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Abstract——Dopamine (DA) plays a well recognized
role in a variety of physiologic functions such as
movement, cognition, mood, and reward. Conse-
quently, many human disorders are due, in part, to
dysfunctional dopaminergic systems, including Par-
kinson’s disease, attention deficit hyperactivity disor-
der, and substance abuse. Drugs that modify the DA
system are clinically effective in treating symptoms of
these diseases or are involved in their manifestation,
implicating DA in their etiology. DA signaling and
distribution are primarily modulated by the DA trans-
porter (DAT) and by vesicular monoamine transporter
(VMAT)-2,which transportDA intopresynaptic terminals
and synaptic vesicles, respectively. These transporters

are regulated by complex processes such as
phosphorylation, protein–protein interactions, and
changes in intracellular localization. This review
provides an overview of 1) the current understanding
of DAT and VMAT2 neurobiology, including discussion
of studies ranging from those conducted in vitro to those
involvinghumansubjects; 2) the roleof these transporters
in disease and how these transporters are affected by
disease; and 3) and how selected drugs alter the function
and expression of these transporters. Understanding the
regulatory processes and the pathologic consequences of
DAT and VMAT2 dysfunction underlies the evolution of
therapeutic development for the treatment of DA-related
disorders.

I. Overview

Dopamine (DA) is a monoamine neurotransmitter
first identified in 1957 by a team of researchers under
the direction of Arvid Carlsson (for review of this
historic development, see Hornykiewicz, 2006), which
led to the Nobel Prize for Physiology or Medicine in
2000. DA signaling and distribution are dynamically
regulated by several factors, including transport into
the cytoplasm and synaptic vesicles through the dopa-
mine transporter (DAT) and vesicular monoamine
transporter (VMAT)-2, respectively. Perturbation of
either DAT or VMAT2 function profoundly alters in-
tracellular and extracellular DA concentrations. Dysregu-
lation of dopaminergic neuronal function can, in turn,
contribute to several disorders of the central nervous
system (CNS), including Parkinson’s disease (PD),
attention deficit hyperactivity disorder (ADHD), and
addictive disorders (Seeman and Niznik, 1990; Fiorino
et al., 1993; Nestler and Carlezon, 2006; Swanson et al.,
2007; Koob and Volkow, 2010). Understanding the
function of these transporters provides insight into the
mechanism of action of well known pharmacological
agents and also provides opportunities for the develop-
ment of new therapeutics. Given the vast scope of the
field, only selected mechanisms and disorders are
discussed herein. These are not all encompassing, and
the reader is referred to additional recent reviews
(Sulzer et al., 2005; Alter et al., 2013; Schmitt et al.,
2013; Vaughan and Foster, 2013; Howell and Negus,
2014; Nickell et al., 2014).

II. Dopamine and Dopaminergic Terminals: A
Brief Introduction

DA is a catecholamine neurotransmitter employed by
several major CNS pathways, including the nigrostriatal,
mesolimbic,mesocortical, and tuberoinfundibular systems.
A canonical model of presynaptic DA terminal form and
function is presented in Fig. 1. DA production, vesicular
localization and release, and extracellular persistence are
largely regulated by the coordinated activity of tyrosine
hydroxylase (TH), VMAT2, and DAT, respectively.

TH is the rate-limiting enzyme in DA production
(Levitt et al., 1965) that converts dietary tyrosine to
L-dihydroxyphenylalanine (L-DOPA), which, in turn, is
converted by aromatic amino acid decarboxylase (AADC)
to DA. After synthesis, VMAT2 transports DA from the
cytoplasmic space into synaptic vesicles within presynap-
tic terminals. VMAT2 activity largely dictates quantal
size, affecting the scale of subsequent neurotransmitter
release (Pothos et al., 2000; Omiatek et al., 2013).

Once released, DA can bind to and activate both
presynpatic and postsynaptic DA receptors. As DA
diffuses away from the synapse, it is taken back up into
dopaminergic terminals via the perisynaptically local-
ized DAT (Nirenberg et al., 1996b) and repackaged into
synaptic vesicles or degraded. Extracellular reuptake,
first characterized for norepinephrine, was initially
identified as the primary mechanism for catecholamine
synaptic clearance and signal cessation (Dengler et al.,
1961; Glowinski et al., 1965; Snyder et al., 1965;
Colburn et al., 1968). Although studies indicate that

ABBREVIATIONS: AADC, aromatic amino acid decarboxylase; AMPH, amphetamine; CNS, central nervous system; DA, dopamine; DAT,
dopamine transporter; JHW007, (3-endo)-3-[bis(4-fluorophenyl)methoxy]-8-butyl-8-azabicyclo[3.2.1]octane hydrochloride; JHW013, n-
cyclopropyl methyl-3a-[bis(49-fluorophenyl)methoxy]-tropane; GZ-793A, (R)-3-[2,6-cis-di(4-methoxyphenethyl)piperidin-1-yl]propane-
1,2-diol hydrochloride; L-DOPA, L-dihydroxyphenylalanine, ; METH, methamphetamine; MPD, methylphenidate; PACAP38, pituitary
adenylyl cyclase activating polypeptide 38; PAL-1045, (S)-N-ethyl-1-(2-naphthyl)propan-2-amine; PD, Parkinson’s disease; PD128907,
(4aR,10bR)-3,4a,4,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride; PICK1, PDZ domain protein
interacting with C-kinase 1; PKA, protein kinase A; PKC, protein kinase C; RTI55, methyl-(1R,2S,3S)-3-(4-iodophenyl)-8-methyl-8-
azabicyclo[3.2.1]octane-2-carboxylate; TBZ, tetrabenazine; TH, tyrosine hydroxylase; VMAT, vesicular monoamine transporter;
WIN35428, methyl-(1R,2S,3S,5S)-3-(4-fluorophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate.
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DAT influences the duration and extent of presynaptic
and postsynaptic DA receptor signaling (Jones et al.,
1998), recentmodeling data suggest that diffusion of DA
away from the terminal and dilution within the extra-
cellular milieu, rather than uptake through the DAT,
may be the dominant factors governing the extent and
duration of DA signaling (Cragg and Rice, 2004; Rice
and Cragg, 2008). The perisynaptically localized DAT
(Nirenberg et al., 1996b) may instead influence the
kinetics and volume of extrasynaptic DA diffusion,
rather than the DA content within individual synapses
(Rice and Cragg, 2008).

III. Dopamine Transporter: Structure
and Regulation

A. Dopamine Transporter Structure and Function

TheDATwas first sequenced and cloned in 1991 (Giros
et al., 1991; Kilty et al., 1991; Shimada et al., 1991). It is
a member of the solute carrier 6 (SLC6) family of solute
transporters and is highly conserved among humans and
othermammals, including rats andmice (92% and 93.4%
homology, respectively; Giros et al., 1992). Crystallogra-
phy of the closely related bacterial leucine transporter
has been the primary source for DAT structure and
function models, with more recent insight provided by
crystallization of the Drosophila melanogaster DAT.
These studies have identified several drug binding sites,
including cocaine and antidepressants (Zhou et al., 2007;
Beuming et al., 2008; Penmatsa et al., 2013). For extensive
reviews of the protein structure and transport function
of SLC6 transporters, see Kristensen et al. (2011) and
Pramod et al. (2013).

In the rat, DAT is 619 amino acids long, with 12
transmembrane segments, a 68 amino acid–long cyto-
plasmic N-terminal regulatory section, and a 41 amino
acid–long cytoplasmic C-terminal regulatory section.
These N- and C-terminal regulatory domains are the
primary regions for DAT post-translational modifica-
tions and protein interactions within the cytoplasmic
space, and they are critical for regulating DAT function
(see section III.B). In addition, a 75 amino acid–linking
region between the third and fourth transmembrane
segments serves as a regulatory substrate for post-
translational modifications and protein interactions
within the extracellular space. As demonstrated in
Drosophila, the DAT has a 5–5 distribution of trans-
membrane domains, with domains 1–5 and 6–10 form-
ing two groups of opposing domains that transport DA
through a ligand binding core formed by transmem-
brane regions 1, 3, 6, and 8 (Kristensen et al., 2011;
Penmatsa et al., 2013). These domains are bound by DA
and its ionic carriers, Na+ and Cl2, to facilitate trans-
port across the membrane, as well as by drugs such as
cocaine and its analogs (Beuming et al., 2008).

