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Abstract

Comparative metagenomics remains challenging due to the size and complexity of metagenomic datasets. Here
we introduce subtractive assembly, a de novo assembly approach for comparative metagenomics that directly
assembles only the differential reads that distinguish between two groups of metagenomes. Using simulated
datasets, we show it improves both the efficiency of the assembly and the assembly quality of the differential
genomes and genes. Further, its application to type 2 diabetes (T2D) metagenomic datasets reveals clear signatures
of the T2D gut microbiome, revealing new phylogenetic and functional features of the gut microbial communities
associated with T2D.
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Background
Metagenomics relies on the direct sequencing of an en-
tire community of microbial organisms, but the results
can be hard to disentangle [1]. Microbial communities
vary in compositional complexity [2], from the simplest
acid mine drainage microbial community with a few spe-
cies to more complex microbial communities that may
contain hundreds — even thousands — of microbial spe-
cies (such as the human microbiome [3]). Even though
many new methods and tools have been developed for
analyzing metagenomic sequences, it remains a great
challenge to infer the composition and functional prop-
erties of a microbial community from a metagenomic
dataset, and to address causal questions, such as the im-
pact of microbes on human health and diseases. Metage-
nomic assembly (the assembly of metagenomic samples)
is one of the challenges. While assembly of a single gen-
ome using short reads has improved in recent years,
even that remains an area of active improvement [4]. In
the case of metagenomic datasets, it is difficult for con-
ventional genome assemblers to deal with closely related
strains and to distinguish true variations from sequencing

errors [5]: using simulated Illumina reads from a 400-
genome community, Mende et al. [6] found that relatively
few of the reads were assembled, and of the contigs pro-
duced, 37 % were chimeric. Also, the varied depth of
coverage across the individual chromosomes leads to am-
biguity in assembly [7]. Finally, the sheer size of metage-
nomic datasets poses a challenge, as sufficient sequencing
must be done to represent ever rarer members of the
community [7]. But there is much to be learned by com-
paring metagenomic datasets sampled from different envi-
ronments (or hosts): metagenomics can be used to reveal
important connections between microbes and other as-
pects of life (such as human health and disease). A recent
exemplar is the identification of a connection between mi-
crobes and type II diabetes [8]. Comparative metage-
nomics studies how environment and/or health correlate
with microbial communities phylogenetically and func-
tionally, using either 16S ribosomal RNA data or whole
genome shotgun metagenomic sequence data [9]. Early
studies compared the genomic diversity and metabolic
capabilities across dramatically different metagenomes
using barely assembled sequence data [10], while recent
studies are more concerned with investigating how envir-
onmental or health features correlate with metagenomic
differences using largely similar metagenomes [11–14].
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Traditional comparative metagenomics begins with es-
timating biodiversity using short reads [15], or character-
izing the biological and functional profiles based on
known databases [16, 17]. Maillet et al. [18] proposed an
approach that compares multiple metagenomic samples
by efficiently identifying shared or similar reads based
on k-mers and Jiang et al. [19] further developed several
statistics that measure the dissimilarity between samples
using sequence signatures (frequencies of k-mers) and
applied them to metagenomics. It has also been reported
that sequence signatures are similar for fragments from
the same genome, but distinct between genomes [20].
Therefore, metagenomes with different microbial com-
positions tend to have distinctive sequence signatures,
and the similarity and dissimilarity of metagenomes can
be calculated using short reads without using any prior
information.
Here we propose a subtractive assembly approach, a

de novo method to compare metagenomes through
metagenomic assemblies, aiming to achieve better as-
sembly of the “differential” genomes for downstream
analysis (e.g., to infer potential microbial markers associ-
ated with a human disease). For two or more metagen-
omes, reads that constitute the compositional difference
are extracted from each metagenome based on sequence
signatures. For example, we may define k-mers that
occur ten times more frequently in one dataset than in
the other as “signatures” that constitute the genomic dif-
ference; reads containing these signatures are likely to be
from genomes that are more abundant or even unique
in one of the two metagenomes. After read filtering, the
complexity of the metagenome data sets can be greatly
reduced, such that metagenome assembly using the ex-
tracted distinctive reads can be improved due to reduc-
tion in both biological diversity and data size. The
compositional and functional difference of metagenomes
can thus be characterized by the better-assembled con-
tigs obtained from subtractive assembly.
For k-mer-based methods, a crucial step is the count-

ing and storing of all k-mers. A number of efficient k-
mer counting algorithms are publicly available [21–23]:
BFCounter [22] adopts a bloom filter, making it quite
memory efficient and thus most suitable for compara-
tive metagenomics. We modified the C++ code of
BFCounter to output reads with distinctive signatures.
With simulated metagenomic datasets, we show that
subtractive assembly can both effectively extract the
reads from genomes that cause the compositional differ-
ences between metagenomes and improve metagenomic
assembly for these genomes.
Our subtractive assembly is superficially similar to the

method developed by Stranneheim et al. [24], which re-
duces the complexity of the metagenome assembly prob-
lem by filtering out reads that can be classified to known

genomes, assuming that they are often of no interest.
Our subtractive assembly approach takes advantage of
the availability of metagenomic datasets of the same
community under different conditions: when we are in-
terested mostly in the differences between two (groups
of ) metagenomes, we can assemble only the differences
by filtering out reads that are likely to have been sam-
pled from species that are common to both samples.
Our method is independent of reference genomes.
Type 2 diabetes (T2D) is one of the many diseases that

have an associated microbial “profile”: it is associated
with increased levels of streptococci, lactobacilli and
Streptococcus mutans in oral samples [25]; Lactobacillus
in gut microbiota is linked to obesity in humans, and
weight gain for newborn ducks and chicks [26–28]; and
Karlsson et al. [8] found that four Lactobacillus species
and S. mutans are enriched in the gut microbiota of
European women with T2D, using a large cohort of gut
microbiome datasets. We applied our method to these
gut metagenomes to see if our method could replicate
the previous results, and perhaps further them: our sub-
tractive assembly revealed new phylogenetic and func-
tional features of the gut microbial communities
associated with T2D.

