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Standard economic thinking postulates that increased monetary incentives should increase performance. Human decision makers, however, frequently
focus on past performance, a form of reinforcement learning occasionally at odds with rational decision making. We used an incentivized belief-updating
task from economics to investigate this conflict through measurements of neural correlates of reward processing. We found that higher incentives fail to
improve performance when immediate feedback on decision outcomes is provided. Subsequent analysis of the feedback-related negativity, an early
event-related potential following feedback, revealed the mechanism behind this paradoxical effect. As incentives increase, the win/lose feedback
becomes more prominent, leading to an increased reliance on reinforcement and more errors. This mechanism is relevant for economic decision making
and the debate on performance-based payment.
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INTRODUCTION

Economic practice rests on the assumption that higher monetary in-

centives induce higher effort and improve performance. This view

underlies many employee compensation plans, from piece-rate pay

to performance boni. Incentive-based interventions have also been

proposed to improve school performance and to control harmful

habits (Gneezy et al., 2011). It can be safely said that the question of

whether monetary incentives increase performance is of fundamental

importance for our society.

Research in economics (Camerer and Hogarth, 1999) and psych-

ology (Jenkins et al., 1998) shows that increased incentives result in

increased performance in simple tasks. However, in general settings,

the link between incentives and performance is complex and might

break down at different points. First, monetary incentives might fail to

elicit higher effort, e.g. if extrinsic incentives crowd out intrinsic mo-

tivation (Gneezy and Rustichini, 2000; Ariely et al., 2009). Second,

increased effort might fail to translate into increased performance,

e.g. due to ceiling effects (Camerer and Hogarth, 1999). It has also

been shown that ‘choking under pressure’ (Baumeister, 1984;

Baumeister and Showers, 1986) might lead to a performance decrease

in spite of increased effort.

In the present research, we concentrate on decision making under

uncertainty and aim to demonstrate the existence of an additional,

surprising mechanism leading to counter-intuitive effects of incentives

on performance. We argue that reinforcement learning, a basic com-

ponent of human behavior (Thorndike, 1911; Sutton and Barto, 1998),

might cause increased incentives to produce more errors in many real-

life decision tasks. The reasoning is as follows. Previous research (see

below) has shown that the basic human tendency to repeat successful

actions and avoid those which led to failure can impair performance by

focusing attention on win/lose outcomes and away from the probabil-

ities of the relevant uncertain events. The objective of the present study

is to show that, whenever reinforcement processes conflict with ra-

tional behavior, increased incentives might fail to increase performance

because they make win/lose feedback more salient, leading to a stron-

ger reliance on faulty reinforcement.

THE TROUBLE WITH REINFORCEMENT

Optimal decision making under uncertainty requires the integration of

all available information. Rational decision makers should integrate

new information with previous beliefs through the use of Bayes’ rule

(Bayesian updating). However, many decisions lead to feedback in a

win/lose or success/failure format, e.g. whether a business strategy

leads to profits or losses, whether a medical treatment results in the

improvement of a patient’s condition, or even whether a household

appliance of a certain manufacturer performs satisfactorily or not. The

association of success or failure with the original decision creates a

tendency to rely on past performance as an indicator of future out-

comes. A given decision will tend to be repeated if it led to success in

the past, and to be changed if it led to failure. This ‘win-stay, lose-shift’

associative heuristic is the simplest form of reinforcement learning,

and might be a shortcut to optimal decisions in simple settings.

However, in a complex world, the outcome of a decision also delivers

information on underlying uncertain events. Previous research

(Charness and Levin, 2005; Achtziger and Al �os-Ferrer, 2014) has

shown that human decision makers frequently make use of a faulty

‘reinforcement heuristic’ which causes errors whenever a win-stay,

lose-shift decision scheme conflicts with optimal decision making.

The conflict between reinforcement learning and rational decision

making can be interpreted in terms of dual-process theories from

psychology, according to which human decision making is influenced

by competing processes of two broad types, automatic and controlled

(Kahneman, 2003; Strack and Deutsch, 2004; Evans, 2008). Automatic

processes, e.g. reinforcement, are fast, immediate, and require few cog-

nitive resources and no conscious intent (Schneider and Shiffrin, 1977;

Strack and Deutsch, 2004). Rationality in an economic sense prescribes

normatively optimal solutions for each decision task, often leading to

complex patterns which are closer to the idea of controlled processes.

