
that highest densities of the putative AngIV binding site
are localized in brain regions associated with cognition
and sensomotor functions (Moeller et al., 1996). The
brain distributions of the AngIV binding sites mapped
are confirmed for cross-species consistency in rat, guinea
pig, rhesus monkey (Miller-Wing et al., 1993; Roberts
et al., 1995; Wright et al., 1995; Moeller et al., 1996),
and human brain slices (Moeller et al., 1996; Chai
et al., 2000). Binding of [125I]AngIV was reported in
brain structures associated with motor functions (Moeller
et al., 1995, 1996; Wright and Harding, 1995), in the
forebrain (Miller-Wing et al., 1993; Moeller et al., 1995,
1996), in the cerebellum (Miller-Wing et al., 1993), and in
the primary motor neocortex (Moeller et al., 1996). The
brain autonomic nuclei, dorsal motor nucleus of the
vagus, nucleus ambiguus, rostral ventral lateral me-
dulla, and paraventricular nucleus of the hypothala-
mus are sites of high AngIV binding site density
(Moeller et al., 1995, 1996). Lower density of AngIV
binding sites exists in sensory structures and primary
sensory neocortex (Miller-Wing et al., 1993;Moeller et al.,
1995, 1996). It is alsowell known that AngIV is generated
fromAngII orAngIII and present in the circulation (Semple
et al., 1976; Abhold and Harding, 1988). Independent
studies demonstrated that a hemoglobin b-chain frag-
ment isolated from sheep brain with a sequence, Leu-
Val-Val-hemorphin-7 (LVV-H7) is also capable of binding
andactivating the in vivo physiologic effects attributed to
activation of putative AngIV binding sites (Moeller
et al., 1997). The distribution of 125I-LVV-H7 binding
sites in brain sliceswas identical to those for [125I]AngIV,
suggesting that it is an endogenous AngIV binding site
ligand (Moeller et al., 1997, 1998; Lee et al., 2001, 2003).

Distribution of [125I]AngIV binding sites have been
documented in different species for peripheral tissues,
including bovine adrenal cortex (Bmax � 4 pmol/mg)
(Harding et al., 1994); monkey and rat kidney (Bmax �
1.0 pmol/mg) (Harding et al., 1994), rat, guinea pig, and
rabbit hearts (Bmax � 0.3-0.8 pmol/mg); and guinea pig
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and bovine vascular smoothmuscle (Bmax� 1.0 pmol/mg).
Mapping the binding of AngIV in rat kidney demon-
strated high density of AngIV binding site in the outer
stripe of the medulla, the glomeruli, and the medul-
lary core. Surprisingly the AngIV binding map is
distinctly different from AngIV binding site distribu-
tionmap in kidney regions (Harding et al., 1994; Coleman
et al., 1998). More recently AngIV binding site bind-
ing sites were described in mouse macrophages. The
observations that the transcription of the IRAP gene
in these cells was upregulated in proinflammatory
M1-activated macrophages and the cell surface AngIV
binding site binding is modulated upon exposure to
IFN-g, LPS, or exogenous particles suggest a possible
function of AngIV binding sites in these cells (Nikolaou
et al., 2014).
Although the distribution of AngIV is not known

in central and peripheral tissue location of AngIV
binding sites, the ubiquitous presence of amino pep-
tidases, AP-A and AP-N, can locally produce AngIV
from AngII. Both these enzymes have been localized
to the plasmamembrane of pericytes, suggesting that
AngIV can be produced in the extracellular space
surrounding microvessels in the brain (Healy and
Wilk, 1993; Kunz et al., 1994). Several reports in-
dicate that, within neurons, nearly 80% of AngII is
converted to AngIV (Stragier et al., 2008). Exogenous
administration of AngIV has been shown to in-
crease cerebral microcirculation (Naveri et al., 1994;
Kramar et al., 1997; Kramar et al., 1998; Lanckmans
et al., 2007a,b). In terms of function, intracranially
administered AngIV and its functional analogs facil-
itate memory in rodent behavior models (Braszko
et al., 1988; Wright et al., 1993; Tchekalarova et al.,
2001; Lee et al., 2003). AngIV also facilitates reversal
of memory shortfalls produced by scopolamine, mec-
amylamine, abusive alcohol dose, ischemia, as well as
by disruption of the perforant path in the hippocam-
pus (Borawska et al., 1989; Wright et al., 1996;
Pederson et al., 1998; Albiston et al., 2004a; Olson
et al., 2004). AngIV enhances neuronal long-term
potentiation in vitro and in vivo (Kramar et al., 2001;
Wayner et al., 2001) as well as attenuates PTZ-
induced seizures (Tchekalarova et al., 2001; Stragier
et al., 2006) and protects against cerebral ischemia
(Faure et al., 2006a,b, 2008). It is reported that in
peripheral tissue AngIV administration increases
renal blood flow that was blocked by antagonist
divalinal-AngIV (Coleman et al., 1998; Hamilton
et al., 2001). This effect was also accompanied with
an increased urinary sodium excretion (Hamilton
et al., 2001). Contrasting results have been reported
indicating that AngIV decreased renal blood flow
(Gardiner et al., 1993; Fitzgerald et al., 1999; Yang
et al., 2008) and increased blood pressure (Yang et al.,
2008). The latter effects were prevented by AT1 re-
ceptor antagonists.

F. Insulin Regulated Amino Peptidase Gene
Knockout Mice

1. Evaluation of AngIV-dependent Functions.
Considering the wide-ranging effects mediated by IRAP
and its inhibitors, understanding the genetic basis
of IRAP functions is critical. In normal and memory-
compromised rodent models, enhancement of memory
upon intracerebroventricular delivery of AngIV and its
analog peptides is the defining pharmacological prop-
erty, which is thought to be mediated solely by the
IRAP/AngIV binding site (Albiston et al., 2004b; Lee
et al., 2004). Biochemically, these ligands show high-
affinity binding to the IRAP catalytic site. Therefore,
the inhibition of IRAP activity or genetic loss of expres-
sion would be expected to improve memory.