Results and discussion
We first tested subtractive assembly using simulated
metagenomic datasets, and then applied it to the data-
sets from [8], to identify differential features of the T2D-
associated microbiome. Our results show that the com-
positional difference of multiple metagenomic datasets
could be detected using our k-mer-based method. More-
over, subtractive assembly utilizing only the reads that
represent the compositional difference substantially re-
duced the complexity of the datasets and greatly im-
proved the quality of the resulting assemblies, facilitating
identifying compositional and functional differences be-
tween microbiomes. Application of our approach to the
T2D datasets resulted in a large collection of genes that
are uniquely found in the T2D-associated gut micro-
biomes, but which had not previously been identified.

Evaluation of subtractive assembly: effectiveness of
differential reads extraction and the requirement for
abundance differences
We first tested the effectiveness of the k-mer-counting-
based extraction of differential reads, using simulated
metagenomic samples composed of five bacterial genomes
(in three groups of five, four and three samples; Table 1;
real microbiomes, such as the gut microbiomes which we
analyze below, can be much more complex). In each
group, S1 has a uniquely large proportion of Streptococcus
thermophilus reads. For each of the groups, sample 1 (S1)
was subtracted by each of the other samples (S2, S3 and

Wang et al. Genome Biology  (2015) 16:243 Page 2 of 15



so forth) and the remaining reads were used for assembly.
The fold change of the S. thermophilus genome ranges
from 2–16 (Table 1). We examined how the assembly
coverage of the S. thermophilus reference genome changes
when the parameters, including the actual abundance ra-
tio of the genome in two metagenomes (or the fold
change) and the k-mer ratio threshold used in the sub-
tractive assembly, are changed (Fig. 1; for real metagen-
omes, we used an iterative subtractive assembly approach
without fixing the k-mers ratio — see below). The results
suggest that subtractive assembly can effectively detect the
differential genome when the abundance ratio of the gen-
ome between two samples is about two times (or greater)
the k-mer ratio threshold (parameter r) (on the other
hand, when r decreases to < 2, significantly more reads
from non-differential genomes are also extracted and sub-
tractive assembly loses its power; Figure S1 in Additional
file 1). For instance, 97.84 % (581,047 out of 593,858) of
the reads from S. thermophilus LMD-9 were extracted
and 95.03 % of the genome is covered by contigs when
r = 2 and the simulated abundance of the Streptococcus
genome is four times different in abundance between
the two datasets. Based on this, we conclude that the k-
mer ratio threshold needs to be set to r = R/2 to effectively

assemble a genome that is about R times more abundant
in sample A than B, using subtractive assembly (i.e., A
minus B). The simulation also suggests that the subtract-
ive assembly approach can effectively capture genes with
abundance changes of three-fold or more.
As shown above, our subtractive method can effect-

ively recover reads originating from differential species
between metagenomes. However, due to the random na-
ture of shotgun sequencing, some regions of differential
species may lack reads and are, therefore, poorly assem-
bled, especially when the sequencing depth is not high.
Here we tested subtractive assembly using simulated
datasets with varying sequencing depth to demonstrate
the impact of sequencing depth on the performance of
subtractive assembly, using the same population struc-
ture as S1 or S4 from group 1 in simulation 1. We syn-
thesized five pairs of datasets in which the sequencing
depth ranges from 1–20× (Table 2): the sequencing
depth for S1 ranges from 4–20× while it ranges from 1–
5× for S4 (so in each pair of datasets, the relative abun-
dance of S. thermophilus LMD-9 in S1 remains four
times that in S4). Subtractive assembly (r = 2) was ap-
plied to each pair of datasets and we evaluated its per-
formance according to the percentage of extracted reads

Table 1 Species composition of the artificial metagenomic samples in simulation 1

Group 1 Group 2 Group 3

S1 S2 S3 S4 S5 S1 S2 S3 S4 S1 S2 S3

Ferroplasma acidarmanus fer1 1a 16 1 1 1 1 12 1 1 1 10 1

Lactobacillus gasseri ATCC 33323 2 2 16 2 2 2 2 12 2 2 2 10

Pediococcus pentosaceus ATCC 25745 4 4 4 16 4 4 4 4 12 4 4 4

Prochlorococcus marinus NATL2A 8 8 8 8 16 8 8 8 8 8 8 8

Streptococcus thermophilus LMD-9 16 1 2 4 8 12 1 2 4 10 1 2

RA ratio (S1/Si, i ! = 1)b 16c 8 4 2 12 6 3 10 5
aRelative abundance (RA) of the F. acidarmanus species in sample S1
bRelative abundance of the S. thermophilus genome in S1 relative to S2, S3 and so on. Pairs of datasets (S1 in each group, and another one in the same group)
were subjected to subtractive assembly
cThe relative abundance of the S. thermophilus genome in S1 versus S2

Fig. 1 Fraction of the S. thermophilus LMD-9 genome assembled using subtractive assembly with different k-mer ratio parameters r (2–5; simulation 1).
The x-axis shows the abundance ratio of this genome between samples and the y-axis shows the fraction (percentage) of the genome covered
by contigs
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and the fraction of the S. thermophilus genome assem-
bled. As shown in Table 2, although the sequencing
depth varies across the simulated datasets, the percent-
age of extracted reads was perfectly correlated with the
expected ratio of differential reads (R2 = 0.9739), indicat-
ing that the performance of the subtraction step is
mostly determined by the relative abundances of a gen-
ome between metagenomes. Not surprisingly, the quality
of the final assembly is dependent on the sequencing
depth (Fig. 2): when the sequencing coverage is low (e.g.,
4×), only a small proportion of the differential genome
can be assembled; but our method recovers nearly all of
the differential positions when the sequencing depth is
sufficiently high (e.g., 16×).

