
Increasing BCI Communication Rates with Dynamic Stopping 
Towards More Practical Use: An ALS Study

B. O. Mainsah1, L. M. Collins1,*, K. A. Colwell1, E. W. Sellers2, D. B. Ryan2, K. Caves3, and 
C. S. Throckmorton1

1Duke University, Department of Electrical and Computer Engineering

2East Tennessee State University, Department of Psychology

3Duke University, Departments of Surgery, Medicine and Biomedical Engineering

Abstract

Objective—The P300 speller is a brain-computer interface (BCI) that can possibly restore 

communication abilities to individuals with severe neuromuscular disabilities, such as 

amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography 

data. However, accurate spelling with BCIs is slow due to the need to average data over multiple 

trials to increase the signal-to-noise ratio of the elicited brain signals. Probabilistic approaches to 

dynamically control data collection have shown improved performance in non-disabled 

populations; however, validation of these approaches in a target BCI user population has not 

occurred.

Approach—We have developed a data-driven algorithm for the P300 speller based on Bayesian 

inference that improves spelling time by adaptively selecting the number of trials based on the 

acute signal-to-noise ratio of a user’s electroencephalography data. We further enhanced the 

algorithm by incorporating information about the user’s language. In this current study, we test 

and validate the algorithms online in a target BCI user population, by comparing the performance 

of the dynamic stopping (or early stopping) algorithms against the current state-of-the-art method, 

static data collection, where the amount of data collected is fixed prior to online operation.

Main Results—Results from online testing of the dynamic stopping algorithms in participants 

with ALS demonstrate a significant increase in communication rate as measured in bits/sec 

(100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. 

Participants also overwhelmingly preferred the dynamic stopping algorithms.

Significance—We have developed a viable BCI algorithm that has been tested in a target BCI 

population which has the potential for translation to improve BCI speller performance towards 

more practical use for communication.

1. Introduction

In recent years, brain computer interfaces (BCI) have received increased interest as 

alternative communication aids due to their potential to restore control/communication 
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abilities to individuals with severe physical limitations due to neurologic diseases, stroke, 

and spinal cord injury (1, 2). BCIs decode and translate brain electrical signals that convey 

the user’s intent into commands to control external devices such as a word spelling program 

for communication. People with amyotrophic lateral sclerosis (ALS), commonly known as 

Lou Gehrig’s disease, represent a target population who could benefit from BCI system 

development (3). ALS is degenerative motor neuron disease that causes a progressive loss in 

voluntary muscle control. This often results in an inability to communicate either verbally or 

via gestures, especially in the late stages of the disease, the “locked-in” (LI) stage, where 

the loss of muscle control affects eye movements.

One of the most commonly researched BCI communication aids, especially in people with 

ALS, is the P300-based speller, developed by Farwell and Donchin (4), which enables users 

to make selections from an on-screen array by selecting a desired character or an icon that 

conveys a desired action. P300 spellers are BCIs that rely on eliciting event-related 

potentials (ERPs) in electroencephalography (EEG) data including the P300 signal which 

occurs in response to the presentation of rare stimuli within more frequent stimulus events 

within the context of an oddball paradigm (5). Fig. 1 shows a schematic of the P300 speller 

system. The user is presented with a grid of character choices and focuses on a desired 

character as groups of characters are flashed on the screen. The P300 speller operates by 

processing and analyzing a time window of EEG data after character subsets are flashed on 

the screen to discern the character that the user intended to spell. EEG features that correlate 

with the user’s intent are extracted from time windows of EEG data, and classification 

techniques (6, 7) are used to score features associated with each flash to distinguish between 

target ERP and non-target responses. This information is translated into a character selection 

on the screen after averaging data over multiple flashes.

In several studies, the P300 speller has been shown to be a viable system for communication 

by people with ALS (8-10), with potential stability for long-term use (11). However, BCIs 

are still mainly used as a research tool in controlled environments (12-14). There are a 

limited number of BCI systems commercially available for independent home use, e.g. (15). 

One of the primary reasons that BCIs have not translated into home use is that character 

selection times in BCI communication systems are very slow compared to other methods. 

Developing algorithms that improve the spelling rate has been a leading focus of BCI 

research in recent years.

While research suggests this system is a viable communication aid for people with ALS, the 

EEG responses from which P300 ERPs must be extracted have a very low signal-to-noise 

ratio (SNR). The standard approach to increase the P300 SNR within noisy EEG data is to 

average data from multiple trials for improved accuracy in classification performance (16). 