Albiston et al. (2010) evaluated effects of IRAP gene
knockout on AngIV binding and the behavioral pheno-
type in mice. In the IRAP-null mouse, the complete loss
of IRAP expression in muscle, fat, and brain including
hippocampus was accompanied with loss of binding
sites for the radioligand [125I]Nle1-AngIV. However, the
IRAP-null genotype did not significantly affect the
glucose transporter GLUT4 levels in the hippocampus
and cortex. There was no detectable difference in the
response to depolarization-evoked glucose uptake in the
hippocampal slices of the IRAP-null mice compared
with their wild-type littermates. Comprehensive neu-
rologic testing of adult IRAP-null mice confirmed that
the sensory perception, their motor reflexes, and ves-
tibular function were normal. The performance of young
knockout mice in memory and behavioral testing para-
digms was similar to the wild-type mice. In the IRAP-
nullmice, the sensory, locomotor, and anxiety responses
were not altered at 3–4months of age. Furthermore, the
IRAP knockout mice demonstrated improved cognitive
and spatial memory when tested at 6 and 12 months of
age on the Y maze task. A limited impact of IRAP-null
genotype in enhancing memory was unexpected, ques-
tioning the basis of linking IRAP-inhibition to memory
and cognitive enhancement.

The unexpected phenotype could be the result of
developmental alteration due to germ-line deletion of
the IRAP gene causing susceptibility to age-related cog-
nitive decline. Several questions regarding IRAP-null
mice remain unanswered. For instance, whether cog-
nitive enhancement from AngIV and analogs of AngIV
is completely abolished in the IRAP-null mice. The
authors have demonstrated that IRAP-null mice show
complete loss of AngIV binding using tissue imaging
methods; they did not examine whether central in-
fusion of AngIV or other IRAP inhibitors had any func-
tional effect on improving performance in a range of
memory paradigms or whether a compensatory mech-
anism is activated as a stand-in for the loss of IRAP
in specific neurons. Wallis et al. (2007) reported in-
creased levels of plasma AVP in the IRAP-null mouse,
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suggesting that IRAP may play a role in regulating
levels of vasopressin. However, it was difficult to
reconcile IRAP2/2 phenotype with increased AVP
and rather extensive literature on AVP effects on
different brain regions. Does IRAP play a role in only
disease paradigms while an unknown molecule func-
tions as the mediator of physiologic effects of AngIV?
Loyens et al. (2011) attempted to examine this ques-
tion in a recent report, demonstrating that IRAP-null
mice show decreased susceptibility to pentylenetetra-
zol (PTZ)-induced seizures. They observed that thresh-
olds for myoclonic twitch and generalized clonic seizures
significantly increased in IRAP(2/2) mice compared
with their IRAP(+/+) littermates when PTZ is injected
demonstrating that that IRAP(2/2) mice are less
sensitive to the development of PTZ-induced seizures.
The authors concluded that IRAP is involved in
generalized seizure generation in normal mice. Pham
et al. (2012) demonstrated that deletion of the IRAP
gene protects the brain from ischemic damage anal-
ogous to the effect of the IRAP inhibitor AngIV.
Transient middle cerebral artery occlusion in mice
produces stroke-induced neurologic deficits 24 hours
after reperfusion in mice. The infarct volumes mea-
sured were significantly reduced in the IRAP knock-
out mice compared with wild-type littermates, with
corresponding improvement in neurologic perfor-
mance. Cerebral blood flow was increased in the IRAP
knockout animals.
2. Nuances for Defining Receptor(s) for AngIV.

More than a decade of research focused on delineating
the IRAP/AngIV binding site as the sole AngIV binding
site has exposed some pharmacological, signaling, and
genetic criteria not satisfactorily met by this protein.
Other binding proteins have been proposed as alterna-
tive to the concept of IRAP/AngIV binding site for AngIV
(De Bundel et al., 2008; Stragier et al., 2008; Wright
et al., 2008).
AP-N, another transmembrane peptidase structur-

ally related to IRAP/AngIV binding site was suggested
as an additional candidate AngIV receptor, because this
protein can activate IP3-dependent intracellular cal-
cium and MAPK signaling (Navarrete Santos et al.,
2000b,c). However, evidence demonstrating dimeriza-
tion of AP-N and signaling in response to AngIV binding
is lacking. More importantly, the role of this protein in
AngIV-mediated cognitive enhancement is currently
not established.
The ability of AngIV analogs to alter cognitive func-

tion and augment neurite outgrowth in vitro led to the
hypothesis that the c-Met tyrosine kinase receptor for the
hepatocyte growth factor (HGF) is a candidate AngIV
binding site (Wright et al., 2008). Sequence-based pre-
diction identified the possibility for AngIV and its analogs
to disrupt HGF interaction with c-Met. As predicted, in
picomolar concentration Norleual-AngIV was found to
displace HGF binding to c-Met and antagonize signaling

activity of HGF through c-Met in vitro. Norleual-AngIV
blocks HGF-induced proliferation, invasion, cell scat-
tering, and wound closure in vitro; inhibits ex vivo
angiogenesis; and attenuates melanoma lung coloni-
zation in vivo. Some of the HGF/c-Met functions par-
tially overlap with classic functions attributed to the
AngIV binding site, including facilitatedmemory con-
solidation and hippocampal LTP and calcium signal-
ing. These studies suggest that the c-Met is a cellular
receptor candidate for mediating biologic effects of
picomolar concentrations of AngIV analogs. These
authors suggested MSP/Ron receptor system as an addi-
tional potential target of AngIV analogs that warrants
investigation (Wagh et al., 2008). A number of ques-
tions regarding c-Met as a potential AngIV binding site
remain unexplored. For instance, can AngIV specifi-
cally activate and AngIV-antagonists inhibit the c-Met
receptor signaling in vivo to reproduce functions attrib-
uted to classicAngIV/AngIVbinding site system?Does the
distribution of c-Met receptor in brain and its levelswithin
cognitive centers correlate with the classicmappedAngIV
binding sites? Does LVV-H7 and the other IRAP-selective
ligands discussed above bind to the c-Met receptor?
Does recombinant c-Met show high-affinity binding to
AngIV and LVV-H7?