Evaluation of subtractive assembly: quality of the
subtractive assembly when closely related species
co-exist
We then asked if subtractive assembly improves the as-
sembly quality of metagenomes when closely related
species exist in a sample, using another set of simulated
metagenomic datasets consisting of five strains of Rho-
dopseudomonas palustris (Table 3). The dominant gen-
ome is R. palustris HaA2 in S1, while it is R. palustris
CGA009 in S2. At the same time, the relative abundance
of R. palustris HaA2 in S2 is substantially lower than
that in S1: thus, k-mers representing the HaA2 genome
will be identified and used for extracting reads from S1.
For S1, subtractive assembly obtained longer contigs for
the dominant R. palustris HaA2 genome than did direct
assembly of the raw datasets, without much sacrifice of
genome coverage (Fig. 3). Using contigs that are longer
than 500 bp, the N50 is 21,374 in subtractive assembly,
compared with 13,360 from the direct metagenomic as-
sembly of metagenome 1; and the length of the largest
contig is 113,404 bp compared with 95,495 bp. The gen-
ome coverage by contigs (total number of aligned bases
in the reference divided by the genome size) is 98.3 % in
subtractive assembly, compared with 98.6 % in direct as-
sembly. The increased length of contigs comes with an
acceptable number of misassemblies: the subtractive as-
sembly produced three misassemblies (as reported by
QUAST [29]), whereas the direct assembly produced
one misassembly. The number of mismatches and
indels, however, is decreased significantly in subtractive
assembly of the distinctive reads: the number of mis-
matches is 394 with subtractive assembly and 2185 with

Table 2 Impact of sequencing depth on subtractive assembly
for S. thermophilus LMD-9

Sequencing depth Base
coverageb

(%)

Extracted
readsc

(%)

Assembled
genomed

(%)
S1a S4

4× 1× 82.15 86.69 31.72

8× 2× 86.96 88.93 67.31

12× 3× 90.58 93.15 83.72

16× 4× 92.96 95.53 90.92

20× 5× 94.79 96.91 93.82
aThe community structures of S1 and S4 are the same as in simulation 1
(group 1 in Table 1)
bExpected percentage of bases with ≥ 2 times sequencing coverage in S1 than
in S4
cPercentage of reads extracted from the simulated S. thermophilus genome
in S1
dFraction of the genome assembled using the extracted reads by our
subtractive assembly approach

Fig. 2 Comparison of the cumulative contig length of subtractive assembly at different sequencing depths of S. thermophilus LMD-9: 20× versus
5× (red), 16× versus 4× (blue), 12× versus 3× (green), 8× versus 2× (purple), 4× versus 1× (orange)
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direct assembly; and the number of indels is 8 with sub-
tractive assembly and 80 with direct assembly.
A possible explanation for the superior performance of

subtractive assembly in this simulation is that the sub-
traction step helps alleviate assembly problems caused
by polymorphic regions (the regions that are similar, but
not identical, in multiple genomes in the same metage-
nomic dataset). The sharing of homologous genes
among different species is one of the known complicat-
ing factors that confuse de Bruijn graph-based assem-
blers (including IDBA-UD [30]) in metagenomic
assembly, because they form tangled branches in the as-
sembly graph. Since subtractive assembly targets the ge-
nomes that are more abundant (or unique) in one of the
metagenomes, some of the closely related genomes will

Table 3 A pair of simulated metagenomic datasets containing
five R. palustris strains (simulation 2)

Strain Genome
length

RAa Sequencing depth

S1 S2 S1 S2

BisA53 5,505,494 3 3 18× ×

BisB18 5,513,844 3 3 18× 18×

BisB5 4,892,717 3 3 18× 18×

CGA009 5,459,213 0.1 5 0.6× 30×

HaA2 5,331,656 5 0.1 30× 0.6×
aRelative abundance. The two samples are S1 and S2

A

B

Fig. 3 Comparison of the cumulative contig length between subtractive assembly (red) and direct metagenomic assembly (blue) of R. palustris
HaA2 (simulation 2). The results assembled by IDBA-UD and MetaVelvet are shown in (a) and (b), respectively. On the x-axis, contigs are ordered
from largest to smallest. The y-axis gives the size of the x largest contigs in the assembly
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be filtered out during the subtraction step, reducing the
complexity of the assembly problem. We compared the
contigs from subtractive assembly and direct assembly
using NUCMER [31] and confirmed the reduced fragmen-
tation of contigs by the subtractive assembly resulting
from the subtraction step. For instance, one 43,299-bp
contig from subtractive assembly was fragmented into
four contigs in direct assembly (Fig. 4). Positions around
breakpoints recruited a number of contigs of different de-
grees of similarities, indicating that these are homologous
regions shared by the different genomes in the metage-
nomic dataset (the five strains are only moderately similar
to each other at a maximal unique matches index (MUMi)
distance [32] of ~0.8 (0 ~ 1 scale), due to frequent gen-
omic rearrangements).
We note that a comprehensive testing of all available

assemblers is beyond the scope of this manuscript, but
in addition to IDBA-UD [30] we tested MetaVelvet [33]
and MEGAHIT [34]. To use MetaVelvet [33] for sub-
tractive assembly on S1, we set the k-mer length as 51
for assembly (as suggested by the MetaVelvet manual).
We saw an even greater improvement of assemblies by
subtractive assembly, which is not surprising, since
MetaVelvet originally generated shorter contigs for this
dataset than IDBA-UD [30] (Fig. 3a, b), leaving more
room for improvement. From the cumulative plot of
contigs, we can see that contigs of the differential gen-
ome were longer if subtractive assembly is applied pre-
ceding metagenomic assembly. Using contigs that are
longer than 500 bp, the N50 is 10,116 with subtractive
assembly but only 4681 with direct metagenomic assem-
bly, and the largest contig is increased from 76,007 bp
with direct assembly to 98,570 bp with subtractive as-
sembly. Even the genome coverage is improved with

subtractive assembly, from 94.1 % to 97.6 %. MEGAHIT
[34] is a more recently developed assembler, which also
uses the iterative assembly strategy (similar to IDBA-UD
[30]). Not surprisingly, its results were comparable to
those from IDBA-UD (Figure S2 in Additional file 1),
but more differences were observed between these two
assemblers for the real T2D gut metagenomes, as shown
below.