This means each potential target character is sampled multiple times before the classifier 

determines the desired character, increasing the time needed to make a selection and 

decreasing the communication rate. In most conventional BCI spellers, the amount of data 

collected is fixed prior to online operation, this is termed static data collection, and the 

amount of data collected is usually similar across all users. Based on a literature search of 

P300 speller studies implemented in people with ALS using static data collection (3, 8-10, 

14, 17-20), potential targets are flashed 8-40 times, with accuracies ranging from 60-100%, 
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with performance improving in more recent years. Static data collection, however, risks over 

or under collecting data since it does not assess the quality of the data that are measured.

Adaptive data collection strategies have been proposed in previous research to balance P300 

speller accuracy and character selection time for improved online communication rate (21, 

22). Some approaches optimize the amount of fixed data collection prior to each P300 

speller session by maximising the written symbol rate (WSR) metric (10), the number of 

selections a user can correctly make in a minute taking into account error correction e.g. (7, 

10). Most approaches vary the amount of data collection prior to each character selection 

based on a threshold function. Some approaches consider summative functions based on 

character P300 classifier scores e.g. (23-26). Other approaches use a probabilistic model 

based on the P300 classifier scores, by maintaining a probability distribution over grid 

characters, updating the distribution following EEG data processing and stopping data 

collection when a specified confidence level is achieved (27-32). Probabilistic data 

collection algorithms also provide a convenient framework to include additional knowledge 

such as a priori language information to further inform the algorithm’s behavior without 

having to redesign the system.

Some adaptive data collection methods have relied on either tailoring the stopping criterion 

to a user’s past performance (which may not be accurate longitudinally) or basing the 

stopping criterion on data collected from a pool of users. Relying on a pool of users to set 

the stopping criterion creates the potential for mismatch between the pool and new users. 

This is of special concern given that the pool of participants has typically been healthy 

university students and employees (17) while the target BCI population is users with 

disabilities whose performance might differ substantially depending on the etiology and 

progression of their disabilities. Most P300 speller algorithm research is dominated by 

offline analysis or online testing in non-disabled participants, although there has been an 

increase in online validation in BCI target users in more recent years (3, 17, 33).

We have developed a data-driven Bayesian early stopping algorithm we term dynamic 

stopping (DS). Under DS, the algorithm determines the amount of data collection based on a 

confidence that a character is the correct target (34). This enables flexibility in the amount of 

data collected based on the quality of the user’s responses by collecting more data under low 

SNR conditions and less data under high SNR conditions without assuming a baseline level 

of performance for a particular user. Flash-to-flash assessments of EEG responses are 

integrated into the model via a Bayesian update of character probabilities. Data collection is 

stopped and a character is selected when the character probability exceeds a threshold. We 

further enhanced the algorithm by including information about the confidence of each 

character prior to data collection by exploiting the predictability of language via a statistical 

language model (dynamic stopping with language model, DSLM) (35). In online studies of 

non-disabled participants, our algorithms significantly improved participant performance, 

with about 40% improvements in average bit rate from static to DS (34), and about 12% 

average improvements from DS to DSLM (35).

Similar dynamic stopping algorithms with Bayesian approaches have been proposed, some 

including a language, but have not been evaluated in a target BCI population. The goal of 
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this study is to validate the improvements observed with our dynamic stopping algorithms in 

the non-disabled user studies in a target BCI population. In this study, we compared the 

online performance of static and dynamic stopping methods in participants with ALS.

2. Methods

2.1. Participants

The studies were approved by the Duke University Institutional Review Board and East 

Tennessee State University Institutional Review Board, respectively. Ten participants with 

ALS of varying impairment levels were recruited from across North Carolina and Tennessee 

by the Collins’ Engineering Laboratory (Electrical and Computer Engineering Department, 

Duke University) and the Sellers’ Laboratory (Psychology Department, East Tennessee 

State University), over a period of five months. Participants gave informed consent prior to 

participating in this study. Participant demographic information can be found in Table 1. 

Participants who couldn’t effectively communicate verbally used several forms of assistive 

technologies for communication, which included low and high tech approaches such lip 

reading, manual eye gaze boards, touchscreen devices and head tracker systems. All of the 

recruited participants were used for data analysis.