A well accepted model of DAT function proposes that
DA is transported across the plasmamembrane by DAT
shifting between outward- and inward-facing conforma-
tions, which is driven by the symport of Na+ and Cl2

along their concentration gradients (Shan et al., 2011)
(Fig. 2A). This process is initiated by one DA molecule
binding the pocket formed by transmembrane regions 1,
3, 6, and 8 of outward-facing DAT (Fig. 2A). Binding of
two Na+ ions and one Cl2 ion to this pocket causes
a DAT conformational change from outward facing to
inward facing (Fig. 2A), releasing DA, Na+, and Cl2 into

Fig. 1. Presynaptic dopaminergic terminal model.
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the cytoplasm. Substrate release shifts theDAT from its
inward-facing conformation to the outward-facing
conformation. In this model, DA is stoichiometrically
transported across the membrane and is highly de-
pendent upon the concentration of extracellular Na+

(Wheeler et al., 1993). Inward and outward conforma-
tions also expose different DAT residues to the extra-
cellular space, which affects the binding properties of
specific pharmacologic agents (e.g., cocaine), as dis-
cussed in section VI.A.2.
DAT creates a complex electrogenic current associ-

ated with substrate transport as Cl2 and Na+ move into
the cell along their concentration gradients (Sonders
et al., 1997). In addition to the stoichiometric current
associated with substrate transport, an uncoupled
anionic current is created when substrates are trans-
ported, resulting in a larger than expected charge
movement (Sonders et al., 1997). Underlying substrate
transport, DAT has a small tonic leak current that
nonselectively transports cations and is blocked by both
substrates and uptake inhibitors (e.g., cocaine) (Sonders
et al., 1997). These DA-coupled and DA-uncoupled
currents directly alter membrane excitability and may
affect DA release (Sonders et al., 1997; Ingram et al.,
2002). Current-like behavior is also hypothesized to
play a role in stimulant-induced DA efflux through DAT
(Kahlig et al., 2005). Enhancing or impairing DAT
channel-like properties may provide a unique means
to manipulate dopaminergic membrane potential, al-
though this is unexplored.

B. Dopamine Transporter Regulation

DAT is primarily regulated by threemechanisms: post-
translational modification, protein–protein interactions,
and intracellular localization. A high degree of overlap
exists between these mechanisms. Post-translational

modifications are often the result of protein–protein
interactions, and the localization of DAT on the plasma
membrane versus within the intracellular space is often
dictated by post-translational modifications and interac-
tions with trafficking and regulatory proteins. Of note,
these mechanisms have primarily been identified in in
vitro systems that may not fully model the in vivo state
(e.g., cell culture expression systems) or in systems
intended to model diseased and/or dysfunctional states
(e.g., in animals treated with psychostimulants or animal
models of PD; see section VI.A.1). Consequently, it is
unclear to what extent many of these mechanisms
contribute to the regulation of basal DAT function in vivo.

1. Post-Translational Modification. DAT undergoes
at least four forms of post-translational modification:
phosphorylation, ubiquitination, glycosylation, and pal-
mitoylation. Two additional processes, oxidation and
nitrosylation, may also regulate DAT function. These
modifications facilitate interactions between DAT and
other proteins, alter DAT transport kinetics (e.g., Vmax),
and/or change the distribution of DAT within plasma
membrane lipid domains or between the cell surface
and intracellular space. The vast majority of DAT post-
translational modification identified to date occurs
within the N-terminal cytoplasmic domain, the
C-terminal cytoplasmic domain, and the extracellular
segments between the third and fourth transmembrane
domains. Pharmacologically manipulating these post-
translational modifications may provide unique thera-
peutic routes to regulate DAT expression and function.

Phosphorylation is the most well characterized but
functionally opaque DAT post-translational modifica-
tion. The DAT N terminus contains several threonine
and serine residues that may be phosphorylated by
protein kinase C (PKC), protein kinase A (PKA), protein
kinaseG, andCa2+/calmodulin protein kinase II (Gorentla
et al., 2009). Proline-directed phosphorylation of DAT
threonine 53 may be involved in maintaining DAT
transport (point mutations decrease DAT Vmax) and
may also be involved in amphetamine (AMPH)–induced
reverse transport (Gorentla et al., 2009; Foster et al.,
2012). Acute, in vitro activation of PKC by phorbol
esters has been associated with a downregulation of
DAT activity, which coincides withDAT phosphorylation
and reduced plasma membrane expression (Copeland
et al., 1996; Vaughan et al., 1997; Zhu et al., 1997;
Daniels and Amara, 1999; Melikian and Buckley, 1999).
Taken together, these observations led to the hypothe-
sis that PKC-mediated downregulation of DAT activity
is a consequence of phosphorylation-induced DAT
trafficking, likely internalization. The identification of
several DAT N-terminal serines that are phosphory-
lated in vitro by PKC led to the further proposal that
these residues are involved in regulating DAT plasma
membrane expression (Foster et al., 2002). However,
limited evidence has come to support this hypothesis.
Mutating or deleting serines on the DAT N-terminal

Fig. 2. Models of DAT and VMAT2 function. (A) The movement of DA
from the extracellular to cytoplasmic space through transition of DAT
from an outward-facing to inward-facing state. (B) The transport of DA
into synaptic vesicles from the cytoplasmic space through VMAT2,
facilitated by H+-ATPase function.
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and intracellular domains prevents PKC-mediated
phosphorylation, but it does not alter DAT localization
(Chang et al., 2001; Granas et al., 2003). The role of DAT
N-terminal serine phosphorylation remains unclear,
but it may be involved in facilitating protein–protein
interactions, regulating constitutive DAT turnover,
and/or altering substrate transport during stimulant
exposure (see section VI.A.1). Instead, DAT internali-
zation may be regulated by PKC interaction at the DAT
C terminus. A uniquemotif identified on the C terminus
of DAT and other SLC6 family transporters drives
constitutive clathrin-mediated endocytosis (Holton
et al., 2005). PKC has been proposed to regulate the
degree of DAT internalization by removing a braking
mechanism that physically masks the C-terminal DAT
internalization motif, allowing this exposed motif to
enhance basal internalization (Boudanova et al., 2008).
Ubiquitination of the DAT N terminus determines

whether DAT internalization is temporary and DAT is
recycled back to the membrane, or it is more permanent
and leads to DAT degradation. Ubiquitinated DAT is
sorted away from the constitutive recycling pathway
and into a late endocytic pathway, resulting in lyso-
somal degradation (Daniels and Amara, 1999; Miranda
et al., 2005, 2007). To date, two ubiquitin ligases that
ubiquitinate and sort misfolded DAT into the lysosomal
degradation pathway (Fig. 1) have been identified:
neural precursor cell expressed developmentally down-
regulated protein 4-2 (Sorkina et al., 2006) and Parkin
(Jiang et al., 2004).
The extracellular regulatory domain between trans-

membrane domains 3 and 4 contains asparagines that
are targets for glycosylation (Vaughan andKuhar, 1996).
DAT glycosylation progressively increases throughout
development and appears to both stabilize DAT locali-
zation to the plasma membrane and increase the DA
transport rate (Vmax) (Patel et al., 1994; Li et al., 2004).
Glycosylation is not necessary for plasma mem-
brane expression, but partially glycosylated and non-
glycosylated DAT is preferentially endocytosed, is more
predominant in endocytic structures, and inefficiently
transports DA compared with fully glycosylated DAT
(Li et al., 2004). Glycosylation plays an important role in
the susceptibility of DAT to the effects of drugs and
disease. Cocaine has a greater inhibitory effect on
nonglycosylated DAT (Li et al., 2004), and reduced
DAT glycosylation within the human striatum and
midbrain strongly correlates with greater PD suscepti-
bility (Afonso-Oramas et al., 2009). Maintaining or
enhancing DAT glycosylation, perhaps via pharmaco-
logical manipulation, may stabilize DAT plasma mem-
brane localization and uptake and may aid in the
preservation of DAT function.
On the C terminus, DAT function is regulated

through palmitoylation, the addition of a saturated
fatty acid via thioester bonding. Palmitoylation regu-
lates DAT function and structure by maintaining Vmax

and reducing PKC-mediated plasma membrane turn-
over (Foster and Vaughan, 2011). Althoughmuch of this
process requires elucidation, palmitoylation is impor-
tant in activity-driven changes in synapse morphology
and function (Kang et al., 2008) and may serve as
a future target for pharmacological manipulation.

Finally, nitric oxide–mediated nitrosylation can reg-
ulate DAT activity (Volz and Schenk, 2004). In addition,
exposure to reactive oxygen species decreases DAT
function (Berman et al., 1996; Fleckenstein et al.,
1997a) and likely contributes to the formation of high
molecular weight DAT complexes (Baucum et al., 2004),
both of which are components of methamphetamine
(METH)–induced dopaminergic deficits (see section VI).

2. Dopamine Transporter–Protein Interactions.
DAT interacts directly and indirectly with numerous
proteins (in addition to the kinases and ubiquitinases
already discussed) that are important in regulating
localization and function (for review, see Eriksen et al.,
2010b). DAT localization to intracellular locales or
plasma membrane domains requires interaction with
numerous synaptic scaffolding proteins. Binding of the
PDZdomainprotein interactingwithC-kinase 1 (PICK1)
to the DAT C-terminal PDZ domain has been demon-
strated both in vitro and in vivo and is thought to be
involved in regulating plasma membrane expression,
although opposing functions have been demonstrated
(Torres et al., 2001; Bjerggaard et al., 2004). Recent
work indicates that rather than facilitating plasma
membrane expression, PICK1 may function as an
endocytic compartment–specific anchor, holding DAT
within Rab11-positive endocytic compartments and
preventing recycling back to the plasma membrane
(Madsen et al., 2012).