Subtractive assembly of T2D gut metagenomes
We applied subtractive assembly to the analysis of T2D
gut metagenomes, hoping to identify compositional/
functional T2D-associated features of the human micro-
biome, as well as test our methods with datasets of nat-
urally occurring complexity. We used 50 T2D datasets
(a total of 129 gigabases) and all 43 normal glucose tol-
erant (NGT) datasets (90 gigabases). We did not include
three T2D datasets that were outliers based on neighbor-
joining clustering of the samples using a d2

S dissimilarity
measure for k = 9 [19]. Table 4 shows the differential reads
extracted for each group of samples (T2D or NGT). A
large portion of the extracted reads represented unique
k-mers, confirming the distinction between these two
groups. For comparison, we also assembled the datasets
directly (without the subtractive step). We tried two dif-
ferent approaches: assembling the metagenomic data-
sets individually, or co-assembling the pooled datasets.
For clarity, we call the former direct assembly, and the
latter direct co-assembly.
The subtractive assembly generated fewer contigs

compared with the direct co-assembly — this is not sur-
prising because the subtractive assembly focused on the
differential portion. For direct co-assembly, as the
pooled dataset is huge, we could only use MEGAHIT

Fig. 4 An example of the reduced fragmentation of contigs given by subtractive assembly. A long contig resulting from the subtractive assembly
is broken into several shorter contigs when the subtraction step is not used (i.e., from the direct assembly). A number of contigs (highlighted by
different colors) from the direct assembly are aligned to the long contig with different degrees of similarities. The polymorphic region is highlighted
between two vertical dotted lines
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but not IDBA-UD (which used too much memory).
However, we were able to co-assemble the distinctive
reads (i.e., subtractive assembly) for the combined T2D
and NGT metagenomes using either assembler because
of the substantial data reduction in the subtraction step.
Table 5 summarizes the assembly results for the T2D
samples using the direct assembly and subtractive as-
sembly approaches (the results show similar trends for
the NGT datasets). In brief, subtractive assemblies are
approximately one sixth (by IDBA-UD) to one half (by
MEGAHIT) the length of direct assemblies, measured as
the total length of contigs; and MEGAHIT produced
more contigs, but its contigs are much shorter than
IDBA-UD contigs (true for both direct assembly and
subtractive assembly). There is no clear assembler win-
ner in this case, but considering that IDBA-UD gave
much longer contigs (and the memory usage is not a
concern for our subtractive assembly approach due to
the data reduction), we focus below on the downstream
application of subtractive assembly results using IDBA-
UD (but users can choose to use any of their favorite as-
semblers for subtractive assembly).

Subtractive assembly reveals compositional features of
T2D gut metagenomes
To identify bacteria that are responsible for the differ-
ence between T2D and NGT gut metagenomes, we
queried the contigs from subtractive assembly against
the bacterial genomes (both complete and draft) depos-
ited in National Center for Biotechnology Information
(NCBI) using BLASTN [35]. MEGAN [16] was used to
process the BLASTN [35] search results for taxonomic
assignments of the contigs. About one half of the contigs
were assigned to a reference genome in the database,

and about one third of the unassigned contigs were
identified by subtractive assembly but not by direct as-
sembly. Consistent with previous studies [8], our results
suggest enrichment of Lactobacillus gasseri, Lactobacil-
lus salivarius and S. mutans in T2D datasets. However,
we identified a greater variety of Lactobacillus and
Streptococcus species (Fig. 5) as more abundant in the
T2D group compared with the original analyses of these
datasets [8]: for example, Streptococcus parasanguinis
and Streptococcus salivarius are found to be enriched in
the T2D datasets. We also identified genomes that are
more abundant in the NGT group, including Lysinibacil-
lus fusiformis ZC1, Lysinibacillus sphaericus C3-41, and
Pseudomonas putida GB-1 (see Additional file 2: Figure
S3 and Additional file 3: Figure S4 for all species that
were uniquely detected in NGT and T2D, respectively).
The roles of those genomes remain obscure and await
further study.
Our results also show that many pathogenic bacteria

(including Actinomyces, Enterococcus faecalis and Rothia
mucilaginosa) are enriched in T2D datasets, which
might be a consequence of the immunocompromised
status of T2D patients. The association between
enriched pathogens and diabetes has been consistently
reported in previous studies: 42 % of published cases of
perianal actinomycosis were from patients also diag-
nosed with diabetes [36]; diabetes mellitus was identified
as a unique, independent risk factor for isolation of
vancomycin-resistant E. faecalis [37] and made it easier
for R. mucilaginosa to cause infections [38]; and another
large-scale metagenomics study revealed higher levels of
opportunistic pathogens in participants with T2D [39].

Subtractive assembly delivers a large collection of unique
or abundant genes in T2D gut metagenomes
Subtractive assembly provided us with genes that could
not be (well) assembled by direct assembly of individual
metagenomic samples, and we showed in simulation re-
sults that our method can improve metagenome assem-
bly, so we further explored how this improvement would
influence gene prediction and functional analysis results
using the T2D datasets. Even though half of the contigs
from subtractive assembly cannot be phylogenetically
assigned, they could still be used for functional annota-
tion, which may reduce the bias in the reference-based

Table 4 A summary of the read extraction for the European
women gut metagenomic datasets

k-mer ratio NGT (gigabases) T2D (gigabases)

2 14.48 12.66

4 2.48 1.66

6 0.55 0.42

8 0.17 0.13

10 0.04 0.05

(unique) 8.91 14.24

Table 5 A summary of the subtractive assembly and direct assembly results for T2D datasets

Metrics Direct assembly Subtractive assembly

IDBA-UD (individual)a MEGAHIT (co-assembly) IDBA-UD MEGAHIT

Total contigsb 2,422,739 2,645,944 510,220 2,175,502

Total base 3,365,389,115 2,200,436,161 512,470,294 1,434,840,759

N50 2170 1054 1146 677
aThe assemblies of individual samples were added for direct assembly by IDBA-UD
bOnly contigs of at least 300 bp were considered for the statistics
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annotation. We compared subtractive assembly with dir-
ect assembly of individual samples (both assembled by
IDBA-UD): out of 928,237 genes predicted from subtract-
ive assembly, 141,104 genes (15 %) — among which there
are 70,951 complete genes (including both a start codon
and a stop codon) — cannot be found in the direct assem-
blies of T2D samples. Similarly, 149,321 (18 %) — among
which 72,956 genes are complete — out of 821,130 genes
are not included in the direct assemblies of NGT samples.
Comparison of subtractive assembly results with the co-
assembly results of the original datasets (both assembled
by MEGAHIT) revealed improvement by subtractive as-
sembly at comparable scales: 660,445 out of 2,978,267
genes (22 %) from subtractive assembly — among which
there are 274,018 complete genes — cannot be found in
the direct co-assemblies of T2D samples. Likewise,
350,997 out of 2,692,810 genes (13 %) — among which
132,557 are complete — are not included in the direct
co-assemblies of NGT samples. These results suggest

that co-assembly of the datasets (thanks to the develop-
ment of memory-efficient assemblers such as MEGA-
HIT) helped to assemble more genes compared with
assembly of individual datasets; but still data reduction
by subtractive assembly helped to further improve the
assembly results (no matter which assembler was used).
When we compare the genes we identified with the

gene sets from the original analyses of the datasets [8],
we see a significant number of new genes. The original
analyses [8] resulted in a collection of 5,997,383 genes
from all the samples including NGT samples and T2D
samples (data retrieved upon request). Using 95 % se-
quence identity and 80 % coverage of the query as cut-
offs, subtractive assembly resulted in 153,755 new genes
(17 %) in the T2D group and 140,542 new genes (17 %)
in the NGT group.
We are particularly interested in genes that are unique

or more abundant in the T2D microbiomes. We anno-
tated these genes according to the SEED classification