2.2. P300 Speller Task

Participants were presented with a 6 × 6 P300 speller grid of alphanumeric characters on a 

screen, with the color checkerboard paradigm (10, 36) used for stimulus presentation. The 

speller grid consisted of alphanumeric characters, plus a space character. However, because 

this study involved single-word spelling tasks, the space character was disabled, and if 

selected, was replaced with the character “-”). A word token was displayed on the top left 

corner of the grid, with the intended character to spell updated in parentheses displayed at 

the end of the word. The word tokens were randomly selected from the English Lexicon 

Project (37). The task consisted of copy spelling the word by locating the target character in 

parentheses within the grid and counting the number of times it flashed. Groups of either 

three, four or five characters flashed simultaneously on the screen. The flash duration and 

the inter-stimulus interval time were both set to 125ms. Following each flash, a time 

window of EEG data is used to extract features to score each flash with a classifier. After a 

certain number of flashes, (fixed or dynamically determined), the P300 speller selects the 

character with the largest cumulative classifier response. After character selection, there was 

a 3.5-second pause prior to beginning selection of the next character.

Data were recorded from each participant in three sessions that were conducted on different 

days; each session consisted of a training and test run. Each session lasted about 1.5 -2 

hours, including breaks. In the training runs, no feedback was presented to the user while 

labeled data was collected to train the P300 classifier. The training data for each participant 

consisted of three 6-lettered words. Features extracted from the training data were used to 

develop a P300 classifier that was used in all the test runs for each session. In the test runs, 

using the trained classifier, participants performed the copy-spelling task with feedback and 

no error correction. During each test run, the three data collection algorithms, static, 

dynamic stopping (DS) and dynamic stopping with language model (DSLM), were used. 
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The algorithm order was randomized with each test run to avoid biasing the results by 

algorithm order. The testing data for each participant consisted of two 6-lettered words per 

algorithm for a total of 36 characters per algorithm across all three sessions. Prior to the 

dynamic stopping algorithms, participants were told to expect variable data collection in 

order to minimize surprise or confusion.

2.3. Signal Acquisition

The open source BCI2000 software was used for this study (38). Additional functionality 

was added to implement the dynamic stopping algorithms (34, 35). The Collins’ Lab 

collected EEG signals using 32-channel electrode caps in the clinic; the Sellers’ Lab used 

16-channel electrode caps and collected data in participants’ homes. EEG signals were 

connected to the computer via gUSBamp biosignal amplifiers. The left and right mastoids 

were used for ground and reference electrodes, respectively. The signals were filtered (0.1 - 

60 Hz at Duke University, 0.5 - 30Hz at ETSU) and digitized at a rate of 256 samples/s. 

Data collected from electrodes Fz, Cz, P3, Pz, P4, PO7, PO8, and Oz were used for signal 

processing (6).

2.4. Feature Extraction and P300 Classifier Training

Features that correlate with the user’s intent were extracted from the EEG training data and 

used to develop a participant-specific P300 classifier, according to Krusienski et al. (6). 

Following each flash, a time window of 800ms of EEG data (205 samples at sampling rate 

of 256 Hz), was obtained from the 8 electrode channels and down sampled to a rate of 20Hz 

by averaging 13 time samples to obtain a feature point (the last 10 were not used for 

computational simplicity of matrix operations). The time averaged features were 

concatenated across the channels to obtain a feature vector, x ∈ ℝ1×120, per flash i.e. 15 

features/channel × 8 channels/flash = 120 features/flash. A truth label was assigned to a 

flash, t ∈ {0, 1}, depending on whether the target character was present in the flash, i.e. 

label “1” if the target character was present in the flash and label “0” if the target character 

was not present in the flash.

A training data set from a session for each participant consisted of feature vectors and their 

corresponding truth labels, T = {(x1, t1), …, (xT, tT)}. The training dataset was used to train 

a stepwise linear discriminant analysis (SWLDA) classifier, w ∈ ℝ1×120. SWLDA uses a 

combination of forward and backward ordinary least-squares regression steps to add and 

remove features based on their ability to discriminate between classes. The p-to-enter and p-

to-remove were set to 0.10 and 0.15, respectively.

2.5. Data Collection Stopping Criteria

During the test run, character selection is made after analyzing EEG data from multiple 

flashes. Following each flash, i, a feature vector, xi, is extracted and used to compute a flash 

score with the trained classifier, . A sequence is a unit of data collection which 

consists of flashing all the defined character flash sub-sets once. For the checkerboard 

paradigm using the 6 × 6 speller grid (shown in Fig. 1), a sequence consists of 18 flashes, 

with each character flashed twice per sequence.
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2.5.1. Static Stopping—In static stopping, all characters in the grid, Cn ∈ G, begin data 

collection with a zero score. With each group of characters that are flashed on the screen, Cn 

∈ Si, their scores are updated by adding the computed flash score, yi. After a fixed number 

of sequences, the character with the maximum cumulative classifier score was selected as 

the target character. A character’s classifier score is updated each time it is flashed:

[1]

where ζ (Cn) is the cumulative classifier for the character, Cn after I flashes prior to 

character selection; yi is the classifier score for the ith flash; μi,n = 1 if Cn ∈ Si; and μi,n = 0 if 

Cn ∉ Si. For this study, character selection for static stopping was made after 7 sequences 

i.e. I = 18 × 7 = 126 flashes.