Despite the unclear role of PICK1 binding, DAT
C-terminal PDZ interactions are incredibly important
in transporter localization. DAT knock-in mice with dis-
rupted PDZ domains experience significant loss of trans-
porter expression within the striatum (Rickhag et al.,
2013a). PDZ domain interactions appear necessary for
stabilizing DAT at the plasma membrane, and their
absence enhances constitutive internalization (Rickhag
et al., 2013a).

DAT–protein interactions also facilitate the forma-
tion of complexes between proteins involved in regulat-
ing the DA system. DAT may directly bind DA D2

receptors, which promotes the recruitment of DAT to
the plasmamembrane (Lee et al., 2007). Disrupting this
interaction in vivo leads to hyperlocomotion in mice,
suggesting impaired DA uptake and/or D2 receptor
signaling (Lee et al., 2007). The DAT may be indirectly
influenced by VMAT2 through interaction with the
synaptic vesicle protein synaptogyrin-3 (Egaña et al.,
2009). Increasing synaptogyrin-3 expression in vitro
increases DAT function, which is blocked by treatment
with the VMAT2 inhibitor reserpine (Egaña et al.,
2009). This leads to the hypothesis that synaptogyrin-3
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tethers VMAT2 synaptic vesicles to DAT, facilitating the
immediate reuptake of DA into synaptic vesicles after
transport through DAT.
Localization and stabilization of DAT at the plasma

membrane is regulated through interactions with pro-
teins such as flotillin-1 and a-synuclein. Flotillin-1 is
a membrane scaffolding protein that was recently
identified as necessary for localizing DAT to plasma
membrane lipid rafts, thereby dictating the binding
partners to which DAT may be physically exposed
(Cremona et al., 2011). In addition, the binding of
a-synuclein to the DAT C terminus increases DAT
membrane expression and DA uptake, stabilizing the
transporter at the plasma membrane under normal
conditions. However, a-synuclein overexpression may
be an important factor driving PD dopaminergic
toxicity, as discussed in section V.B (Fountaine and
Wade-Martins, 2007; Moszczynska et al., 2007). Thus,
pharmacologically targeting interactions between DAT
and its protein-binding partners, such as flotillin-1 or
a-synuclein, may prevent the progression of disorders
such as PD.
In addition to binding other proteins, the DAT has

been observed in vitro to form oligomeric complexes,
often tetramers, which are involved in plasma mem-
brane expression and function (Milner et al., 1994;
Hastrup et al., 2001; Torres et al., 2003). DAT oligo-
meric complexes are formed within the endoplasmic
reticulum and maintained throughout constitutive cy-
cling between the plasma membrane and endocytic
structures (Sorkina et al., 2003). Whether oligomeric
complexes are the predominant state of DAT orienta-
tion in vivo is unknown, but some evidence supports the
existence of DAT tetramers within striatal membranes
(Milner et al., 1994). However, the potential significance
of oligomers has been demonstrated by recent work
showing that, under certain conditions, DAT protomers
within an oligomeric complex affect the conformational
state of one another, altering DA transport activity and
sensitivity to stimulants historically classified as DAT
reuptake inhibitors such as cocaine (Zhen et al., 2015).
The size, composition, and distribution of DAT oligo-
meric complexes may therefore influence the sensitivity
of particular dopaminergic neurons to stimulants and
any subsequent toxicity. Of note, the formation of large
molecular weight DAT complexes is observed after
multiple high-dose administrations of METH in vivo
and is associated with excessive DA signaling, dysfunc-
tional VMAT2, and hyperthermia (Baucum et al., 2004;
Hadlock et al., 2010). How METH-induced DAT com-
plexes may be related to or involved with unimpaired
DAT oligomers, as well as the role of these complexes in
a METH-stressed striatum, is unknown.
3. Transporter Localization. DAT can only trans-

port DA when expressed at the plasma membrane.
Under normal conditions, DAT is perisynaptically
expressed and constitutively internalized. After

clathrin-mediated endocytosis, DAT is primarily sorted
down the degradation pathway of the late endosome
and lysosome, but it may also be sorted into recycling
endosomes and then reexpressed on the plasma mem-
brane (Loder and Melikian, 2003; Sorkina et al., 2005;
Eriksen et al., 2010a; Rao et al., 2011). Two aspects of
localization are important when considering DAT func-
tion: the localization of DAT within the plasma mem-
brane and the distribution of DAT between the plasma
membrane and intracellular endosomal structures. The
localization of DATwithin plasmamembrane lipid rafts
dictates many of its protein interactions and relative
mobility on the membrane. Under basal conditions,
DAT is evenly distributed between raft and nonraft
domains (Adkins et al., 2007; Foster et al., 2008) and is
highly mobile within the plasma membrane (Eriksen
et al., 2009); however, changes to this distribution may
play a role in DA-related disorders. For example, one
case study revealed a rare coding variant in the human
DAT C terminus of a patient with ADHD (R615C); this
variant impairs flotillin 1 interactions with DAT and
reduces DAT lipid raft localization, which, in turn, may
have altered DA signaling in this individual (Sakrikar
et al., 2012).

Given the importance of DAT plasma membrane
expression to its function, facilitated removal of DAT
from the plasma membrane by endocytosis has been
proposed as a primary mechanism for the reduction in
DAT uptake observed inmanyDA-related disorders (for
review, see Miller et al., 1999). Indeed, DAT internal-
ization is hypothesized as a primary mechanism un-
derlying AMPH-induced DAT downregulation (see
section VI.A.1). The degree to which facilitated removal
of DAT from the membrane is responsible for reduced
DA uptake during DA-related disorders is unclear.

IV. Vesicular Monoamine Transporter-2:
Structure and Regulation

A. Vesicular Monoamine Transporter-2 Structure
and Function

The VMAT was first identified and cloned in rats as
the primary mediator of monoamine uptake into in-
tracellular vesicles in 1992 (Erickson et al., 1992; Liu
and Edwards, 1997), followed by identification of both
isoforms (VMAT1 and VMAT2) in 1996 (Erickson et al.,
1996). Neuroendocrine cells primarily express VMAT1,
whereas neurons of the central, peripheral, and enteric
nervous systems exclusively express VMAT2 (Erickson
et al., 1996). VMAT2 is well conserved across mammals,
with 96% sequence homology between rats and mice
and 92% sequence homology between rats and humans
(Takahashi and Uhl, 1997).

No VMAT2 crystal structure exists to date, so the
structure–function relationship of VMAT2 has been
primarily determined through mutagenesis and photo-
affinity labeling studies. In the rat, VMAT2 is 515
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amino acids long, with 12 transmembrane domains and
a cytoplasmic N terminus and C terminus. The primary
VMAT2 regulatory domains exist on the N terminus
and C terminus, along with an intravesicular-linking
region between the first and second transmembrane
domains and the cytoplasmic linking region between
the sixth and seventh transmembrane domains. The
terminal domains are targets for phosphorylation,
whereas the linking region between the first and second
transmembrane domains is glycosylated.
Within the CNS, the VMAT2 is predominantly local-

ized to small synaptic vesicles, with only a small portion
localized to dense-core vesicles or structures of the
endocytic pathway (Nirenberg et al., 1997b). As dis-
cussed in section VI.B, VMAT2 synaptic vesicle locali-
zation within presynaptic terminals can play an
important role in monoamine uptake; for example,
stimulant-induced relocalization strongly correlates
with increases or decreases in VMAT2-mediated DA
uptake and synaptic vesicle DA content (Brown et al.,
2001b, 2002; Sandoval et al., 2002, 2003; Volz et al.,
2007).
Once present on synaptic vesicles, VMAT2 functions

as a stoichiometric antiporter, transporting two H+ ions
out of a vesicle to transport one monoamine molecule
into a vesicle (Johnson et al., 1981; Knoth et al., 1981)
(Fig. 2B). H+-ATPase activity establishes the high
intravesicular H+ concentration upon which VMAT2
transport depends, and reducingH+-ATPase function or
increasing vesicular pH impairs VMAT2 transport
activity (for review, see Sulzer et al., 2005; Fleckenstein
et al., 2007). This can affect VMAT2 function: AMPH
and its analogs may function as weak bases to disrupt
the synaptic vesicle pH and contribute to VMAT2

dysfunction (Sulzer et al., 1993; Omiatek et al., 2013;
for review, see Fleckenstein et al., 2007) (Fig. 3B).

B. Vesicular Monoamine Transporter-2 Regulation

Similar to DAT, VMAT2-mediated monoamine trans-
port is regulated by post-translational modification,
protein interactions, and presynaptic localization, al-
though less is known about these processes. VMAT2 has
been assumed to follow stages of the synaptic vesicle
cycle in a manner similar to other neurotransmitter
systems. Vesicles are trafficked to the plasma mem-
brane, neurotransmitter is released into the synapse,
vesicles are reformed through internalization, and
neurotransmitter is transported from the cytoplasm
back into these vesicles through membrane-integrated
transporters. However, recent evidence indicates that
VMAT2-associated synaptic vesicles are processed dif-
ferently within the synaptic vesicle cycle than other
neurotransmitter systems, indicating alternate path-
ways and mechanisms of VMAT2 vesicle cycling may
exist (Onoa et al., 2010). In the midbrain, VMAT2 is
internalized and vesicles are reformed faster, segregate
to different terminal and axonal locations, and release
at a lower rate than vesicles associated with the
vesicular glutamate transporter (Onoa et al., 2010). The
post-translational modifications, protein interactions,
and sorting patterns of VMAT2 likely underlie the
unique way in which these vesicles engage the synaptic
vesicle cycle, as well as their response to different
pharmacologic agents.