Streptococcus thermophilus CNRZ1066
Streptococcus suis JS14
Streptococcus sp. SK643

Streptococcus sp. SK140
Streptococcus sp. oral taxon 071 str. 73H25AP
Streptococcus sp. oral taxon 056 str. F0418

Streptococcus sp. M334
Streptococcus sp. 2_1_36FAA

Streptococcus sanguinis VMC66
Streptococcus sanguinis ATCC 49296Streptococcus sanguinis

Streptococcus salivarius CCHSS3

Streptococcus salivarius 57.IStreptococcus salivarius

Streptococcus pyogenes ATCC 10782
Streptococcus pseudopneumoniae SK674

Streptococcus pseudopneumoniae IS7493Streptococcus pseudopneumoniae

Streptococcus pneumoniae Hungary19A-6
Streptococcus peroris ATCC 700780

Streptococcus parasanguinis FW213
Streptococcus parasanguinis F0405

Streptococcus parasanguinis ATCC 903
Streptococcus parasanguinis

Streptococcus oralis Uo5
Streptococcus mutans UA159

Streptococcus mutans NN2025
Streptococcus mutans LJ23

Streptococcus mutans

Streptococcus mitis SK564

Streptococcus mitis NCTC 12261
Streptococcus mitis B6
Streptococcus mitis ATCC 6249

Streptococcus mitis

Streptococcus macacae NCTC 11558
Streptococcus infantis SK1302

Streptococcus infantis ATCC 700779Streptococcus infantis

Streptococcus equi subsp. equi 4047
Streptococcus downei F0415

Streptococcus criceti HS-6
Streptococcus anginosus F0211
Streptococcus agalactiae H36B

Streptococcus

Legend:
N2 N4 N6 N8 N10 Nu T2 T4 T6 T8 T10 Tu

Fig. 5 Compositional differences in Streptococcus species between the T2D group and NGT group. The genomes are identified in the T2D group
while absent in the NGT group, through lowest common ancestor analysis. The first six columns and last six columns represent the iterative
subtractive assemblies at k-mer ratio 2, 4, 6, 8, and 10, or that are unique for the NGT group and T2D group, respectively. The height of the
colored bars in each column is proportional to the number of contigs that hit that taxon
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system [38]. This gene set is enriched in subsystems in-
cluding peptidoglycan biosynthesis, multidrug resistance
efflux pumps, and lactose and galactose uptake and
utilization (Table 6). Not surprisingly, the subsystems
with the most hits are involved in energy harvesting
(such as lactose and galactose uptake and utilization,
and fructooligosaccharides and raffinose utilization), cell
defense (e.g. peptidoglycan biosynthesis and multidrug
resistance efflux pumps), and transport proteins (such as
Ton and Tol transport systems and ECF class trans-
porters), indicating a microbe-contributed elevated level
of glycolysis/gluconeogenesis in the T2D group, consist-
ent with previous observations that short chain fatty
acids can lead to increased glycolysis/gluconeogenesis in
the liver [40, 41]. We also identified sialic acid metabol-
ism as enriched in the gut microbiome of T2D patients
(Table 6); it has been reported that elevated sialic acid is
strongly associated with T2D and raised serum sialic
acid is a predictor of cardiovascular complications [42].
As the patients in this study are 70-year-old women,
they may be in a relatively late stage of diabetes and
therefore suffer from those complications.
We further narrowed down our selection of genes to

those that are consistently more abundant across T2D
microbiomes than in healthy controls (so can serve as
dependable gene markers for T2D), considering that

subtractive assembly can improve the assembly of those
genes. To identify those consistently differential genes,
we quantified the abundance of the genes using read-
mapping (by BWA [43]), normalized by the total num-
ber of reads (per billion reads) in each sample, to iden-
tify the genes that are significantly enriched in the T2D
group compared with the NGT group. Among the
141,104 differential genes that cannot be found in direct
assemblies of T2D samples, 18,614 (13 %) were signifi-
cantly enriched in all T2D samples, with q-value < 0.01
(Wilcoxon rank-sum test corrected by false discovery
rate (FDR)). Although we observed similar rankings for
the top subsystems, we saw increases in subsystems re-
lated to energy harvesting (e.g., the rank for the ‘fructoo-
ligosacchrides and raffinose utilization’ subsystem was
increased from 7 to 2) using this more stringent collec-
tion of T2D differential genes that passed the multiple
testing (Table 7). We list significantly T2D-enriched
genes together with their annotations on our website
(http://omics.informatics.indiana.edu/mg/SA/).

Example T2D signature subsystems and genes
Here we present a few involved subsystems and genes in
detail. The first three subsystems involve utilization of
fructooligosaccharides (FOS), maltose, lactose and gal-
actose, and they are enriched in T2D women (ranked as
2, 11, and 13 in Table 7). For 11 out of 16 functional
roles involved in the ‘Fructooligosaccarides and riffinose
utilization’ subsystem, genes with differential abundances
were identified (Table S1 in Additional file 1); detailed
analysis of FIGfams in these three subsystems revealed

Table 6 Top 20 SEED subsystems for genes identified uniquely
by subtractive assembly in the T2D cohort