2.5.2. Bayesian Dynamic Stopping (DS)—In dynamic stopping, the number of flashes 

prior to character selection was determined by updating the character probabilities of being 

the target after each flash via Bayesian inference and stopping when a threshold probability 

is attained. The dynamic stopping algorithm (34), consists of an online and offline portion, 

Fig. 2. In the offline portion, the trained classifier is used to score the EEG data from the 

training session. The scores are grouped into non-target and target EEG response scores. The 

histograms of the grouped classifier scores are scaled and then smoothed with kernel density 

estimation to generate likelihood probability density functions (pdf) for the target, p(yi∣H1), 

and non-target, p(yi∣H0), responses.

In the online portion, the pdfs are used in the Bayesian update process. Prior to spelling a 

new character, characters are assigned an initialization probability, , all 

characters begin data collection with an equal likelihood of being the target character, i.e. 

, where N is the total number of choices in the grid. With each new 

flash, the character probabilities are updated via Bayesian inference:

[2]

where  is the posterior probability of the character Cn being the 

target character, , given the current classifier score history, Yi = [y1, …, yi−1, yi], and the 

current subset of flashed characters, Si;  is the likelihood of the classifier 

score, yi, given that the character Cn was present or not present in the flashed subset, Si; 

 is the prior probability of the character Cn being the target character; and 

the denominator normalizes the probabilities over all characters. The likelihood p(yi∣Cn = 

C*, Si) is assigned depending on whether Cn was/was not present in the subset of flashed 

characters, Si:
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[3]

Fig. 3 shows the evolution of character probabilities during the Bayesian character 

probabilities with each new flash. Data collection is stopped when a character probability 

attains the threshold probability, set at 0.9, and the character is selected as the target 

character. A minimum limit of the amount of data collection was not imposed. However, a 

maximum limit of 7 sequences was imposed (as convergence is not guaranteed), and if the 

threshold probability is not reached, the character with the maximum probability is selected 

as the target character. For the next character, character probabilities are re-initialized and 

the Bayesian update process is repeated until character selection.

2.5.3. Bayesian Dynamic Stopping with Language Model (DSLM)—In dynamic 

stopping with a language model, the Bayesian update process is identical but for the 

initialization probabilities, , which are dependent on the previous character 

selection, a bigram language model (35). For simplicity, we initialized the probabilities of 

the first character assuming each character is equally likely to be the target character; 

alternatively a language model could be used based on the probability of being a first letter 

in a word. For subsequent character selection, if the previous character selection was non-

alphabetic, the initialization probabilities are uniform. If the previous character is non-

alphabetic, a letter bigram model is used, shown in Fig. 4, generated from the Carnegie 

Mellon University Online dictionary (39). Element (irow, jcolumn) in the character probability 

matrix denotes the conditional probability, P(Aj∣Ai), that the next letter is the jth letter of the 

alphabet, given the ith letter was previously spelled. For example, vowels are more likely to 

follow consonants, and specifically, a “U” is more likely to follow a “Q”, compared to an 

“E” or “S”.

For non-alphabetic characters (NAC), the initialization probabilities are set to . For 

alphabetic characters, the initialization probabilities are dependent on the previous letter 

selection, AT−1, consisting of a weighted average of a bigram language model and a uniform 

distribution:

[4]

[5]

where α denotes the weight of the language model; P(AT = Cn∣AT−1) denotes the conditional 

probability that the next letter is Cn given the previously spelt letter is AT−1, obtained from 

the character probability matrix;  is the sum of all non-alphabetic characters, 

subtracted from 1 to normalize the probabilities; 1 − α is the weight of the uniform 
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distribution. The additional probability introduced by the uniform distribution is an error 

factor to mitigate the possible influence of incorrectly spelled characters on the initialization 

probabilities. Based on offline simulations, the weight of the language model was set to α = 

0.9.

2.6. Performance Measures

The online performances of the participants using the P300 spellers with the various data 

collection algorithms were evaluated using accuracy, task completion time, and 

communication rates. All performance measures were pooled across the three sessions. The 

accuracy is the percent of characters correctly spelled by the participant. The task 

completion time is the time spent to complete the task, determined from the total number of 

flashes to complete the spelling task, including the time pauses between flashes:

[6]

[7]

where CSTn is the character selection time for character Cn; 3.5 seconds is the time pause 

between character selections; Fn is the number of flashes used to select Cn, ISI is the inter-

stimulus interval and FD is the flash duration; and TCT is the task completion time.