1. Post-Translational Modification. Phosphorylation
and glycosylation are the primary VMAT2 post-
translational modifications reported to date. VMAT2 is
constitutively phosphorylated on both theN-terminal and

Fig. 3. The effects of stimulants on dopaminergic terminal function. (A–C) Exposure of dopaminergic terminals (A) to releasers (B) and reuptake
inhibitors (C) alters the distribution and function of DAT and VMAT2. (B) Releasers function as DAT substrates and diffuse through the cytoplasmic
membrane, leading to reversal of DA transport through the DAT. PKC-mediated DAT internalization may occur but has not been demonstrated in vivo.
Releasers also reduce DA uptake into VMAT2 synaptic vesicles, by potentially functioning as a weak base to decrease vesicular pH or by binding
VMAT2 directly, presumably increasing cytoplasmic DA. Finally, releasers reduce VMAT2 synaptic vesicles within the cytoplasmic fraction. (C)
Reuptake inhibitors prevent DA transport via the DAT while also increasing DAT expression at the plasma membrane, increasing extracellular DA. In
addition, reuptake inhibitors increase VMAT2 synaptic vesicles within the cytoplasmic fraction while reducing the number of vesicles in the membrane
fraction, increasing DA content within striatal dopaminergic terminals. DAT, VMAT2, and DA are depicted as in Fig. 1. CCV, clathrin-coated vesicle;
EE, early endosome; RE, recycling endosome.
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C-terminal cytoplasmic regions. Although the precise role of
phosphorylation is unclear, N-terminal phosphorylation is
necessary for the maintenance of VMAT2 monoamine
uptake, and perhaps for stimulant-induced monoamine
efflux from synaptic vesicles (Krantz et al., 1997; Torres and
Ruoho, 2014). The protein kinases involved in N-
terminal phosphorylation have yet to be identified, but
PKA and PKC are probable candidates, given the VMAT2
N-terminal structure. VMAT2C-terminal phosphorylation
by casein kinases I and II is important in retainingVMAT2
in large dense-core vesicles (Waites et al., 2001; Fei et al.,
2008). Removal of C-terminal region phosphorylation by
casein kinases results in VMAT2 trafficking into small
synaptic vesicles instead of large dense-core granules
(Waites et al., 2001). Thus, C-terminal modification may
play an important in vivo role in localizing VMAT2 into
monoaminergic synaptic vesicles. In addition to the termi-
nal regions, several amino acidswith kinase bindingmotifs
exist on the cytoplasmic linking region between the sixth
and seventh transmembrane domains, although no studies
to date have evaluated their involvement in VMAT2
regulation.
N-linked glycosylation of the C terminus and linking

region between the first and second transmembrane
domains is responsible for VMAT2 vesicular targeting.
VMAT2 is synthesized in the endoplasmic reticulum,
glycosylated in the trans-Golgi network, and sorted
into constitutive secretory vesicles or large dense-
core vesicles in a glycosylation-dependent manner
(Nirenberg et al., 1995, 1996a, 1997a). Glycosylation of
both transmembrane regions is necessary to traffic
VMAT2 into dense-core vesicles—the expression of each
region alone is insufficient (Yao andHersh, 2007). In the
absence of C-terminal and linking domain glycosyla-
tion, VMAT2 is trafficked to small vesicles (Yao and
Hersh, 2007). The majority of VMAT2 identified in DA
synaptic terminals is present in small synaptic vesicles
(Nirenberg et al., 1997a), indicating that only a small
fraction of VMAT2 is glycosylated within the Golgi body
and sorted into large dense-core vesicles within dopa-
minergic cell bodies. These large dense-core vesicles
either remainwithin the cell body or are trafficked down
axons to presynaptic terminals. Nonglycosylated
VMAT2 is sorted into constitutive secretory vesicles
within dopaminergic cell bodies. These secretory
vesicles are then trafficked down axons and integrate
into the plasma membrane, upon which internalization
drives the formation of VMAT2 synaptic vesicles (Fig.
1). For further review of synaptic vesicle biogenesis and
transporter trafficking, see Hannah et al. (1999) and
Fei et al. (2008).
Of note, nitrosylation of the VMAT2 is reported to

occur shortly after METH exposure and results in
reduced vesicular DA uptake (Eyerman and Yamamoto,
2007). Inhibiting neuronal nitric oxide synthase activ-
ity prior to METH exposure prevents VMAT2 nitro-
sylation and subsequent loss of activity (Eyerman and

Yamamoto, 2007), suggesting that reactive species
modification of VMAT2 may alter function under at
least some pathophysiological conditions.

2. Vesicular Monoamine Transporter-2–Protein
Interactions. Relatively few direct VMAT2–protein
interactions have been identified. Among these, com-
plex formation between VMAT2, TH, and AADC has
been described. TH and AADC, the rate-limiting and
final enzymes in DA synthesis, respectively, directly
interact with VMAT2 on synaptic vesicles isolated from
dopaminergic brain regions (Cartier et al., 2010). The
existence of these complexes suggests that DA is
spatially restricted within the presynaptic terminal,
because DA uptake into synaptic vesicles will occur
through VMAT2 immediately after production. Since
DA can be rapidly converted to reactive species within
the oxidizing environment of the cytoplasm (see section
VI.B), restricting cytoplasmic DA localization with
these complexes may be important in preventing DA
from damaging presynaptic terminals. Loss or disrup-
tion of these VMAT2-TH-AADC complexes may drive or
enhance presynaptic terminal dysfunction. Trafficking
and sorting may play an important role in forming
VMAT2-TH-AADC complexes, which appear to reside
only on a subset of vesicles.

VMAT2 also directly interacts with heat shock chap-
erone 70 (Hsc70), a heat-shock protein involved in the
removal of clathrin-coats from vesicles that allows
subsequent trafficking into the endocytic pathway
(Requena et al., 2009). The exact role of Hsc70 in vesicle
trafficking is unclear, but Hsc70 binding to VMAT2
synaptic vesicles leads to a significant reduction in
monoamine uptake in both cell culture and synapto-
some models. This suggests that VMAT2 function may
be directly inhibited at specific stages of internalization
and synaptic vesicle reformation or until particular
vesicle components are in place (e.g., H+-ATPase).
Improper VMAT2 synaptic vesicle maturation or sort-
ing, which occurs after exposure to stimulants (see
section VI.B.3), may therefore impair transporter
function.

3. Presynaptic Localization. The distribution of
VMAT2 within different synaptic vesicle populations,
and perhaps within discrete regions of the presynaptic
terminal, is closely related to transporter function. As
further discussed in section VI.B.3, psychostimulants
differentially redistribute VMAT2 between membrane-
associated and cytoplasmic crude synaptic vesicle frac-
tions, which differentially alters VMAT2 uptake and
vesicularDA content.Whether VMAT2 redistribution is
the cause or a consequence of reduced VMAT2 uptake is
unclear, but presynaptic localization plays a critical role
in regulating the capacity of VMAT2 to sequester
monoamines.

Finally, it has been suggested that synaptic vesicles
are regulated in a similar manner across neurotrans-
mitter systems. Recent evidence, however, indicates
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significant differences between the vesicle cycles of
VMAT2 compared with the vesicular glutamate trans-
porter (Onoa et al., 2010). The susceptibility of different
neurotransmitter systems to various drugs and disor-
ders may be due, in part, to variance in synaptic vesicle
trafficking, exocytosis, endocytosis, and sorting that
indirectly affects neurotransmitter reuptake and re-
lease. Thus, this is an important area for future
investigation.

V. Dopamine Transporter, Vesicular Monoamine
Transporter-2, and Disorders of the Central

Nervous System

Dysregulation of monoamine systems plays a critical
role in a variety of disease states (for reviews, see
Seeman and Niznik, 1990; Fiorino et al., 1993; Nestler
and Carlezon, 2006; Swanson et al., 2007; Koob and
Volkow, 2010). The following sections include a descrip-
tion of some commonly investigated diseases and the
putative role of DAT and VMAT (for examples of other
diseases such as autism and bipolar disorder, see
Grünhage et al., 2000; Nakamura et al., 2010; Bowton
et al., 2014; Nguyen et al., 2014).
A. Attention Deficit Hyperactivity Disorder.