3. AngIV Binding Site Conclusion. The state of
IRAP/AngIV binding site protein as the sole receptor
for mediating in vivo functions of AngIV will have to be
revisited in future. Multiple lines of evidences suggest
that IRAP/AngIV binding site protein is a high-affinity
AngIV binding receptor that mediates some of the
neuroprotective and cognitive effects of AngIV, although
the exact signaling mechanisms mediating these effects
have not been clearly established. The IRAP/AngIV
binding site hypothesis has stimulated development of
rather potent and specific inhibitors of its enzymatic
function, which have been shown to be cognitive enhancers
in vivo. At present existing data indicate that IRAP/AngIV
binding site protein does not discriminate between
agonist and antagonist ligands and does not directly
account for transmembrane signaling. Better charac-
terization of IRAP/AngIV binding site inhibitors using
a broad range of assays may unravel intricacies of
AngIV functions in vivo. Future developments in this
field are likely to uncover additional AngIV receptors
andmechanisms of AngIV action in vivo. Such receptors
will have to address several aspects of AngIV physiol-
ogy, for example: i) in vivo efficacy at picomolar and
subnanomolar concentrations at which AngIV and its
analogs were found to affect changes in physiologic
function; ii) the rapid onset of the physiologic effects of
AngIV in blood flow and intracellular calcium signaling
or neuronal potentiation experiments; iii) pharmacologi-
cal effects of the "agonists" and "antagonists" on the
receptor-specific effects on downstream signaling; and
iv) global genetic deletion of receptor abolishes pharma-
cological and physiologic effects of AngIV and increases
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susceptibility to neurodegeneration or decline of cog-
nitive functions. This is critical because the AngIV/
AngIV binding site system is implicated in cognitive,
memory, and cerebroprotective functions, as well as
disease conditions like Alzheimer’s, seizures, and
Parkinson’s disease. The lack of AngIV binding site
agonists and antagonists penetrating blood-brain
barrier has limited our understanding of importance
in the etiology and treatment of memory dysfunctions
associated with dementia and degenerative diseases.

VI. Receptor Conundrum in the
Renin-Angiotensin System

Based on themultiple criteria used to recommend the
pairing of an orphan receptor with its cognate ligand,
MAS was included among the “orphan” GPCRs, for
which the status of endogenous ligand(s) remains un-
clear (Davenport et al., 2013). The status of MAS is
unchanged in the current update to IUPHAR/BPSGuide
to Pharmacology. MAS is a candidate receptor for endog-
enouslyproducedRASpeptidehormoneAng(1-7) (Tirupula
et al., 2014, http://www.guidetopharmacology.org/GRAC/
ObjectDisplayForward?objectId=150.).
MAS was initially discovered in 1986 as an oncogene

that transformed NIH3T3 cells and induced tumors in
nudemice (Young et al., 1986). The amino acid sequence
of MAS bears fingerprint of GPCRs, and tumorigenic
activity of overexpressed receptor was confirmed later
(Janssen et al., 1988; van ’t Veer et al., 1993). However,
the genomic Mas as an oncogene is disputed, because
this gene is not amplified in tumors. Overexpression of
MAS, however, can transform cells. MAS was originally
proposed as a functional receptor for AngII that also
mediated response to angiotensins I and III in Xenopus
oocytes (Jackson et al., 1988). In transfected cells, MAS
mediated intracellular calcium mobilization and DNA
synthesis responses to AngII and III (Jackson et al.,
1988; Jackson and Hanley, 1989; McGillis et al., 1989;
Dean and Boynton, 1990). However, the status of MAS
as AngII receptor was disproved. The cell lines where
AngII andMAS interactions were characterized expressed
endogenous AT1 receptor (Ambroz et al., 1991; Monnot
et al., 1991; Murphy et al., 1991; Sasaki et al., 1991), thus
ending the controversy ofAngII activatingMAS (Sasamura
et al., 1992).

A. Pairing MAS Receptor with Ang (1-7)

Current peer review literature supports pairing of
MAS with multiple endogenous peptides with prefer-
ence toward studies involving Ang(1-7). Originally dis-
covered as a GPCR with transforming activity (1986)
and the foundingmember of theMas-relatedG-protein–
coupled receptor subfamily of neurohormone receptors
(2001), MAS remained orphan until the neuro-
peptide FF was shown to activate G-protein signaling
through this receptor (see Fig. 9). Two years later,

MAS-transfected cells were shown to produce arachi-
donic acid response to Ang(1-7) (Santos et al., 2003b;
Gembardt et al., 2008; Zimpelmann and Burns, 2009).
The angiotensin-converting enzyme 2 metabolizes
AngI and AngII to Ang(1-7) (IUPHAR-DB ID no.
582), which functions as a vasodilator and antiproli-
ferative agent. Some of the actions of Ang(1-7) appear
to be mediated via MAS in vivo (Santos et al., 2003b).
Deletion of theMas gene inmice abolishes the binding
of Ang(1-7) in mouse kidney as well as abolishes the
antidiuretic action of the peptide after an acute water
load (Santos et al., 2003b). Many in vivo effects attrib-
uted to Ang(1-7) are diminished or absent in Mas-null
mouse tissues and organs, providing support for the
proposed ligand receptor pairing (Walther et al., 1998;
da Costa Goncalves et al., 2007; Fraga-Silva et al.,
2008; Santos et al., 2008; Pinheiro et al., 2009; Mario
et al., 2012). An evolutionary account of MAS and related
GPCRs is presented in an extensive review recently by
Bader et al. (2014). Hence, further input from the
scientific community is needed to validate MAS as the
cognate receptor for Ang(1-7).