Bit rate is a communication measure that takes into account accuracy, task completion time 

and the number of choices in the grid (40):

[8]

[9]

where B is the number of transmitted bits/character selection; N is the number of possible 

character selections in the speller grid; P is the participant accuracy. Theoretical bit rate was 

also calculated and differs from bit rate by excluding the time pauses between character 

selections. Since the time pauses can be varied according to user comfort, theoretical bit rate 

represents an upper bound on possible communication rate. However, in practice, some 

pause between characters is required for the BCI user to evaluate the feedback provided by 

the BCI.

Statistical analyses of the data involved repeated measures ANOVA tests to analyze the 

effect of the various data collection algorithms, followed by multiple comparison tests with 

Bonferroni adjustments, for pairwise comparisons if applicable (p < 0.05).
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3. Results

Fig. 5 shows the participant non-target and P300 ERPs averaged across all three sessions. 

Most participants were able to elicit a P300 response for BCI control, with some participants 

having relatively strong ERP responses e.g. D05 and D08. Average participant performance 

was calculated by pooling across all P300 speller sessions. Statistical tests revealed 

significant differences in the mean of at least two algorithms for 3 of the four performance 

measures: task completion time, bit rate and theoretical bit rate. Additional multiple 

comparison tests were done to determine specifically which pairs of algorithms with 

significant differences. The same trend was observed across the performance measures that 

had significant differences: static data collection was significantly different from both DS 

and DSLM, however, there was no significant difference between DS and DSLM.

Fig. 6 shows the mean, minimum and maximum number of amount of flashes used for 

character selection for each participant under each of the algorithms. In general, the higher 

the participant performance level, the fewer flashes required prior to character selection. 

However, a wide range in the number of flashes per character selection with the dynamic 

stopping algorithms occurs for each participant. This demonstrates that choosing a static 

amount for data collection based on a user’s performance level may not consistently match 

data collection needs. The range in the number of flashes within subjects demonstrates how 

the dynamic stopping algorithms adapt to acute changes in user performance rather than 

relying on an arbitrary number of flashes or the user’s past performance.

The total task completion time was determined from the total number of flashes used to spell 

all words, including the time pauses between character selections. The static completion 

time was the same for all participants (35 seconds per character, 21 minutes per task), 

although one participant (E21) selected one less character resulting in a slightly lower time. 

Fig. 7A shows the total task completion time and average amount of time required to select a 

character. Character selection times were significantly less in both dynamic stopping 

algorithms, with most participants achieving a 45-75% reduction when compared to the 

static stopping algorithm (p < 0.0001). The dynamic stopping algorithms reduced character 

selection time, with most ranging from 8 - 20 seconds/character. Fig. 7B shows that average 

participant accuracy decreased from static stopping (79.44 ± 29.98%), but the differences 

weren’t significant between any of the algorithms, DS (75.40 ± 27.16 %) and DSLM (76.39 

± 25.63 %) (p < 0.23). Despite the substantial reduction in data collected with dynamic 

stopping, no significant deterioration in accuracy was observed.

The accuracy and task completion time were used to calculate the bit rate and theoretical bit 

rate. Fig. 7C-D show that the communication rates remained the same or improved from the 

static to the dynamic stopping conditions. Fig. 7C and D reveal that most participants 

obtained a substantial increase in their bit rates (100-300%) and theoretical bit rates 

(100-650%) with the dynamic stopping algorithms, due to maintaining similar accuracy 

levels while significantly reducing the spelling task completion time. There was a significant 

increase in bit rate from static to DS and DSLM (p < 0.001) and in theoretical bit rate from 

static to DS and DSLM (p < 0.00001). There was no significant difference observed in 
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communication rate between the dynamic stopping algorithms. The average participant 

results are summarized in Table 2.

Testing BCI algorithms in the target population serves several important purposes. Results 

from non-disabled participants may not necessarily translate to the disabled population due 

to variability in disease cause and progression (17); thus, testing in the target population is a 

key validation step for an algorithm. Further, testing in the target population presents an 

opportunity for useful feedback during the design process from target users (33). From the 

post-session survey results shown in Fig. 8, we observed that despite varying accuracy 

levels, participant algorithm preference significantly increased from static, to DS, to DSLM 

algorithm (p < 1×10−5). It should be noted that we informed participants to expect variable 

data collection with the dynamic stopping algorithms in order to minimize surprise or 

confusion.