ADHD is a common neuropsychiatric disorder charac-
terized by symptoms of inattention, hyperactivity, and
impulsivity that may contribute to cognitive and be-
havioral impairment. Approximately 9% of American
children aged 13–18 years (Merikangas et al., 2010) and
4.1% of American adults aged$18 years (Kessler et al.,
2005) are affected by ADHD. Although the etiology of
the disorder is not well understood, several lines of
evidence implicate dysregulation of DA systems in
ADHD (for reviews, see Swanson et al., 2007; Volkow
et al., 2007a,b, 2009). For instance, the impact of DAT
genetic variation on behavioral changes underlying
mental illness stems from pioneering studies of the
DAT knockout mouse, which demonstrated that genetic
elimination of DAT expression reduces presynaptic DA
stores, elevates extracellular DA, and produces hyper-
activity in a novel environment (Giros et al., 1996).
However, humans that are homozygous for loss-of-
function DAT (SLC6A3) alleles present with a complex
disorder that resembles PD, rather than ADHD (see
section V.B; Kurian et al., 2011; Ng et al., 2014).
Instead, clinical studies that genetically screen individ-
uals with ADHD, as well as preclinical studies using cell
lines and genetic mouse models, have suggested that
variations in the genes encoding for DAT, rather than
simple loss of function, and/or DA receptors are associ-
ated with risk for ADHD (Gill et al., 1997; Bobb et al.,
2005; Mazei-Robison et al., 2005; Sakrikar et al., 2012;
Mergy et al., 2014). Importantly, only a few human case
studies of DAT variants have been implicated in ADHD
to date. Nonetheless, a further link between DAT
function and ADHD is suggested from the therapeutic

utility of drugs with actions at DAT, such as methyl-
phenidate (MPD) and AMPH, which are clinically
effective in treating children, adolescents, and adults
with ADHD. Finally, evidence from brain imaging
studies, albeit mixed, indicates that DAT levels and
DA signaling may be altered in patients with ADHD
(Dougherty et al., 1999; Krause et al., 2000; Volkow
et al., 2007a,b, 2009), although other transmitter
systems are also likely to play an important role.

Although it is unclear how drugs that work in part by
targeting DAT treat symptoms of ADHD, these drugs
may help normalize brain function within the limbic
and frontal cortex circuit (Rubia et al., 2009). In
untreated children with ADHD, MPD increased fronto-
striato-parieto-cerebellar activation as well as de-
creased activation in the orbitofrontal and superior
temporal regions during a rewarded continuous perfor-
mance task (Rubia et al., 2009). Compared with
medication-naïve subjects with ADHD, patients with
ADHD who had received long-term stimulant treatment
also had increased activation of the right caudate during
an attentional control task and had similar activation to
that of control subjects (Hart et al., 2013). To the extent
that altered brain circuitry contributes to ADHD, these
findings suggest that stimulant medication may help
normalize corticostriatal function.

Finally, stimulant medications have been a first-line
treatment of ADHD for over 50 years (Wigal et al., 2010)
and are clinically effective in treating symptoms. How-
ever, there is concern that these medications have high
potential for misuse and abuse among certain popula-
tions (e.g., college students; for review, see Weyandt
et al., 2014). Thus, emerging research is investigating
how other novel drugs that target DAT might increase
the therapeutic effects and decrease unwanted side
effects (i.e., abuse), such as atypical DAT ligands (see
section VI.A.2; for review, see Reith et al., 2015). For
example, modafinil, an atypical DAT inhibitor, is sug-
gested to have relatively little potential for abuse
because it interacts with DAT in a different manner
compared with drugs such as MPD (i.e., modafinil
stabilizes the closed conformation; see Schmitt and
Reith, 2011). Furthermore, modafinil has been demon-
strated to be clinically effective and a viable alternative
compared with traditional stimulant medication (e.g.,
Adderall; Shire, Lexington, MA) for the treatment of
ADHD (Taylor and Russo, 2000; Turner, 2006). These
studies highlight the notion that understanding atypi-
cal ligands and their interactions with DAT might lead
to improved medications for other disorders linked to
perturbations in dopaminergic systems, such as sub-
stance abuse (Tanda et al., 2009b; Loland et al., 2012).

B. Parkinson’s Disease. PD is a neurodegenerative
disorder affecting 3% of people aged $65 years (Gillies
and McArthur, 2010). This disorder is characterized by
a progressive loss of nigrostriatal dopaminergic neurons
that results in bradykinesia, rigidity, resting tremor,

DAT, VMAT2, Neurotoxicity, and Neuroprotection 1013



and postural instability (Halliday and McCann, 2010).
PD is treated by administration of L-DOPA or dopami-
nergic agonists. Postmortem studies suggest that 30%–

50% of dopaminergic cell bodies are lost in the sub-
stantia nigra at the time motor symptoms appear
(Fearnley and Lees, 1991; Ishibashi et al., 2014) and
imaging studies of human patients with PD have shown
decreased DAT levels beginning in the posterior puta-
men (Ishibashi et al., 2014). Furthermore, the disorder
is also associated with the accumulation of Lewy bodies
containing a-synuclein within the substantia nigra pars
compacta (Braak et al., 2003).
Multiple genes have been implicated in the heritable

form of PD, including a mutation of the a-synuclein
(SNCA) gene (Spatola and Wider, 2014), which is
thought to be involved in the production of a-synuclein,
a major protein constituent of PD Lewy bodies. This
heritable form of PD is associated with earlier onset and
aggressive progression (Polymeropoulos et al., 1997).
Although the role of a-synuclein in regulating DAT
function is poorly defined, a-synuclein appears to re-
cruit and stabilize DAT at the plasmamembrane and to
enhance Vmax under normal conditions (Fountaine and
Wade-Martins, 2007). How the interaction between
a-synuclein and DAT may contribute to dopaminergic
neuronal disorders in PD is less clear, but a-synuclein
overexpression has been proposed to cluster and locally
accelerate DA uptake, leading to oxidative stress and
terminal damage (Lee et al., 2001). In cell models, the
ubiquitin ligase Parkin disrupts this DAT–a-synuclein
interaction, protecting against a-synuclein–induced
dopaminergic toxicity (Moszczynska et al., 2007). In
addition, loss-of-function mutations of the human
SLC6A3 gene that encodes DAT have been linked to
infantile parkinsonism-dystonia (also known as DAT
deficiency syndrome; Kurian et al., 2009, 2011), which is
a severe neurologic syndrome that usually presents in
early infancy with hypokinetic parkinsonism (Assmann
et al., 2004). Of note, recent studies have shown evidence
thatDATmissensemutations can also lead to later-onset
DAT deficiency syndrome and parkinsonism in adoles-
cents and adults (Hansen et al., 2014; Ng et al., 2014).
Decreases in VMAT2 within the striatal brain regions as
assessed by [11C]dihydrotetrabenazine (DHTBZ) binding
have also been reported in patients with PD (de la
Fuente-Fernández et al., 2011). Postmortem studies
have shown that VMAT2 function is decreased in
humans with PD, even after correcting for DA nerve
terminal loss (Pifl et al., 2014). This is in contrast with
preclinical models of PD induced by 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), in which the de-
crease in vesicular DA uptake was attributable to a loss
of terminals (Pifl et al., 2014). Finally, mutations in
human SLC18A3, the gene that encodes VMAT2, have
been associated with infantile parkinsonism-dystonia,
further suggesting a role for this transporter in complex
movement disorders (Rilstone et al., 2013).

As reviewed by Bernstein et al. (2014), several classes
of environmental toxicants, including pesticides, poly-
chlorinated biphenyls, and brominated flame retardants,
have been associated with PD. These compounds induce
damage by disrupting vesicular and synaptosomal DA
uptake and thus promoting reactive species formation.
As discussed in section VI.B.3, pharmacological manip-
ulation of DAT and VMAT2 function (e.g., MPD) may be
critical for the development of therapies to slow the
progression of PD.

C. Stimulant Abuse. Stimulant drug abuse is the
second most common form of substance abuse according
to the World Health Organization (http://www.who.int/
substance_abuse/facts/psychoactives/en/), and it is a ma-
jor public health problem. Loss and/or dysfunction of
the DAT is well identified in humans with a history of
stimulant abuse. Individuals that abuse METH display
a 15%–25% decrease in caudateDAT densities compared
with control subjects, as assessed via positron emission
tomography imaging (Volkow et al., 2001; Johanson
et al., 2006; Chang et al., 2007), and these decreases
persist for years after abstinence (McCann et al., 1998).
Furthermore, epidemiologic studies suggest that indi-
viduals who abuse METH/AMPH may be more likely to
develop PD (Callaghan et al., 2012; Curtin et al., 2015).
Reports of changes in VMAT2 expression are mixed and
are likely attributable to differences in drug use or time
abstinent across studies. A postmortem study of human
METHabusers reported no significant change inVMAT2
levels (Wilson et al., 1996). However, more current
imaging studies in recently abstinent METH-abusing
subjects demonstrated increased VMAT2 levels in the
caudate, putamen, and ventral striatum compared with
control subjects (Boileau et al., 2008), and VMAT2 levels
were decreased inMETH-abusing subjects that had been
abstinent for at least 3 months (Johanson et al., 2006).