Alamandine is a relatively new heptapeptide that
contains an Ala replacing Asp at position 1 of Ang(1-7).
This peptide can be generated by either decarboxylation
of the Asp residue of angiotensin-(1-7) or by catalytic
action of angiotensin-converting enzyme-2 on decar-
boxylated AngII (also called angiotensin A) (Lautner
et al., 2013). Two primary journal articles on alamandine,
since its discovery, have paired this ligand with Mas-
related G-protein–coupled receptor D; however, neither
strong pharmacological nor direct radioligand binding
data exist (Habiyakare et al., 2014; Wilson et al., 2015).
Identification of alamandine and its putative receptor has
attracted attention as a novel mediator of physiologic and
pathophysiological actions of the RAS and may help to
develop new therapeutic strategies for treating human
cardiovascular diseases.

Conventional G-protein signaling by MAS, reported
to be stimulated by the physiologic ligand neuropeptide
FF (Dong et al., 2001), was recently confirmed (Tirupula
et al., 2014). Reports pairing MAS with several other
physiologic and synthetic peptides exist, such as with
angiotensin III, angiotensin IV, angioprotectin P33/
CGEN-857, P61/CGEN-856, andMBP-7 (Bikkavilli et al.,
2006; Gembardt et al., 2008; Shemesh et al., 2008;
Savergnini et al., 2010; Jankowski et al., 2011). Conse-
quently, these other physiologic peptides reported as
endogenous ligands for MAS remain incompletely char-
acterized. Few reports indicate that G-proteins are
activated by MAS in response to few physiologic pep-
tides and “surrogate” nonpeptide ligands in transfected
cells but not in response to Ang(1-7) (Bikkavilli et al.,
2006; Canals et al., 2006; Shemesh et al., 2008; Tirupula
et al., 2014; Zhang et al., 2012). MAS shares significant
similarity with Mas-related G-protein–coupled recep-
tors or paralogs, which are predominantly expressed in
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neurons and immune cells (Young et al., 1986; Dong
et al., 2001; Bender et al., 2002). MAS might be
expected to respond to physiologic ligands, which are
typically neuropeptides and pro- or anti-inflammatory
ligands (Dong et al., 2001; Lembo et al., 2002; Choi and
Lahn, 2003; Tatemoto et al., 2006; Liu et al., 2009;
Kashem et al., 2011; Subramanian et al., 2011; Han
et al., 2013). Therefore, the role of MAS as the receptor
for only Ang(1-7) qualifying it as an integral constitu-
ent of the RAS is unclear. MAS appears to be a GPCR
with high constitutive activity and may not have a
unique cognate endogenous ligand (Canals et al., 2006;
Zhang et al., 2012; Tirupula et al., 2014). Many physi-
ologic modulators of MAS activity may exist; important
among themmay include peptides such as Ang(1-7) and
neuropeptide FF. Only when a clear understanding of
the physiology, pharmacology, and pathology for all
ligands of MAS has begun to emerge, can the status of
MAS be assigned with greater certainty. The current
objective is to stimulate research into confirming mul-
tiple ligands pairing with MAS in physiologic regula-
tions. A brief perspective onMAS given below summarizes
its potential relationship to RAS and pathophysiolog-
ical regulation in vivo.

B. Pharmacology

Using Mas-knockout mice in studies, Santos et al.
(2003b) first proposed that Ang(1-7) is the physiologic
ligand for MAS, a discovery that has transformed
research on MAS (see Figs. 9 and 10). The basis for
initial proposal of Ang(1-7) as an endogenous MAS
ligand is the observed loss of Ang(1-7) tissue effects in
the MAS-null mice. Proposed pairing of Ang(1-7) with
MAS was further confirmed in receptor binding and

functional studies in MAS-transfected cells. Specific
[125I]Ang(1-7) binding to kidney sections was reduced
in MAS-null mice (Santos et al., 2003b; Pinheiro et al.,
2004) as well as in MAS-GFP transfected cells (Gironacci
et al., 2011). The Ang(1-7) antagonist A-779 competed
with an IC50 close to the Kd of 125I-Ang(1-7) in Mas-
transfected cells (Santos et al., 2003b; Gironacci et al.,
2011). Binding specificity to MAS was reported by
using fluorescently labeled Ang(1-7) in CHO cells
(Pinheiro et al., 2004; Savergnini et al., 2010; Jankowski
et al., 2011), platelets (Fraga-Silva et al., 2008), and
Leydig cells (Leal et al., 2009). Specific binding of
fluorescently labeled Ang(1-7) was absent in MAS-null
mice and the binding is blocked by A-779 and AVE0991,
a nonpeptide analog of Ang(1-7) (Wiemer et al., 2002).
However, in most of the published reports on MAS,
standard pharmacological binding experiments are
absent, presumably due to technical problems. Over-
all, radiolabeled or fluorescently labeled Ang(1-7) data
in most reports intended to confirm a direct interaction
between Ang(1-7) and MAS are of poor pharmacolog-
ical rigor. This is a serious setback in the deorphanizing
endeavor.