Given that multiple sessions occurred for data collection, it is of interest to consider whether 

the classifiers trained in each session were similar. However, a direct comparison of the 

weight vectors that define the classifiers is difficult due to the variation in EEG data and the 

sparsity constraint imposed by SWLDA. As an alternative approach, classifiers were applied 

offline to test data collected in separate sessions. If the classifiers provide consistent 

performance across sessions, it might be assumed that the data collected for calibration is 

fairly stable. For each session, classifiers trained from the other two sessions were used to 

simulate P300 speller selections with EEG data from the static stopping. Participant session 

intervals varied from 3 days to about a 1 month (see Table 1). Fig. 9 shows the average 

offline accuracy compared with the average online accuracy using the within-session 

classifier. It can be observed that participant within-session accuracy was comparable to the 

inter-session accuracy. These results indicate there is potential to reduce training time with 

this a priori information, possibly by initializing and updating a classifier as training data is 

collected.

4. Discussion

Our dynamic stopping algorithms adapt the amount of data collection based on acute 

changes in user performance to maximize spelling speed without compromising accuracy, 

compared to static stopping. Participants demonstrated a range in the number of flashes to 

select each character, indicating that performance even within a participant is not constant. 

This highlights the importance of not relying on an arbitrary number of flashes or the user’s 

past performance to control data collection. Most participants experienced a significant 

reduction in task completion times with the dynamic stopping algorithms with little to no 

negative impact on accuracy. Further, communication rates were greatly improved for the 

majority of participants.

In contrast to our non-disabled studies where significant performance improvements were 

observed from static to DS (34), and from DS to DSLM (35), the inclusion of a language 

model did not significantly improve the performance of the dynamic stopping algorithm 

with the ALS participants. There is likely more variability in the participants with ALS 

population due to other confounding factors such as differences in disease etiology and 
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progression, in contrast to the non-disabled population which tends to be more uniform and 

skewed towards a younger demographic. However, the inclusion of a language model did 

not significantly cause a reduction in accuracy despite the substantial reduction in data 

collection. Some previous approaches that include language information in BCI spellers 

involved changing the user-interface (41-43). Sometimes this might negatively affect 

accuracy, as in Ryan et al. (42), where it was hypothesized that the negative impact was 

likely due to the increased task difficulty of adapting to a new interface layout with multiple 

selection windows. In our algorithm, the language model is incorporated within the data 

collection algorithm, leaving the speller interface unchanged. While this method of 

incorporating a language model did not result in significant performance improvements, the 

language model used was a bigram model which is overly simplistic. A more complex 

language model that takes into account all of the previously spelled characters could be 

incorporated in a similar manner, as could other natural language processing techniques, 

potentially improving performance.

Several dynamic stopping algorithms for ERP-based spellers have been proposed in the 

literature (22), and we focus on those that have been implemented online, as real-time 

closed-loop online BCI feedback gives a better measure of the performance of an algorithm 

compared to offline analysis. Some dynamic stopping approaches have utilized summative 

functions based on character P300 classifier scores (23-26). However, these approaches 

relied on estimating threshold parameters based on a participant pool average or using the 

same parameters across users. A user’s performance can vary acutely based signal SNR, 

artifact level, attention, mood etc. (44, 45) and there is inter-participant variability in 

performance (46). Alternatively, a probabilistic-based stopping criterion allows for a more 

flexible means to adapt data collection based on changes in a user’s acute performance as 

this uncertainty is captured via classifier score distributions. Other dynamic stopping 

algorithms have used a probabilistic model, similar to the one in this study, where character 

probability values are initialized, updated with information derived with additional EEG 

data collection until a preset probabilistic threshold level is met and the character with the 

maximum a posteriori probability is selected (27-30). However, these algorithms were 

tested with offline simulations, followed by online studies in non-disabled participants and 

require further validation in the target BCI population.

Online testing in people from a target BCI population is a key step in BCI algorithm 

development because algorithms optimized for individuals without disability may not 

necessarily generalize to the target BCI population. Our algorithm development process 

included offline analysis, testing in participants without disability, followed by online 

validation with participants with ALS. The positive feedback from the people with ALS 

provides an incentive to incorporate our adaptive data collection algorithm in prototype BCI 

speller systems for home use, given the significant improvements obtained when compared 

to the current state-of-the art static stopping method. In addition, this reinforces the need for 

developing BCI systems with communication rates that are comparable to other 

augmentative and assisted communication systems to translate BCIs into practical systems 

for daily home use.
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There appears to be no correlation between level of impairment and BCI control. ALSFRS-