Clinical data investigating the effects of cocaine on
DAT and VMAT2 have also yieldedmixed results. Some
reports demonstrate reduced DAT and VMAT2 protein
levels, but normal DAT binding (Wilson et al., 1996), in
cocaine-abusing subjects postmortem (Wilson et al.,
1996; Little et al., 2003). Recently abstinent cocaine
users also have reductions in dihydrotetrabenazine
binding of VMAT2 in vivo (Narendran et al., 2012).
Interestingly, recent data indicate that cocaine abuse,
in contrast with METH/AMPH abuse, does not lead to
PD (Curtin et al., 2015). Furthermore, other studies
report increased DAT levels in striatal regions of re-
cently abstinent cocaine users or postmortem cocaine-
abusing subjects, compared with control subjects (Mash
et al., 2002; Crits-Christoph et al., 2008). In addition,
DAT function as assessed by [3H]DA uptake is elevated
postmortem in cocaine-abusing subjects (Mash et al.,
2002). Overall, these findings highlight the need for
further work to determine the effects of cocaine abuse
and abstinence on DAT and VMAT2 expression and
function.
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To date, there is no U.S. Food and Drug
Administration–approved pharmacological treatment
for stimulant addiction (Yahyavi-Firouz-Abadi and
See, 2009; Kufahl and Olive, 2011). However, targets
for the DAT and VMAT2 may hold potential therapeu-
tic value. Numerous clinical trials have investigated
the ability of DA reuptake inhibitors and releasers
to treat cocaine AMPH dependencies. At least some
studies demonstrate that DAT inhibitors are more
effective than DA releasers for reducing use of DA
releasers (Grabowski et al., 1997; Tiihonen et al.,
2007), whereas DA releasers are more effective than
DAT inhibitors for reducing use of DA inhibitors
(Grabowski et al., 2001; Mooney et al., 2009; Longo
et al., 2010; Galloway et al., 2011). For example, the
DAT inhibitor MPD has been tested as a putative
agonist replacement therapy for cocaine and METH/
AMPH dependence. Although clinical trials testing
MPD substitution as a treatment for cocaine depen-
dence are generally negative (see Grabowski et al.,
1997; Schubiner et al., 2002), MPDmay be effective for
managing AMPH use disorders (Tiihonen et al., 2007;
Ling et al., 2014). Abstinence was not achieved inmany
of these participants, however, suggesting that DAT
inhibitors may hold some therapeutic potential but
other DAT and VMAT2 pharmacological manipula-
tions, as discussed below, should be explored for
stimulant abuse treatment (e.g., atypical compounds;
see section VI.A.2). Finally, drugs that mimic the
neuropeptide neurotensin, a modulator of DA system
activity, reduce animal self-administration of stimu-
lants such as AMPHs and cocaine and are potential
agents for the treatment of stimulant dependence
(Richelson et al., 2003; Hanson et al., 2013). Although
these neurotensin receptor agonists have been shown to
block stimulant-induced increases in extracellular DA,
their effects on DAT and VMAT2 function have not been
reported.

VI. Pharmacological Manipulation of the
Dopamine Transporter and Vesicular

Monoamine Transporter-2

The structure, function, and mechanisms regulat-
ing DAT and VMAT2 are exciting and expanding
fields; however, much remains to be learned regarding
how these mechanisms regulate transporter function
in vivo. Investigating the role of drugs in affecting
DAT and VMAT2 function and expression in vivo is
important for understanding variances in response
to therapeutic use, abuse-related effects, and the devel-
opment of novel, more effective compounds. The
following section provides an overview of the current
knowledge regarding interactions between various
pharmacological agents and DAT and VMAT2 pro-
cesses, with suggestions for opportunities for future
study.

A. Pharmacological Regulators of the
Dopamine Transporter

1. Releasers and Reuptake Inhibitors. Psycho-
stimulants that affect DAT, such as AMPH and
cocaine analogs, have been historically classified based
on their mechanism of action as either reuptake inhib-
itors or substrate-type (e.g., DA) releasers. Reuptake
inhibitors (e.g., MPD and cocaine) bind to DAT and
prevent the reuptake of DA into neurons, thereby
increasing extracellular DA concentration (Heikkila
et al., 1975; Ritz et al., 1987; Nicolaysen and Justice,
1988). By contrast, releasers (e.g., AMPH analogs)
elevate extracellular DA levels by reversing the process
of transporter-mediated exchange, thereby enhancing
DA efflux (Liang and Rutledge, 1982; Jones et al., 1999;
for review, also see Sulzer et al., 2005; Fleckenstein
et al., 2007).

Altering the post-translational modifications and
protein interactions that occur on the DAT N-terminal
and C-terminal domains is a primary target for drug-
induced regulation of DAT function. N-terminal DAT
phosphorylation is suggested to be involved in AMPH-
induced DA efflux (Khoshbouei et al., 2004) through an
interaction with phosphatidylinositol (4,5)-bisphosphate
(Hamilton et al., 2014). Interaction of calmodulin pro-
tein kinase II with the DAT C terminus has also been
demonstrated, both in vitro and in vivo, to be involved in
AMPH-induced DA efflux (Fog et al., 2006; Rickhag
et al., 2013b). Novel therapeutic agents that can
selectively target and enhance or prevent N-terminal
or C-terminal DAT modifications or interactions may
modulate the effects of releasers and reuptake
inhibitors.

In vitro findings indicate that DAT inhibitors and
releasers differentially affect DAT cell surface expres-
sion. Reuptake inhibitors, such as cocaine, rapidly
increase DAT cell surface expression (approximately10-
minute incubation; Saunders et al., 2000; Daws et al.,
2002) (Fig. 3C). By contrast, releasers, such as AMPH,
biphasically alter DAT surface expression. AMPH
increases DAT cell surface expression within the first
minutes of exposure (1–3 minutes), followed by DAT
internalization and accumulationwithin endocytic struc-
tures (15–60 minutes; Saunders et al., 2000; Johnson
et al., 2005; Furman et al., 2009; Richards and Zahniser,
2009) (Fig. 3B). PKCplays awell established role in basal
DAT trafficking and function (Vaughan et al., 1997);
however, the role of PKC in drug-induced DAT relocal-
ization is an area of current investigation. In vitro, PKC
inhibitors block METH-induced downregulation of DAT
expression and function (Sandoval et al., 2001; Cervinski
et al., 2005) and attenuate AMPH-stimulated DA release
(Kantor and Gnegy, 1998). At a behavioral level, PKC
knockout mice are less sensitive to the locomotor effects
of AMPH, compared with wild-type mice. Taken
together, these data suggest that PKC may be an
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important regulator of stimulant-induced alterations
in DAT function (Fig. 3B). Whether this is due to DAT
internalization or modification of DAT on the mem-
brane is unclear.
DAT inhibitors and releasers also differentially affect

in vivo DAT function. In synaptosomes prepared from
drug-treated rats (noting that this effect is not due to
residual drug introduced by the original subcutaneous
injection), in vivoMETH administration rapidly (within
1 hour) decreases DAT function, a property shared by
numerous other releasers such as AMPH and methyl-
enedioxymethamphetamine (Fleckenstein et al., 1997b,
1999). By contrast, in vivo administration of reuptake
inhibitors has no effect on (e.g., MPD), or slightly
increases (e.g., cocaine), DAT function (Fleckenstein
et al., 1997b) as assessed in this preparation. The
differences among psychostimulants in altering in vivo
DAT function, along with other dopaminergic markers,
plays an important role in the development of neuro-
toxicity (for review, see Fleckenstein et al., 2000).
Limited in vivo evidence supports stimulant-induced

DAT internalization. On the contrary, one recent study
failed to demonstrate a change in DAT plasma mem-
brane expression after exposure to a broad range of in
vivo AMPH or METH treatment paradigms (German
et al., 2012). Likewise, neither Richards and Zahniser
(2009) nor Moszczynska et al. (2007) observed DAT
internalization after in vivo AMPH/METH administra-
tions. Nonetheless, AMPH analogs rapidly decrease in
vivo DAT function, as assessed in synaptosomes pre-
pared from treated rats (Fleckenstein et al., 1997b).
Taken together, these data suggest that AMPH/METH-
induced internalization may not be responsible for
reduced DAT function in vivo. Instead, DAT modifica-
tion at the plasma membrane, perhaps through PKC or
oxidative inactivation as described in section III.B.1,
may underlie the AMPH analog-induced loss of DAT
function observed in vivo. How the underlying mecha-
nisms regulating DAT (e.g., post-translational modifi-
cations and protein interactions) are differentially
affected by releasers and inhibitors, and whether these
correspond to differences in DAT function and expres-
sion associated with these drugs, is an expansive area
for future research.
Finally, recent voltammetry studies suggest addi-

tional differences between the effects of AMPH and
cocaine. In particular, both cause phasic DA activation
through augmented vesicular DA release and increased
burst firing. However, these agents differ in their effect
on tonic activation. For example, cocaine, but not
AMPH, requires action potential-dependent mecha-
nisms (for discussion, see Covey et al., 2013).
2. Atypical Dopamine Transporter Reuptake Inhib-

itors and Partial Substrate Releasers. Because DAT
inhibitors and releasers both increase extracellular DA
concentration, it was originally assumed that all drugs
interacting with DAT would induce behavioral effects