C. Signaling

Ang(1-7) treatment causes concentration-dependent
release of arachidonic acid by stimulating mitogen-
activated protein kinase p38 in human mesangial cells
andMAS-transfected CHO and COS cells (Santos et al.,
2003b; Gembardt et al., 2008; Zimpelmann and Burns,
2009). Ligand treatment with Ang(1-7) or AVE0991
in MAS-transfected cells couples calcium-independent
activation of nitric oxide synthase to the phosphatidy-
linositol 3-kinase/protein kinaseB, AKTpathway (Sampaio

Fig. 9. Literature search and analysis of primary journal articles on MAS. The journal articles published on MAS were automatically retrieved from
PubMed with the search term “(((((MAS[Title/Abstract]) AND angiotensin OR MAS1[Title/Abstract]) AND angiotensin[Title/Abstract]) NOT meconium
aspiration syndrome[Title/Abstract]) NOT medication adherence scale[Title/Abstract])”. The results were manually curated to add or remove relevant
or irrelevant references, respectively, and the primary journal articles were separated from the reviews, interviews, lectures, or commentary articles.
The final curated list had a total of 337 primary journal articles until the end of year 2013. These articles are further analyzed to illustrate (A) number
of publications per year as a bar graph and (B) percentage of publications per functional category as a pie chart. The functional categorization was done
by searching for key words in the abstract and the title representing a given category. Please note that in the functional categorization, some articles
are present in multiple functional categories and therefore 100% represents a higher total of articles (524) instead of 337. The figure helps to illustrate
the general point that the number of publications on MAS have dramatically increased post-2003 and that MAS literature is primarily representative
of the cardiovascular and renal function category. Python and Biopython scripts were used to aid in the literature search and analysis.
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et al., 2007b; Lopez Verrilli et al., 2012; Savergnini et al.,
2013; Than et al., 2013), or activation of phospholipase A2
(Santos et al., 2003b). Ang(1-7) altered the phosphorylation
of MAP kinases (Sampaio et al., 2007a; Zimpelmann and
Burns, 2009; Liu et al., 2012; Verano-Braga et al., 2012).
Thus, Ang(1-7) action through MAS is proposed to be
production of arachidonic acid and activation of nitric oxide
synthase, which may not involve cAMP, IP3, and calcium
signaling.
Although MAS is a GPCR, there is no evidence for

Ang(1-7)-mediated conventional G-protein signaling as
measured by the levels of second messenger molecules
like calcium, IP3, and cAMP in MAS-transfected cells
(Bikkavilli et al., 2006; Shemesh et al., 2008; Zhang
et al., 2012; Tirupula et al., 2014). This observation is,
however, disputed by reports in kidney, where Ang(1-7)
treatment is reported to increased cAMP levels and
protein kinase A activation, suggesting Gas activation
by MAS. These signals could be inhibited using A-779
(Magaldi et al., 2003; Liu et al., 2012). MAS was shown
to constitutively couple to Gai, Gaq, and Ga12/13 pro-
teins (Zohn et al., 1998; Whitehead et al., 2001; Booden
et al., 2002; Chen and Ikeda, 2004; Singh et al., 2010a;
Tirupula et al., 2014). Adenovirus-mediated overex-
pression of MAS in rat neonatal cardiomyocytes caused
IP3 accumulation and myocyte hypertrophy through
Gaq-mediated signaling (Zhang et al., 2012). Constitu-
tive activity of theMAS in overexpressing cells activates
G-protein signaling pathways (Dias-Peixoto et al., 2008;
Shemesh et al., 2008; Gomes et al., 2012; Zhang et al.,
2012; Tirupula et al., 2014). Similar to Ang(1-7) the
analogs A-779 and AVE 0991 fail to activate G-protein
signaling through MAS (Fontes et al., 1994; Wiemer

et al., 2002; Kluskens et al., 2009). Thus, the current
state of Ang(1-7) interaction with MAS with regards to
G-protein activation is controversial.

Conventional G-protein signaling by MAS was reported
upon stimulation with another physiologic ligand, neu-
ropeptide FF (Dong et al., 2001). Few other reports in-
dicated that the G-protein activation by MAS was both
constitutive and in response to some peptide and syn-
thetic ligands (Bikkavilli et al., 2006; Canals et al., 2006;
Shemesh et al., 2008; Zhang et al., 2012; Tirupula et al.,
2014). In these studies, disparate ligands such as MBP7
(Bikkavilli et al., 2006), the angiotensin metabolite
peptides AngIII and AngIV (Gembardt et al., 2008),
novel nonpeptide ligands AR234960 (1-[[(4S)-4-(3-fluoro-
phenyl)-1-(2-methoxy-4-nitrophenyl)sulfonylpyrrolidin-3-yl]
methyl]-4-pyridin-2-ylpiperazine), AR244555 (19-but-
3-enyl-5-chlorospiro[2H-indole-3,49-piperidine]-1-yl)-(2,6-
difluorophenyl)methanone), and AR305352 (Zhang et al.,
2012), and CGEN-856/P61 (Peptide sequence: FLGY-
CIYLNRKRRGDPAFKRRLRD) (Shemesh et al., 2008;
Savergnini et al., 2010) were found to modulate MAS-
mediated G-protein signaling pathways at relatively
high concentrations of each peptide. Nonpeptide ligands
with both agonist and inverse agonist properties and
high selectivity for MAS are now known. The agonist
AR234960 was shown to activate G-protein signaling
and the inverse agonist AR244555 selectively inhibited
the agonist response aswell as the constitutive activity of
MAS (Zhang et al., 2012; Tirupula et al., 2014). Re-
markably, CGEN-856S is reported to activate calcium
and AKT signals (Shemesh et al., 2008; Savergnini
et al., 2013). Thus, atypical signaling response sug-
gests functional selectivity of MAS, which allows

Fig. 10. Summary of phenotypes reported in MAS knockout mice. The figure summarizes multiple phenotypes that are reported in literature in mice
lacking the MAS gene. Both damaging (red arrows) and protecting (green) arrows are observed in knockout mice. See main text for references.
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interaction with different ligands to activate different
signaling pathways, a phenomenon also called biased
signaling (Tirupula et al., 2014).