R denotes the revised ALS Functional Rating Scale (47), which provides a physician-

generated estimate of the patient’s degree of functional impairment, on a scale of 0 (high 

impairment) to 48 (low impairment) (Table 1). The ALSFRS-R scores of the low-

performing participants D06, D07 and E23, were 3, 21 and 30, respectively. The remaining 

participants who had varying levels of impairment ranging from 1 to 42, performed with 

accuracy levels in the 85-100% range. In McCane et al. where participants with ALS 

performed word spelling tasks with a P300 speller, results suggest no correlation between 

level of impairment and successful BCI use (48). Most of the high performing participants 

(>70% accuracy) had ALSFRS-R scores of less than 5, with the rest ranging from 16 - 25. 

The low performing participants (< 40% accuracy) had some visual impairment e.g. double 

vision, rapid involuntary eye movements and drooping eyelids, which could hinder their 

ability to focus on the target for effective BCI use (49). All participants in this study had the 

ability to control eye gaze. One possible reason for poor performance is the ability to elicit 

P300 ERPs to control BCIs as it can be observed from Fig. 5 that the low performing 

participants elicited P300 ERPs with relatively low SNR compared to non-target responses. 

However, other possible reasons for poor performance could include presence of artifact or 

the user misunderstanding instructions for BCI use (50)

Head and eye tracking systems are commercially available and can provide a convenient 

means of daily communication for people with severe neuromuscular ability e.g. eye-gaze 

calibration time can take around 3-5 minutes. Setting-up, calibrating and troubleshooting a 

BCI system may be difficult for lay people such as family members or care-takers with 

limited technical background, especially given the day-to-day variability of user 

performance, environmental conditions, etc. Nonetheless, a recent case study by Sellers et 

al. showed that a stroke survivor was not able to accurately use an eye tracking system, but 

was successful using a matrix speller, obtaining accuracy levels > 70% (51). BCI systems 

can potentially be a viable communication alternative when eye-tracker systems fail to 

provide or does not provide effective communication, especially in late-stage ALS where 

there can be an inability to sustain controlled eye movements.

Our Bayesian dynamic stopping algorithm requires further development prior to being 

adapted for translational purposes. The spelling task was designed with no error correction 

to test the robustness of the error factor in the dynamic stopping algorithm. Correcting 

selection errors requires at least two selective actions: deleting the erroneous character and 

reselecting the correct character. It has been recommended that P300 spellers perform with 

accuracy levels >70% for practical communication, to account for erroneous character 

revisions (52), and thus participants D07, D06 and E23 may have accuracy levels that are 

too low for effective communication. Improving the accuracy levels of low performing users 

is a key next step which requires further P300 classifier development, potentially through 

more sophisticated language models, natural language processing tools like dictionary-based 

spelling correction (53), or predictive text. While language models and spelling correction 

can be incorporated into the algorithm without impact on the speller interface, predictive 

text must be integrated into the BCI system while taking into account the limited ability of 

target BCI users to navigate choices. One possibility is to modify the algorithm to include 
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predictive word options incorporated directly into the speller grid, as in Kaufmann et al. 

(43), to minimize spelling task difficulty as word selection occurs in a similar manner to 

character-based selection. Finally, the complication of spelling phrases or sentences, where 

word-space boundaries are important, must be considered. The spelling task designed in this 

study, like most P300-based BCI studies, involved single-word copy-spelling tasks where 

word length is known a priori; however, a more realistic system would test the algorithm on 

phrases or sentences. This will likely require additional consideration with the language 

model as to when to transition from word to space/punctuation to word boundaries, or how 

robust the system will be to errors and still be able to discern the user’s intended message. 

Further development of the language model, automatic error correction, and predictive text 

will likely lead to speller performance improvements and further the transition of the system 

from research lab to home.

5. Conclusion

Overall, we provide a viable BCI algorithm that has been validated in target BCI users with 

results indicating the potential advantage of using an adaptive data collection to improve 

P300 speller efficiency. Our adaptive algorithm has potential for translation into prototype 

BCI speller systems given the significant performance improvements over the current state-

of-art data collection method and the positive feedback from the participants with ALS.
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Fig. 1. 
P300 Speller Components. The user is presented with a grid of character choices. External 

electrodes are used to measure EEG signals from the scalp, which are amplified, filtered and 

digitized for signal processing. From electrode channels, time sample blocks (800ms) of 