identical to a prototypical DAT inhibitor such as cocaine
(e.g., readily self-administered, locomotor-stimulating
properties, and shared discriminative properties).
Although a multitude of DAT inhibitors that have
cocaine-like properties exist (e.g., RTI55 [methyl-
(1R,2S,3S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]
octane-2-carboxylate] and WIN35428 [methyl-
(1R,2S,3S,5S)-3-(4-fluorophenyl)-8-methyl- 8-azabicyclo
[3.2.1]octane-2-carboxylate]), atypical DAT inhibitors
(e.g., analogs of benztropine, modafinil) exhibit different
behavioral properties, especially in humans (Søgaard
et al., 1990; Carroll et al., 2009; Vosburg et al., 2010).
One problem with using traditional DAT inhibitors for
stimulant abuse treatment is that these inhibitors also
have abuse liability and the potential to enhance the
effects of abused drugs (see Barrett et al., 2004; Hiranita
et al., 2011). Thus, atypical compounds that may not
have these effects are novel therapeutics of interest. For
example, several potent atypical DAT inhibitors, such as
JHW007 [(3-endo)-3-[bis(4-fluorophenyl)methoxy]-8-butyl-
8-azabicyclo[3.2.1]octane hydrochloride] and JHW013 [n-
cyclopropyl methyl-3a-[bis(49-fluorophenyl)methoxy]-tropane],
are not readily self-administered in animal models (Desai
et al., 2005b; Li et al., 2011), demonstrating that the
reinforcing effects of a drug are not solely a property of
actions at DAT or that these inhibitors have a different
manner of interaction with DAT (see below). Further-
more, several atypical DAT inhibitors, including
JHW007, antagonize various effects of cocaine and
METH/AMPH, including locomotor activity (Desai
et al., 2005b; Velázquez-Sánchez et al., 2013),
increases in extracellular DA concentrations (Tanda
et al., 2009a), and self-administration (Hiranita et al.,
2009, 2014).

Several hypotheses have been suggested for mecha-
nisms underlying the effects of atypical compounds and
include actions on non-DA systems (Hiranita et al.,
2011), rate of DAT occupancy (Desai et al., 2005a,b), and
the conformational state of DAT (Loland et al., 2008).
For instance, whereas cocaine and its analogs bind and
induce an outward-facing DAT conformation, atypical
DAT inhibitors promote an inward-facing DAT confor-
mation (Reith et al., 2001; Loland et al., 2008; Hong and
Amara, 2010). These studies underscore the importance
of understanding how compounds interact with DAT
and that atypical DAT compounds might serve as
exciting leads for potential medications for psychosti-
mulant addiction (Dutta et al., 2003; Carroll et al.,
2006).

Recent investigation of substrate-type releasers has
identified compounds with unique partial substrate
properties (Rothman et al., 2012). Similar to the pro-
totypical DAT releasers (e.g., AMPH, METH), these
partial substrate releasers (e.g., PAL-1045 [(S)-N-ethyl-1-
(2-naphthyl)propan-2-amine], PAL-193 [XXXX], PAL-738
[XXXX]) are transported by DAT but are signifi-
cantly less effective at inducing reverse transport
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(i.e., DAT-mediated substrate efflux). For example,
PAL-1045was unable to fully elicit DAT-mediated efflux
of the labeled substrate [3H]1-methyl-4-phenylpyridinium
(MPP+) (Emax of approximately 65%) compared with a full
substrate releaser (Rothman et al., 2012). These
authors speculate that partial releasers are less effec-
tive at promoting the conformational changes in the
DAT protein required for the overall process of alter-
nating exchange (Rothman et al., 2012).
The identification of novel ligands as atypical inhib-

itors and partial substrates has challenged the notion
that all ligands acting at DAT are functionally homo-
geneous and that perhaps both the behavioral and
neurochemical effects of a particular ligand are contin-
gent on how it interacts with the transporter (for review,
see Schmitt et al., 2013; Reith et al., 2015). Although the
molecular mechanisms underlying these compounds
are poorly understood, DAT ligands with different
chemical structures exert unique conformational effects
on the transporter, stabilizing the protein in different
structural states (Reith et al., 2001; Loland et al., 2008;
Schmitt and Reith, 2011) that might influence the
effects of each compound. An important new avenue of
research involves whether these novel atypical ligands
affect modifications, protein interactions, and relocali-
zation events that affect DAT function differently than
typical ligands. Further study of how these novel
compounds interact with transporters might lead to
improved medications for disorders linked to perturba-
tions in dopaminergic systems, such as substance abuse
and PD.
3. Dopamine Receptors. DA interacts with five G

protein–coupled receptors that are divided into two
families. Receptors of the D1-like family (D1 and D5

receptors) are predominantly excitatory and postsyn-
aptic (Huang et al., 1992; Cameron and Williams, 1993;
Levey et al., 1993). Receptors of the D2-like family (D2,
D3, and D4 receptors) are predominantly inhibitory and
are localized both presynaptically and postsynaptically,
and D2-like autoreceptors regulate presynaptic DA
activity.
DA receptors are important regulators of DAT func-

tion. For instance, quinpirole, a nonselective D2/D3

agonist, reduces extracellular DA concentration via
acute upregulation of DAT function (Meiergerd et al.,
1993). This effect is reversed by a nonselective D2/D3

receptor antagonist, further indicating that quinpirole-
induced upregulation of DAT function is mediated
by D2/D3 receptors. Similarly, the more selective D3

receptor ligand, PD128907 [(4aR,10bR)-3,4a,4,10b-
tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-
1,4-oxazin-9-ol hydrochloride, a D3-preferring agonist]
increases electrochemically measured DA clearance
(Zapata and Shippenberg, 2002). Taken together, in
combinationwith binding studies (Mayfield and Zahniser,
2001), these data suggest that activation of D2/D3

receptors triggers rapid trafficking of intracellular DAT

to the plasma membrane. Moreover, D2/D3 receptor
agonist–induced upregulation of DAT function is blocked
by pertussis toxin, indicating the involvement of Gi/Go

protein–coupled signaling (Mayfield and Zahniser,
2001).

In addition to evidence that DA receptors directly
regulate DAT and thus the amount of extracellular DA,
DA receptors mediate the early decreases in DAT
function caused by METH. Pretreatment with either
a D1 or a D2 antagonist attenuates the acute decrease in
DAT activity caused byMETH (Metzger et al., 2000). D2

antagonist pretreatment attenuates the formation of
reactive oxygen species–associated high molecular
weight DAT complexes as well (Hadlock et al., 2010).
Further findings that METH causes reactive oxygen
species formation (Giovanni et al., 1995; Fleckenstein
et al., 1997a) and that DAT is vulnerable to oxidative
modification (Berman et al., 1996; Fleckenstein et al.,
1997a; Haughey et al., 1999) suggest an interaction
among these factors that may serve as a target for
pharmacological intervention (for further review, see
Fleckenstein et al., 2000, 2007).

4. Insulin. Insulin provides hormonal inputs to
homeostatic metabolic systems (Figlewicz, 2003); how-
ever, emerging data indicate that it also directly affects
DA systems (for reviews, seeDaws et al., 2011;Niswender
et al., 2011; Baladi et al., 2012). Insulin receptors are
expressed in brain regions that are rich in DA neurons,
receptors, and transporters (Figlewicz et al., 2003), and
insulin, via the phosphoinositide 3-kinase/Akt signal-
ing pathway (Williams et al., 2007), regulates the
expression and activity of DAT. Acute administration
of insulin enhances DAT activity and expression,
whereas rats made hypoinsulinemic (e.g., via pharma-
cological agents or feeding conditions) have decreased
DAT activity and expression (Figlewicz et al., 1994;
Patterson et al., 1998; Carvelli et al., 2002; Owens
et al., 2005; Sevak et al., 2008). Moreover, manipulating
insulin levels (pharmacologically or via feeding condi-
tions) can decrease AMPH-induced DA efflux through
DAT (Williams et al., 2007) and can dramatically alter
the behavioral effects of drugs acting at DAT, such as
cocaine and METH (McGuire et al., 2011; Baladi et al.,
2012, 2015).

The importance of understanding interactions be-
tween insulin, the DA systems, and drugs is highlighted
by comorbidities such as eating disorders and drug
abuse (Wiederman and Pryor, 1996; Franko et al.,
2008), diabetes and schizophrenia (Mukherjee et al.,
1996; Dixon et al., 2000), diabetes and tobacco use
(Facchini et al., 1992; Cho et al., 2009), and obesity and
depression (Faith et al., 2002; McElroy et al., 2004;
Simon et al., 2006). Understanding the relationship
between insulin and drug response could provide
important keys to understanding the individual differ-
ences in response to therapeutic drugs and in vulnera-
bility to drug abuse.
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5. Estrogen. A multitude of preclinical and clinical
studies demonstrate that the effects of drugs, including
those acting at DAT, differ between females and males
(for reviews, see Lynch et al., 2002; Anker and Carroll,
2011). Although numerous mechanisms may account
for differences in the effects of drugs between females
andmales, hormones such as estrogen likely play a role.
Estrogens are well known to act through intracellular
receptors and regulate gene transcription. Interest-
ingly, emerging data suggest that estrogens can affect
proteins at the plasma membrane that can be dynam-
ically regulated over short time frames (Watson et al.,
2006). For example, estrogen can regulate DAT function
and expression via rapid, transcription-independent
mechanisms (Bossé et al., 1997; Disshon et al., 1998;
Watson et al., 2006; Chavez et al., 2010). Estrogen
may also activate protein kinases (including PKC)
via transcription-independent pathways (Watson and
Gametchu, 1999), whichmay also affect DAT trafficking
and function. Understanding the mechanistic role for
estrogens in modulating DAT might have implications
for the etiology and treatment of disorders involving the
dysregulation of DA systems in female patients.