D. Other Receptors for the Proposed Ligands

Other receptors such as the AT2 receptor can bind
Ang(1-7) (De Souza et al., 2004; Walters et al., 2005).
Similarly, NPFF is known to activate distinct GPCRs,
NPFFR1 and 2. Thus, it is not clear whether the in-
teraction between these ligands and MAS is mutually
exclusive.

E. Tissue Distribution of MAS

The pattern of tissue distribution of MAS is broadly
conserved in mammals. The highest expression of MAS
is in brain and testis, but in other organs low level
expression is detected (Metzger et al., 1995; Alenina
et al., 2002).Mas gene is expressed in the hippocampus,
cerebral cortex, the dentate gyrus, the olfactory tuber-
cle, and the olfactory bulb in rodent brain (Young et al.,
1988; Bunnemann et al., 1990); particularly interesting
to note is that MAS expression is observed in regions of
brain important for cardiovascular regulation (Becker
et al., 2007).Mas gene expression was also discovered in
a wide variety of rodent tissues (Villar and Pedersen,
1994; Metzger et al., 1995; Alenina et al., 2008). The
MAS seen in the endothelial cells in blood vessels of
different organs including heart is very low (Kumar
et al., 1996; Alenina et al., 2008). MAS expression in the
rat brain starts at postnatal day 1. In adult rats, MAS
level is transiently up regulated after episodes of seizure
in the hippocampus (Martin et al., 1992; Martin and
Hockfield, 1993). MAS expression starts after birth in
testis and its levels increase during puberty (Metzger
et al., 1995; Alenina et al., 2002). MAS was proposed
to be a component of brain RAS in 1992, based on
colocalization mapping of MAS, AngII, and AngII
receptors with angiotensinogen, renin, angiotensin con-
verting enzyme, and angiotensin fragments (Bunnemann
et al., 1992).

F. Mas Gene-Knockout in Mice.

Availability of Mas knockout mice since 1998 pro-
vided unique opportunity to study the involvement of
MAS in behavioral, cardiovascular, renal processes, and
several metabolic physiologies (Walther et al., 1998).
Multiple phenotypes are reported in literature for Mas
knockout mice, both damaging and protective effects on
organs and tissue as detailed in Fig. 10.
Mas knockout mice show increased anxiety and

altered variability of heart rate and blood pressure in
a sex-specific manner (Walther et al., 1998, 2000a,b).
The early Mas knockout mice were in a mixed genetic
background (129�C57BL/6) in which variability in
pathophysiological consequences was observed. Signif-
icant alterations in cardiovascular and metabolic phys-
iologies were evident only in knockout mice with pure

genetic backgrounds like C57BL/6 and FVB/N (Xu et al.,
2007; Santos et al., 2008). Mas knockout mice harbor
impaired cardiac function accompanied with profibrotic
expression of extracellularmatrix proteins in the hearts
(Santos et al., 2006; Gava et al., 2012). Renal dysfunc-
tions associated with fibrotic changes were also reported
(Pinheiro et al., 2009). TheMas knockout animals have
increased expression of the proinflammatory cytokine,
transforming growth factor-b, type 1, and increased ex-
pression of profibrotic and proinflammatory molecules
such as fibronectin, collagen, a-smooth muscle actin,
vimentin, connective tissue growth factor (CTGF), and
tumor necrosis factor-a (Santos et al., 2008). Over-
expression of MAS inhibited the expression of the pro-
inflammatory genes. MAS-deficient mice have increased
abdominal fat mass, dyslipidemia, increased levels of
insulin and leptin, and altered response of adipocytes
to insulin (Santos et al., 2008; Mario et al., 2012). Mas
knockout offers protection from salt-induced hyperten-
sion (Heringer-Walther et al., 2012) and from ischemia/
reperfusion injury in both kidney and heart (Castro
et al., 2006; Esteban et al., 2009; Zhang et al., 2012). In
addition the Mas knockout, mice are also reported to
have changes in hemostasis (Fraga-Silva et al., 2008)
and penile fibrosis (da Costa Goncalves et al., 2007). A
common mechanism behind the Mas knockout mice,
exhibiting altered heart rate and blood pressure, in-
creased vascular resistance, and decrease blood flow, is
thought to be endothelial dysfunction due to imbalances
in nitric oxide (NO) and reactive oxygen species (Castro
et al., 2005; da Costa Goncalves et al., 2007; Peiro et al.,
2007; Rabelo et al., 2008; Xu et al., 2008; Raku�san et al.,
2010; Botelho-Santos et al., 2012).