EEG data following each flash are used to extract feature vectors to be used for 

classification. In the training run (broken arrow), feature vectors and their corresponding 

truth labels are used to train a classifier to distinguish between target ERP and non-ERP 

responses. During the test run, following each flash, feature vectors are extracted from post-

stimulus time sample blocks of EEG data and scored with the trained classifier weights. The 

scores are averaged over multiple flashes/sequences and the character with the highest 

combined classifier response is selected as the target. The selected choice is presented as the 

user’s intended choice.
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Fig. 2. 
Flowchart of Bayesian dynamic stopping algorithm (34). In the offline portion (top blue 

panel), EEG data from a participant training session are grouped into target and non-target 

responses and classifier scores are calculated using the SWLDA classifier weights. Kernel 

density estimation is used to smooth the histograms of the grouped scores to generate 

likelihood pdfs. In the online portion, character probabilities are initialized either from a 

uniform distribution or a language model. With each new flash, character probabilities are 

updated with Bayesian inference until threshold probability is met.
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Fig. 3. 
Evolution of character probabilities in the dynamic stopping algorithm. Prior to data 

collection, character probabilities are initialized. With each new flash, character probabilities 

are updated via Bayesian inference. After some flashes, the character probability distribution 

becomes sparser as a few likely target characters start to emerge. However, the probability 

mass starts to concentrate on one character, and ideally, the probability of the target 

character should converge towards 1. Data collection is stopped when a character’s 

probability attains a preset threshold value, and it is selected as the target character.
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Fig. 4. 
Character probability matrix for bigram language model. Probability matrix was developed 

from Carnegie Mellon University dictionary (39). Element (irow, jcolumn) in the grid denotes 

the conditional probability, P(Aj|Ai), that the user will spell the jth letter in the alphabet, Aj, 

given the ith letter, Ai, was previously spelled. Probability values are clipped at 0.5 for 

visualization.
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Fig. 5. 
Average participant ERP signals for electrode Cz. The average waveforms were obtained 

from training data across the three sessions.
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Fig. 6. 
Average number of flashes per character selection with static stopping, dynamic stopping 

(DS) and dynamic stopping with language model (DSLM) algorithms. The error bars 

indicate the maximum and minimum number of flashes/character selection used by each 

participant. There was no minimum number of flashes imposed. The maximum number of 

flashes possible to spell each character was 126 flashes due to a sequence limit of 7 

sequences/character with 18 flashes/sequence using the checkerboard paradigm on a 6 × 6 
P300 speller grid.
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Fig. 7. 
Comparison of performance measures between static, dynamic stopping (DS) and dynamic 

stopping with language model (DSLM) for (A) Task completion time, (B) Accuracy, (C) Bit 

Rate, and (D) Theoretical Bit Rate in ALS patient study. The accuracy is the percentage of 

characters correctly spelled by the user across test sessions. The maximum possible 

completion time, with pauses (3.5 seconds) between character selections, was 21 minutes 

due to a sequence limit of 7. Bit rate is a communication rate that takes into account 

accuracy, task completion time and the number of possible character choices of a 

communication channel. Theoretical bit rate excludes the time pauses between character 

selections and represents an upper bound on the user’s possible communication rate.
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Fig. 8. 
Survey results of algorithm preference for ALS study. The survey questions were asked of 

each of the ALS participants after each P300 speller test session in which the test order of 

the three algorithms (Static, DS, and DSLM) was randomized.
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Fig. 9. 
Session classifier comparison for static stopping. The average accuracy measured online 

shows the average within-session classifier performance across all three sessions. Offline 

analysis was used to compute the average accuracy for the inter-session classifiers.
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Table 2

Summary of performance measures comparing static, dynamic stopping (DS) and dynamic stopping with 

language model (DSLM) conditions.

Average Performance Measure Static DS DSLM p-value

Time to complete task (minutes) 21.00*▼ 10.47 ± 5.69* 10.37 ± 5.86▼ < 9×10-7

Accuracy (%) 79.44 ± 29.98 75.40 ± 27.16 76.39 ± 25.63 < 0.23

Bit Rate (bits/min) 6.44 ± 3.21*▼ 17.06 ± 11.78* 25.22 ± 19.56▼ < 3.15×10-4

Theoretical Bit Rate (bits/min) 7.13 ± 3.56*▼ 17.82 ± 15.54* 26.71 ± 21.21▼ < 7.1×10-7

- Repeated measures ANOVA was used to determine differences between algorithm means at 5% level of significance, i.e. a p-value < 0.05 
indicates at least two means are significantly different. When applicable, post-hoc multiple comparison tests (with Bonferonni adjustment) were 
performed to determine specifically the algorithms for which significant differences occurred.

- Symbols * or ▼ indicate pairs with significant differences.
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