Rank SEED subsystem Number of genes

1 Peptidoglycan biosynthesis 635

2 Ton and Tol transport systems 451

3 Multidrug resistance efflux pumps 427

4 DNA replication 424

5 DNA repair, bacterial 364

6 Cell division subsystem 345

7 Lactose and galactose uptake and utilization 322

8 Restriction-modification system 322

9 Fructooligosaccharides and raffinose utilization 292

10 Glycerolipid and glycerophospholipid
metabolism

276

11 Maltose and maltodextrin utilization 270

12 Sialic acid metabolism 257

13 Methionine degradation 253

14 Ribosome LSU bacterial 252

15 Glycolysis and gluconeogenesis 244

16 De novo pyrimidine synthesis 238

17 High affinity phosphate transporter 236

18 ECF class transporter 234

19 Purine conversion 222

20 Threonine and homoserine biosynthesis 220

Table 7 Top 13 SEED subsystems for genes identified uniquely
by subtractive assembly, and which passed a Wilcoxon rank-sum
test with FDR correction, in the T2D cohort

Rank SEED subsystem Number of
genes

1 Peptidoglycan biosynthesis 138

2 Fructooligosaccharides and raffinose utilization 103

3 Multidrug resistance efflux pumps 100

4 Cell division 89

5 Sialic acid metabolism 80

6 Gene cluster associated with Met-tRNA
formyltransferase

77

7 Glycerolipid and glycerophospholipid
metabolism

73

8 DNA repair, bacterial 73

9 Choline and bataine uptake and betaine
biosynthesis

73

10 Murein hydrolases 72

11 Maltose and maltodextrin utilization 66

12 Beta-glucoside metabolism 62

13 Lactose and galactose uptake and utilization 62
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an enrichment of several glycosidases with various sub-
strate specificities (EC 3.2.1.-). For the utilization of
FOS, there are at least three glycosidases with elevated
levels in T2D: beta-glucosidase (EC 3.2.1.21), alpha-
galactosidase (EC 3.2.1.22) and alpha-mannosidase (EC
3.2.1.24); for the utilization of lactose and galactose,
beta-galactosidase (EC 3.2.1.23) is significantly increased
in the T2D cohort (Fig. 6); similarly, alpha-glucosidase
(EC 3.2.1.20) is increased, for enhanced utilization of
maltose. We note that alpha-glucosidase inhibitors are
well-established in the treatment of T2D, and work by
reducing the absorption of carbohydrates from the small
intestine [44]. Our work revealed other enriched glycosi-
dases in T2D, which may provide alternative targets for
the development of antidiabetic drugs.
The next two genes, truB (T2D_unique_8729_300_

1012_+) and ribF (T2D_unique_8729_1193_2032_+), were
found in the same contig assembled by subtractive assem-
bly. The truB gene encodes the pseudouridylate synthase
TruB (PF01509; 239 amino acids), and the ribF gene en-
codes a prokaryotic riboflavin biosynthesis protein
(PF06574; 278 amino acids); the gene product of ribF
has both flavokinase and adenine dinucleotide synthe-
tase (FAD synthetase) activities (Fig. 7a). Flavokinases
(EC 2.7.1.26) catalyze the conversion of riboflavin to
FMN, while FAD synthetase (EC 2.7.7.2) adenylates
FMN to FAD, together converting riboflavin to the cata-
lytically active cofactors FMN and FAD [45]. By blasting

the genes against the NR database [46], we identified
the source genome to be Blautia sp. CAG:257 with 99
% identity and 98 % coverage of the query sequence.
Karlsson et al. [8] also reported an abnormal level of
riboflavin metabolism in the gut microbiome of T2D pa-
tients; however, they claimed that riboflavin metabolism
was enriched in NGT women. We notice that their re-
sults may actually indicate the opposite (and so be con-
sistent with our conclusion): they identified three KEGG
(Kyoto Encyclopedia of Genes and Genomes) [47] pro-
tein families (KEGG Orthology groups) involved in ribo-
flavin metabolism increased in NGT, while six other
protein families were more abundant in T2D (shown in
their supplementary table 12) [8]. The contig containing
these genes was assembled from reads ‘unique’ to the
T2D samples; read mapping confirmed that only a very
few reads (59) from the NGT samples can be mapped to
this 3450-bp contig (in contrast, 521 reads from T2D
microbiomes can be mapped to this contig; Fig. 7b).
This increase in FMN and FAD synthetase is consistent
with the increased energy harvesting suggested above:
FAD helps extract chemical energy by taking electrons
from glucose during oxidative respiration.
The last gene (T2D_unique_70674_105_963_+) en-

codes a 285 amino acid protein with only one domain:
MATE (PF01554; Multi antimicrobial extrusion protein).
The protein belongs to one of the ten protein families
(FIGfams) associated with the Multidrug resistance ef-
flux pumps subsystem. This FIGfam (FIG 00000402) has
the most hits for differential genes (342/427) among the
ten FIGfams; members of this protein family extrude
cationic drugs through an Na+-coupled antiport mech-
anism [48]. Taxonomic assignments of these proteins
indicate a Firmicutes origin, especially Clostridium,
Lachnospiraceae and Erysipelotrichaceae. It is known
that mammalian MATE transporters mediate multidrug
resistance by exporting diverse xenobiotic cations in the
liver and kidney (MATE1 protein, for example, reduces
the plasma concentrations of metformin, a widely pre-
scribed oral glucose-lowering drug for the treatment of
T2D, modulating its therapeutic efficacy [49, 50]), while
bacterial MATE transporters act primarily as xenobiotic
efflux pumps and have been reported to confer tigecyc-
line resistance [48, 51, 52]. The elevated level of bacterial
MATE pumps in the gut of T2D patients suggests a po-
tential link between the disease and the gut microbiome
through the elevated levels of medications, including an-
tibiotics, taken by T2D patients [53, 54].