G. Pathophysiological Evidence of MAS Receptor
Interaction with Ang(1-7).

The vasodilation, antidiuresis, and antithrombosis
responses to Ang(1-7) are lost in theMas knockout mice
(Santos et al., 2003b; Fraga-Silva et al., 2008). Valida-
tion of the cardiovascular actions of Ang(1-7) in the
MAS-deficient mice take advantage of agonists AVE
0991 (Wiemer et al., 2002) and CGEN-856S (Shemesh
et al., 2008) and the antagonists A-779 (Santos et al.,
1994, 2003b) and D-Pro7 Ang(1-7) (Santos et al., 2003a).
Based on the important functional evidences obtained
in Mas knockout mice and the anti-inflammatory and
antifibrotic effects of MAS in wild-type mice, MAS was
proposed to be an important component of the RAS.
Possibilities to enhance in vivo protective functions
through Ang(1-7)-mediated activation of MAS make it
an enticing drug target (Steckelings et al., 2011b). For
example, inhibition of MAS function is shown to offer
protection from ischemia/reperfusion injury in both
mouse kidney and heart, making it a target receptor
in the RAS for drug development (Castro et al., 2006;
Esteban et al., 2009; Zhang et al., 2012). However, the
physiologic effects of Ang(1-7) treatment combined with
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MAS deficiency in mice appear to be very complicated.
For example, multifaceted effects of Ang(1-7) in vascu-
lature may involve MAS interaction with AT1 receptor
and AT2 receptor (Castro et al., 2005). MAS was shown
to function as a physiologic antagonist of AT1 receptor
by altering AngII response in the mice (Von Bohlen und
Halbach et al., 2000; Kostenis et al., 2005; Raku�san
et al., 2010). MAS-AT1 receptor heterooligomerization
resulted in the altered trafficking of AT1 receptor in
transfected cells (Kostenis et al., 2005; Canals et al.,
2006; Santos et al., 2007). Thus, the evidence for MAS
interacting with AT1 receptor and AT2 receptor may be
amechanism forMAS inRAS. Literature regarding Ang
(1-7) interaction with MAS in various organs is sum-
marized below, and for a detailed literature compilation
we refer to recent review by Bader et al. (2014).
1. Heart. Picomolar concentrations of Ang(1-7) were

reported to cause a significant vasodilator effect in
isolated rat hearts (Souza et al., 2013). Acute stimu-
lation with Ang(1-7) in cardiomyocytes has no evident
effect on calcium transients but stimulates release
of NO (Dias-Peixoto et al., 2008; Costa et al., 2010;
Gomes et al., 2010). However, an increased uptake and
SERCA2 expression in transgenic rats overexpressing
Ang(1-7) was reported by Gomes et al. (2012). Mas
knockout alters expression of calcium handling proteins
and decreased contractility of heart in mice (Santos
et al., 2006; Botelho-Santos et al., 2012; Gava et al.,
2012; Gomes et al., 2012). The cardiomyocytes in Mas
knockout mice increase caveolin 3 expression and de-
crease HSP90, which reduces eNOS activity (Wu, 2002;
Takahashi and Mendelsohn, 2003; Dias-Peixoto et al.,
2008).
MAS RNA expression is reported in cardiomyo-

cytes, cardiac fibroblasts, and the sinoatrial node cells
(Ferreira et al., 2011). Ang(1-7) inhibits agonist-stimulated
hypertrophy in culture cardiomyocytes (Gallagher et al.,
2008; Gomes et al., 2010; Flores-Munoz et al., 2012),
which can be blunted by siRNA-mediated knock down
ofMAS (Tallant et al., 2005). In transgenic rats, elevation
of circulating Ang(1-7) causes attenuated cardiac fibrosis
in response to isoproterenol (Santos et al., 2004b). In
support of this finding, many investigators have evalu-
ated the antiremodeling effects of Ang(1-7) and other
MAS agonists, AVE 0991 and CGEN-856S (He et al.,
2004; Iwata et al., 2005; Grobe and Katovich, 2006;
Iusuf et al., 2008; Mercure et al., 2008; Giani et al.,
2010; Gomes et al., 2010; Durik et al., 2012; Patel et al.,
2012). Acute blockade of MAS with A-779 produces
a deterioration of isolated mouse heart functions (Castro
et al., 2005). Thus, independent studies support func-
tional pairing of MAS and Ang(1-7) in myocardium;
however, efficacy of this system needs rigorous proof.
2. Kidney. Although MAS expression could not be

detected in the human kidney (Shalamanova et al., 2010),
MAS transcripts have been detected in the kidney
of rodents (Santos et al., 2003b; Pinheiro et al., 2004;

da Silveira et al., 2010). Mas knockout mice lack the
antidiuretic action of Ang(1-7) (Santos and Baracho,
1992). Both the anti- and proinflammatory effects of
Ang(1-7) were reported in kidney ofMas knockout mice
(Esteban et al., 2009; Singh et al., 2010b; Moon et al.,
2011; Bernardi et al., 2012; Giani et al., 2012; Harris,
2012; Chou et al., 2013; Santos et al., 2013).

3. Vasculature. Studies performed inMASmodels of
gain- or loss-of-function show that systemic and local
hemodynamics are chronically affected. In humans and
other species, the endothelial layer of blood vessels
produce Ang(1-7) (Santos and Baracho, 1992) and the
presence of MAS in endothelial cells and VSMC is
conserved, suggesting localized functional interaction
(Santos et al., 2000; da Costa Goncalves et al., 2007;
Sampaio et al., 2007b; Xu et al., 2008). Mas knockout
increases the vascular resistance in mice in various
organs (Botelho-Santos et al., 2012). In the transgenic
rats, with increased circulating Ang(1-7), an Ang(1-7)-
dependent vasodilatory tone in blood vessels is sug-
gested. Endothelial dysfunction is observed for Mas
knockout in the FVB/N background, causing blood
pressure increases (Xu et al., 2008). However, in
C57Bl/6 mice, MAS knockout does not alter blood pres-
sure (Rabelo et al., 2008). Short-term Ang(1-7) infusion
in normotensive rats enhanced endothelial function
(Faria-Silva et al., 2005), which may be also be con-
served in other species (Langeveld et al., 2008; Durand
et al., 2010; Stegbauer et al., 2011; Beyer et al., 2013;
Jarajapu et al., 2013; Tassone et al., 2013).