B. Pharmacological Manipulation of Vesicular
Monoamine Transporter-2

The development of novel VMAT2 ligands has been
hinderedby the lack of high-throughput screens (Bernstein
et al., 2014). Hence, some laboratories are developing
whole-cell fluorescent assays for VMAT transport func-
tion that have important advantages including the use
of an intact cell (versus isolated vesicles that may not
recapitulate the cell signaling). This technology holds
significant promise for identifying ligands that may
not directly interact with the VMAT2/tetrabenazine
(TBZ) binding site but may still alter VMAT2 function.
The following section describes the current compounds
that directly interact with VMAT2 as well as other
compounds that have indirect actions at the transporter
(e.g., METH, MPD).
1. Reserpine and Tetrabenazine. Reserpine and TBZ

are “classical” VMAT2 inhibitors (Pletscher, 1977) that
prevent the transport of amines into synaptic vesicles.
Although these agents are the most widely studied,
their clinical utility is relatively limited. Reserpine
binds irreversibly and thus can have effects lasting
days or even weeks. Furthermore, reserpine and TBZ
deplete both DA- and serotonin-containing vesicles,
leading to symptoms including gastrointestinal dis-
tress, depression, and fatigue. Radiolabeled TBZ and
related derivatives with high affinity for VMAT2 are
used as imaging tools, especially in relation to diagnosis
and understanding of several disease states, such as
PD, Huntington’s disease, bipolar disorder, and schizo-
phrenia (Zubieta et al., 2000, 2001; Frey et al., 2001;
Suzuki et al., 2001; Bohnen et al., 2006). TBZ is
approved by the U.S. Food and Drug Administration

for symptomatic treatment of Huntington’s disease,
which is characterized, in part, by dysregulation of
dopaminergic neurotransmission (Frank and Jankovic,
2010).

2. Lobeline and Analogs. Lobeline, the major alka-
loid in the plant genus Lobelia, is a potent inhibitor of
the VMAT2. Lobeline has received considerable atten-
tion, owing to preclinical demonstrations that this agent
inhibits both METH-induced striatal DA release and
rat self-administration. This effect may be due, in part,
to the ability of lobeline to decrease the availability of
presynaptic DA for reverse transport through DAT
(Harrod et al., 2001). Interestingly, and despite findings
that pretreatment with VMAT2 inhibitors such as
reserpine worsens METH-induced dopaminergic defi-
cits, lobeline protects against such deficits (Eyerman
and Yamamoto, 2005) presumably by causing a redistri-
bution of VMAT2 resembling that afforded byMPD (see
discussion below).

The clinical development of lobeline as a treatment
for METH abuse was hindered, in part, by its signifi-
cant affinity for nicotinic acetylcholine receptors. Its
analog, lobelane, also inhibits the neurochemical and
behavioral effects of METH; however, development of
this agent as a therapy is confounded by the develop-
ment of tolerance to its ability to decrease METH self-
administration. More recent attention has focused on
the lobelane analog, GZ-793A [(R)-3-[2,6-cis-di(4-
methoxyphenethyl)piperidin-1-yl]propane-1,2-diol hy-
drochloride], which inhibits both the behavioral and
neurochemical effects of METH, without exhibiting
tolerance. These and other studies by Dwoskin, Crooks,
and coworkers suggest that selective VMAT2 inhibitors
provide the requisite preclinical behavioral profile for
evaluation as pharmacotherapeutics for METH abuse,
particularly utilizing agents that are selective for
VMAT2 relative to DAT (for review, see Nickell et al.,
2014).

3. Methamphetamine, Methylphenidate, and Dopa-
minergic Agonists. AMPH and related amphetamines
disrupt VMAT2 transport of DA into synaptic vesicles
through at least two proposed mechanisms. First,
AMPH-related drugs are membrane-permeable weak
bases that disrupt intravesicular pH, diminishing the
proton gradient on which VMAT2 depends for antiport
function and reducing DA uptake into synaptic vesicles
(for extensive discussion of the weak base hypothesis,
see Sulzer, 2011). Second, amphetamines bind the
transporter directly (Peter et al., 1994), preventing
substrate interaction with the transporter or poten-
tially functioning as substrates themselves. The in-
volvement of transporter binding in AMPH-induced
VMAT2 dysfunction is supported by two observations.
First, AMPH reduces VMAT2 function to a greater
degree than proton gradient disruption would predict
(Reith and Coffey, 1994). Second, treatment of synaptic
vesicles with bafilomycin, a non-VMAT substrate proton
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pump inhibitor, decreases vesicular pH to a greater
degree than AMPH but only causes one-half of the
DA release observed with AMPH (Floor and Meng,
1996).
Intracellular localization may also play an important

role in regulating VMAT2 function, which is differen-
tially altered by the releaser and reuptake inhibitor
stimulants. Brown et al. (2000) reported that repeated
high-dose administrations of METH rapidly (within 1
hour) decrease VMAT2 function, as assessed in non-
plasmalemmal membrane–associated (presumably cy-
toplasmic) vesicles prepared from treated rats (Fig. 3B).
This effect was not due to residual METH introduced by
the parenteral administration. Rather, this effect was
associated with a redistribution of VMAT2 protein, and
presumably associated vesicles, from the cytoplasmic
fraction to a subcellular compartment not retained by
the differential centrifugation used to prepare these
vesicles (Riddle et al., 2002). Importantly, VMAT2
immunoreactivity in the whole homogenate is not de-
creased 1 hour after bingeMETH treatment (Fleckenstein
et al., unpublished observations), indicating that protein
degradation is not responsible for the fractional loss of
immunoreactivity in the whole synaptosomal and
vesicle-enriched fractions at this time point (see also
Hogan et al., 2000). This decrease in VMAT2 function
corresponds with a decrease in VMAT2 sequestration
capacity (Chu et al., 2010). It is hypothesized that the
resulting decrease in DA sequestration capacity causes
aberrant cytoplasmic DA accumulation and reactive
oxygen species formation, which, in turn, contributes to
a persistent loss of dopaminergic nerve terminals.
By contrast, the DA reuptake inhibitor MPD in-

creases VMAT2 immunoreactivity and function in this
same vesicle fraction via D1 and D2 receptor–mediated
mechanisms (Sandoval et al., 2002). Furthermore, MPD
post-treatment attenuates the persistent dopaminergic
deficits caused by METH, presumably by compensat-
ing for the METH-induced loss of DA sequestration
capacity (Sandoval et al., 2003). Post-treatment with
the DAT reuptake inhibitor amfonelic acid protects
against METH-induced dopaminergic deficits as well
(Marek et al., 1990). Of related interest are findings that
administration of nonselective D2/D3 receptor agonists
increases VMAT2-mediated uptake, DHTBZ binding,
and VMAT2 immunoreactivity (Brown et al., 2001a;
Truong et al., 2003, 2004). Given the presumed role for
decreased VMAT2 function in the dopaminergic deficits
associated with PD (see discussion above), it has been
suggested that treatment with reuptake inhibitors such
as MPD or D2/D3 agonists may slow the neurodegener-
ative processes associated with the disorder.
These findings, as well as differences in the effect of

reuptake inhibitors and releasers on VMAT2 function,
likely contribute mechanistically to preclinical findings
that releasing agents generally cause persistent do-
paminergic deficits, whereas reuptake inhibitors are

largely devoid of this property (for review, see Riddle
et al., 2005).

4. Pituitary Adenylyl Cyclase Activating Polypeptide
38. Pituitary adenylyl cyclase activating polypeptide
38 (PACAP38) is a brain-gut peptide that is neuro-
protective in several models of neurodegeneration.
PACAP38 has several biologic functions, including
increasing VMAT2 expression and function. Impor-
tantly, pretreatment with PACAP38 attenuates the
persistent dopaminergic deficits caused by METH
(Guillot et al., 2008) and those in several models of
PD, although multiple mechanisms of action likely
underlie this neuroprotective effect (for review, see
Lee and Seo, 2014).

VII. Summary

In vitro studies have provided important insights into
subcellular mechanisms whereby the structure and
function of DAT and VMAT2 can be modified. Further-
more, emerging data concerning binding pockets, con-
formational alterations, and critical residues important
for the functions of these transporters have led to
a variety of novel targets for pharmacological manipu-
lation. In vivo studies have and will continue to provide
important extensions of this work as the translational
relevance of potential therapeutics is evaluated. Phar-
macological approaches ranging from atypical ligands
to post-translational modifiers to agents that regulate
vesicular trafficking hold significant promise for the
development of novel therapeutics.
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