Conclusions
Using both simulated and real metagenomes, we have
shown that subtractive assembly improves the assembly
of the differential genome between two metagenomes
and facilitates downstream analysis. If the short reads from

NGT T2D
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Fig. 6 Abundance difference of the genes encoding beta-
galactosidase between T2D and normal microbiomes (NGT). The
abundance was measured as the number of reads that can be
mapped to significantly T2D-enriched beta-galactosidase-encoding
genes per billion reads. Note that we excluded 3 of 50 T2D samples
with overly abundant beta-galactosidase genes (abundance > 6000)
from the plot for clarity
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many genomes are directly assembled and annotated, it
takes a tremendous amount of computational resources,
as well as degrading the quality of the assembly. As a re-
sult, traditional comparative metagenomic approaches as-
semble each of the metagenomic samples independently,
and then compare groups of samples by the common fea-
tures shared among samples in each group. Instead, our
method focuses on the compositional difference of the
metagenome sets to be compared and therefore is well
suited for large-scale comparative studies. Our method is
able to consider a large number of samples simultaneously,
which can also improve the assembly of differential genes,
providing a complementary solution to existing compara-
tive metagenomic approaches. We note that our subtract-
ive assembly approach can effectively assemble genes with
only an abundance difference of threefold or greater. How-
ever, genes with subtler abundance differences can still be
discovered through the traditional comparative analyses of
metagenomic datasets (using direct assembly approaches).
We developed our iterative subtractive assembly strat-

egy to deal with situations where the compositional dif-
ferences between metagenomes are unknown — which
is typical. One advantage of this strategy is that it sam-
ples a spectrum of differences, aiding the assembly of ge-
nomes that are differential at various levels. However, if
a user is interested in a certain degree of difference, a
fixed k-mer ratio cutoff can be used in the subtractive
assembly.
Our method currently compares two categories of

metagenomes. It proves to be useful when we compare
microbial communities between two treatment groups
(such as healthy- versus T2D-hosted metagenomes).
One future direction is to extend the method to allow
comparison of multiple classes/treatments of metagen-
omes (e.g., sampled from multiple time points from the

same environment; a control group and alternative treat-
ments). A simple strategy is to apply subtractive assem-
bly to all pairs of sample sets and then combine the
results. We will also explore other approaches — for ex-
ample, by correlating k-mers based on their frequency
spectrum across samples for subtractive assembly — to
make the best use of the multiple metagenomic datasets.
Our approach to selecting consistently abundant genes
related to T2D from differential genes assembled by sub-
tractive assembly helps to narrow the gene list to the
most promising ones (which are consistently differential
between the two conditions according to the Wilcoxon
rank-sum test with FDR correction).
Our analysis of T2D-hosted metagenomes indicates

that subtractive assembly has a greater ability to detect
differences than did previous analysis of the same data
sets. But in general, we confirm that T2D-associated
metagenomes have an increased ability to harvest energy
from diverse carbohydrates, as other studies have shown.
The enrichment of various glycosidases in T2D micro-
biomes suggests alternative targets for the development
of antidiabetic drugs (alpha-glucosidase inhibitors are
well-established in the treatment of T2D). The prevalence
of Blautia sp. metabolism and Firmicutes-associated
MATE xenobiotic efflux pumps seem to be exciting leads
deserving of further study. We believe that our subtractive
assembly approach can be applied to other datasets (e.g.,
the more recent liver cirrhosis datasets [55]) to reveal the
association between microbial communities and other hu-
man diseases.

Materials and methods
Counting k-mers with the aid of a bloom filter
The bloom filter is a probabilistic data structure for de-
termining whether an element belongs to a sparse set

A

B

Fig. 7 The truB-ribF operon identified by subtractive assembly as associated with T2D. a There are three domains in the operon: TruB encoded by
truB; and flavokinase and FAD synthetase encoded by ribF. The flavokinase and FAD synthetase constitute the bifunctional prokaryotic riboflavin
biosynthesis protein. b The genes truB and ribF in this operon are confirmed by read mapping. Reads mapped to the proper pair are colored in
blue and mapped singletons are colored in green

Wang et al. Genome Biology  (2015) 16:243 Page 11 of 15



[23, 24, 56], using a number of hash functions to map
the elements to the fixed bit space of the filter. Thus,
false positives can occur when the bits for an element
are shared by other elements. In other words, the bloom
filter is a trade-off between memory usage and allowable
false positives: suppose n k-mers are stored in a bitmap
of size m using d hash functions, then the optimal value
of d that minimizes the false positive rate is (m/n)ln(2)
[22, 57]. As a fixed number of bits are used for each
element, the complexity of inserting or querying an
element is constantly O(d).
Bloom filters are memory efficient; however, the actual

memory usage depends on the hash tables used for re-
cording the number of occurrences of each k-mer. We
modified the implementation of BFCounter (version 0.2)
[22], following their principle of ruling out singletons of
all k-mers encountered. A bloom filter B and a simple
hash table T are adopted to store and count k-mers. The
bloom filter B is used to store all existing k-mers, of
which only k-mers observed twice or more are inserted
into the hash table T. With the information stored in
hash table T, we are able to calculate the distinctive se-
quence signatures for each metagenome. To detect the
compositional differences of compared metagenomes, a
k-mer ratio parameter r is employed to filter for k-mers
that are more abundant or unique in one of the meta-
genomes. For example, if we set r = 10, we will only keep
k-mers that occur at least ten times more frequently in
metagenome A compared with metagenome B as differ-
ential k-mers representing metagenome A; the genomic
differences between the two metagenomes are likely to
be built using those signatures. We note that k-mer
counts are normalized by the total bases in the corre-
sponding metagenomic dataset, so that the k-mer ratio
is not biased toward the larger metagenomic dataset.

Read extraction based on sequence signatures and
subtractive assembly
Reads made up of differential k-mers are from genomes
that are most associated with the environmental condi-
tions of interest (assuming a lack of confounding differ-
ences). Maillet et al. [18] considered two sequences
similar if and only if they share at least a number of
non-overlapping k-mers. Different from their approach,
here we define reads containing at least a certain percent-
age (default 50 %) of differential k-mers as the distinctive
reads. The reads satisfying this requirement are extracted
and employed for metagenomic assembly.
IDBA-UD (version 1.0.9) [30] was adopted as the meta-

genomic assembler, following read extraction in subtract-
ive assembly. It has been demonstrated that IDBA-UD
achieves longer contigs with higher accuracy by taking
into consideration the uneven sequencing depth of meta-
genomic sequencing technologies [29, 30]. We adopted

the default options for IDBA-UD’s parameter settings: a
minimum k-mer size of 20 and maximum k-mer size of
100, with 20 increments in each iteration. For comparison
purposes, we also used IDBA-UD (using the same set of
parameters) to assemble individual metagenomes without
applying the subtraction step (referred to as the direct
assembly approach). In addition, we tested MetaVelvet
(version 1.1.01) [33] and MEGAHIT (version 0.2.1) [34].
In principle, however, any metagenomic assembler can
be used for subtractive assembly.