4. Brain. Reduction in baroreflex sensitivity and sym-
pathetic activity is observed inMas-null mice (Walther
et al., 2000b). In addition Ang(1-7) and MAS provide
a protective effect in models of stroke (Mecca et al.,
2011; Regenhardt et al., 2013, 2014a,b). MAS is
present in select regions of the brain, which provides
the structural basis for many effects produced by
Ang(1-7) in the brain. For instance, the modulation of
sympathetic activity (Silva et al., 1993; Fontes et al.,
1994; da Silva et al., 2011; Kar et al., 2011; Li et al.,
2013), increase of vagal tone (Guimaraes et al., 2012),
and improvement of baroreflex sensitivity (Chaves
et al., 2000) are Ang(1-7) responses, and these effects
have been shown to be blocked by theMAS antagonist
A-779.

5. Reproductive Organs. MAS is expressed in the
testis, and changes in its expression are regulated
during puberty (Metzger et al., 1995; Alenina et al.,
2002). However, fertility is not affected in Mas knock-
out mice (Walther et al., 1998), but an increased risk
of fibrosis and erectile dysfunction was reported (da
Costa Goncalves et al., 2007). In humans, correlation
between MAS expression in seminiferous tubules and
male infertility was observed (Reis et al., 2010). MAS
gene expression was reported in human ovaries (Reis
et al., 2011). Both Ang(1-7) and MAS modulate folli-
culogenesis, ovulation, and pregnancy (Viana et al., 2011).
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Consistent with a regulatory role of MAS in ovary, the
MAS antagonist A-779 was shown to prevent break-
down of germinal vesicle and reduced oocytematuration
induced by Ang(1-7) (Honorato-Sampaio et al., 2012).
Expression of MAS in uterus and placenta is thought to
be relevant to diseases such as preeclampsia (Velloso
et al., 2007). Thus, MAS may not be important modu-
lator of male and female fertility but may be relevant in
pathogenesis related to fertility.

H. Conclusion

The current literature on MAS lacks convincing
evidence for a direct interaction between MAS and
Ang(1-7) with a potency that is consistent with a phys-
iologic functions altered by Ang(1-7) andMas knockout.
Although independent groups have supported this
pairing between MAS and Ang(1-7) in cellular func-
tional and in vivo physiologic studies, caution expressed
is based on basic pharmacological andmechanistic experi-
ments, which are relevant and need to be addressed. The
status of other possible ligands pairing with MAS and
physiologic function for those ligands through MAS
are important additional factors. Therefore, Ang(1-7)/
MAS pairing remains controversial and more research
is required for NC-IUPHAR to make a formal assign-
ment of MAS as the receptor for the RAS hormone
Ang(1-7).

VII. Overall Summary

The angiotensin receptor field has seen enormous
development in the last 15 years on the structure,
pharmacology, signaling, physiology, and disease states
related to these receptors. The importance of each re-
ceptor in cardiovascular, hemodynamic, neurologic,
renal, and endothelial functions, as well as in cell pro-
liferation, survival, matrix-cell interaction, and inflam-
mation, seems verywell recognized. Therefore therapeutic
agents targeted to these receptors are either in active
use in clinical intervention of common diseases or under
evaluation for repurposing in many other disorders.
Conclusions drawn earlier that the majority of

known cardiovascular effects of AngII are mediated
by the AT1 receptor is firmly established. Precision
analysis of various facets of AT1 receptor mechanism
has taken the place in explaining processes such as
vasoconstriction, electrolyte-water balance, cellular
proliferation and hypertrophy, and migration and ex-
tracellular matrix regulation. Precision analysis of
function seems to be the new vogue in AT1 receptor
research, resulting in efforts to dissect out a range of
questions directed to cell-specific functions, ligand-
specific signals, and inhibitor-specific therapeutic appli-
cations. Availability of three-dimensional structures
for AT1 receptor bound to anti-hypertensive agents is
expected to advance into new areas of AT1 receptor
structure-function. New signalingmodalities, such as

functional selectivity of AngII analogs for enhancing
b-arrestin–biased protective signaling, are now enter-
ing Phase II clinical studies for the treatment of acute
HF and may do so to support vasculature and kidney
function. AT1 receptor role in transactivation of receptor
tyrosine kinases and mediating mechanical stress is
gaining attention. Thus, position of AT1 receptor as a
master regulator is well established.

The AT2 receptor as a functional antagonist of AT1

receptor has unraveled through studies of geneti-
cally altered mouse models, signal transduction anal-
ysis, and, most importantly, through development of
new generation of ligands targeting this receptor. The
literature on the AT2 receptor is quite extensive, dem-
onstrating unconventional ligand selectivity, agonist-
independent signaling, and cGMP/NO signaling by AT2

receptor. Identification of novel AT2 receptor–interacting
proteins in recent years has rekindled interest in
signaling mechanisms of this enigmatic receptor. De-
velopment of pharmacological agents targeted to AT2

receptor could find therapeutic application in protec-
tion of kidney, pain management, and stimulation of
nerve growth.

The status of AngIV binding site and MAS as
angiotensinergic mediators is still evolving. Functional
studies clearly demonstrate important roles for these
in central nervous system and in renal and cardio-
vascular regulation. Especially, MAS interaction with
Ang(1-7) has gained significant attention. Multiple re-
ceptor candidates and multiple endogenous ligands for
the AngIV binding site as well as for MAS may be phys-
iologic. However, pharmacological characterization of
these physiologic entities do not rise to the level of
acceptance as specific angiotensin receptors at this
time. Rigorous pharmacology and signaling studies are
warranted.
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