Iterative subtractive assembly
When subtractive assembly is applied to real metage-
nomic samples, we may choose a small k-mer ratio cut-
off (e.g., 2), due to the unknown degree of compositional
difference between the groups of samples being com-
pared. Alternatively, we can iteratively extract reads
using a series of k-mer ratio cutoffs. For the gut metage-
nomic datasets used in our study, the maximum ratio
was set to 10 and the minimum 2, with a step value of 2.
Besides this, we separately extracted reads characterized
by unique k-mers (k-mers that occur in only one of the
groups of samples): unique k-mers were first identified
in each group and the corresponding distinctive reads
were extracted; then non-unique k-mers that were more
frequent in one group than the other were identified and
the distinctive reads were extracted, starting from a k-
mer ratio of 10, then 8, and so on. The stratification by
iterative assembly provides more information on the
compositional difference between two metagenomes,
without any prior knowledge.

Annotation of contigs from subtractive assembly
Contigs that are at least 300 nucleotides long were
phylogenetically annotated by query against the bacterial
genomes (both complete and draft genomes) deposited
in the NCBI through BLAST searches [35]. BLAST results
were then used for the assignment of lowest common an-
cestor by MEGAN (version 4) [16], with a minimum bit
score (Min Score) of 80 and minimum contig support
(Min Support) of 5.
Protein coding genes were predicted from the contigs

using FragGeneScan [58]. We are interested in the pro-
tein coding genes covered only by subtractive assembly,
and consider that a gene belongs to this category if there
is no equivalent gene that covers at least 20 % of the
gene with 90 % or higher sequence identity (based on
RAPSearch2 [59]) in the direct assemblies of any individ-
ual metagenome. These genes were assigned to functional
categories, including SEED subsystems [60]. We used
myRAST (version 36; downloaded from http://blog.the
seed.org/downloads/myRAST-Intel.dmg) for the SEED
subsystem annotation.

Wang et al. Genome Biology  (2015) 16:243 Page 12 of 15

http://blog.theseed.org/downloads/myRAST-Intel.dmg
http://blog.theseed.org/downloads/myRAST-Intel.dmg


To further validate the differential genes, we mapped
the original short reads of each sample onto the genes
that are enriched in the T2D cohort and normalized the
coverage by the total number of reads in each sample.
Based on the coverage of each differential gene in each
sample, the significance of each candidate differential
gene was tested by computing a one-sided p value using
the R ‘wilcox.test’ function and correcting for multiple
testing using false discovery rate (q-value) computed by
the tail area-based method of the R ‘fdrtool’ package
[61]. The fdrtool has been used for similar purposes in
metagenomics projects [62–64].

Simulated metagenomes
We carried out two simulations to test if our subtractive
assembly approach can efficiently detect compositional
differences between metagenomes (and the minimum
abundance ratio for the difference to be detected), and
improve assembly quality (especially when closely re-
lated species co-exist in a community).
In simulation 1, we simulated three groups of metage-

nomic datasets using five bacterial genomes from the
FAMeS dataset [65]: Ferroplasma acidarmanus fer1,
Lactobacillus gasseri ATCC 33323, Pediococcus pentosa-
ceus ATCC 25745, Prochlorococcus marinus NATL2A,
and S. thermophilus LMD-9. MetaSim (version 0.9.1)
[66] was used to simulate reads from the genomes. In
each group, the first sample (S1) was compared with
each of the remaining samples in the same group for
subtractive assembly. The relative abundances of the five
genomes in each sample are shown in Table 1. In these
samples, we only changed the abundances of the S. ther-
mophilus genome and another genome, to keep the ratio
of relative abundance for the S. thermophilus genome in
the range of 2–16. This enables us to evaluate whether
our method can effectively detect the compositional dif-
ference between metagenomes by focusing on a single
genome (S. thermophilus). We applied the iterative sub-
tractive assembly strategy to analyze this set of simulated
datasets (k-mer ratio parameter r was set to be 2, 3, 4, or
5). After the subtractive assembly, we calculated the
fraction of the S. thermophilus genome covered by con-
tigs using QUAST [29] and MUMer [31]. In all the sam-
ples, the sequencing depth of the Streptococcus genome
was designed to be between 30× and 40 × .
In simulation 2, we simulated a pair of metagenomic

samples (S1 and S2) using five different R. palustris
strains (Table 2). The R. palustris HaA2 genome is
dominant in sample 1 (S1) and is the focus of this
simulation. We set the k-mer ratio parameter to r = 2
for the subtractive assembly (S1 minus S2). Sample 1
was also used for direct metagenomic assembly using
IDBA-UD [30]. Assemblies from both subtractive as-
sembly and direct assembly were compared with the

reference genomes using QUAST [29]. We used various
metrics for assembly evaluation, including the cumula-
tive length of contigs, N50, and size of the largest
contig.

Real metagenomes
We chose the large collection of gut metagenomic data-
sets derived from two groups of 70-year-old European
women, one group of 53 with T2D and the other a
matched group of healthy controls (NGT group; 43 par-
ticipants) [8]. This collection of metagenomes is ideal
for testing our subtractive assembly approach: only two
groups were involved (T2D versus healthy) and each
group contains many large metagenomic datasets. We
pooled the T2D samples and NGT samples separately
for subtractive assembly.

Availability
Our tools for subtractive assembly are available for
download at sourceforge (https://sourceforge.net/projects/
subtractive-assembly/). We also make available the sub-
tractive assembly results of the T2D metagenomes, includ-
ing the set of genes that are uniquely or more abundantly
found in T2D genomes, along with their annotations at
http://omics.informatics.indiana.edu/mg/SA/.
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‘Fructooligosaccharides (FOS) and Raffinose Utilization’ subsystem. Figure S1.
Percentage of extracted reads from non-differential genomes by subtractive
assembly on S1 vs. S2 in Group 2 of Simulation 1 (see Table 1 for more
information). The x-axis shows the values of k-mer ratio parameter r (2 to 5)
and y-axis shows the fraction (%) of reads from non-differential genomes in
the extracted reads. Figure S2 Comparison of the cumulative contig length
between subtractive assembly (red) and direct assembly (blue) of R. palustris
HaA2 (Simulation 2) by using MEGAHIT as the assembler. On the x-axis,
contigs are ordered from largest to smallest. The y-axis gives the size of the x
largest contigs in the assembly. (PDF 124 kb)

Additional file 2: Figure S3. Species uniquely detected in the NGT
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