The tendency to focus on past performance for the evaluation of

decisions is especially relevant for economic and managerial decision
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making (e.g. Ater and Landsmann, 2013), but is also relevant in other

domains as e.g. medical decision making (Diwas et al., 2013). It is

closely related to the outcome bias (Baron and Hershey, 1988), by

which the evaluation of decisions is often based on outcomes only,

neglecting other available information, and which has been shown to

have negative consequences for manager evaluation and learning in

organizations (Dillon and Tinsley, 2008). In such settings, successes

and failures are often associated with explicit monetary consequences,

and a natural question is whether increased incentives shift the balance

towards more rational decision processes, and hence increase perform-

ance by reducing errors caused by a reinforcement heuristic.

We argue that this might not be the case. Our hypothesis was that,

whenever reinforcement processes conflict with rational behavior,

increased incentives might fail to increase performance because they

make win/lose feedback more salient, leading to a higher reliance on

faulty reinforcement. To examine this hypothesis, we conducted two

studies on the effects of monetary incentives in a task in which optimal

decisions could be achieved by means of Bayes’ rule while application

of a ‘win-stay, lose-shift’ heuristic led to errors. In a first study, im-

mediate feedback on decision outcomes was made available, hence

naturally enabling reinforcement processes. In a second study, feed-

back on decision outcomes was not provided, hence avoiding the cues

on which reinforcement processes might act.

To directly measure automatic reinforcement in the brain, we ana-

lyzed event-related potentials (ERPs) associated with the processing of

decision outcomes. ERPs are brain potentials time-locked to specific

events (e.g. feedback) and are manifestations of brain activity occur-

ring in response to these events (Fabiani et al., 2000). Because of their

high time resolution, they are viewed as real-time indicators of psy-

chological processes underlying thinking, feeling, and behavior. ERPs

have already been used to investigate processes of economic decision

making, particularly the processing of incentives in simple gambling

tasks (Nieuwenhuis et al., 2004; Hajcak et al., 2006) and the role of

heuristics in Bayesian updating tasks (Achtziger et al., 2014).

We focused on the feedback-related negativity (FRN), an ERP eli-

cited by negative feedback (e.g. loss of money) on decisions, occurring

about 200–300 ms after feedback (Miltner et al., 1997; Holroyd and

Coles, 2002; Holroyd et al., 2003; Yeung and Sanfey, 2004). The FRN is

linked to neural mechanisms of reinforcement learning (Holroyd and

Coles, 2002; Holroyd et al., 2003), involving the basal ganglia and the

dopamine system (Schultz et al., 1997). The basal ganglia evaluate the

outcomes of ongoing behaviors against one’s expectations. If an out-

come is better or worse than anticipated, this information is conveyed

to the dorsal anterior cingulate cortex, which is involved in cognitive

control and has been identified as the most likely generator of the FRN

(Holroyd and Coles, 2002). Communication happens via a phasic in-

crease or decrease in the activity of midbrain dopaminergic neurons

(Montague et al., 2004). According to the Reinforcement Learning

Theory of the FRN (Holroyd and Coles, 2002), the FRN reflects a

negative reward prediction error�a large FRN is generated whenever

feedback indicates that an outcome is worse than expected. Due to its

early occurrence, the FRN is considered as an indicator of automatic

reinforcement learning, with its amplitude reflecting the decision

maker’s involvement in this process.

MATERIALS AND METHODS

Participants

Ninety-nine healthy, right-handed participants with normal or cor-

rected-to-normal vision were recruited from the student community

at the University of Konstanz (Germany), excluding students majoring

in economics. In exchange for participation, participants received a

show-up fee plus a monetary bonus that depended upon the outcomes

of the computer task. The individual sessions lasted �90 min. Both

studies were conducted in accordance with the ethical guidelines of the

American Psychological Association (APA) and the Declaration of

Helsinki; all participants signed an informed consent document

before the experiment started.

A total of seven participants were excluded from data analysis due to

a lack of understanding of the rules of the decision task. Seven further

participants had to be eliminated from data analysis due to an exces-

sive number of EEG trials containing artifacts and consequently too

few valid trials to ensure reliable FRN indices. Of the remaining par-

ticipants, 40 were in Study 1 (17 women and 23 men, ranging in age

from 19 to 29 years, M¼ 21.9, s.d.¼ 2.42) and 45 in Study 2 (27

women and 18 men, ranging in age from 19 to 28 years, M¼ 22.3,

s.d.¼ 2.26).

Procedure

Participants took part in the experiment individually assisted by two

female experimenters in the EEG laboratory. Each participant was

seated in a soundproof experimental chamber in front of a desk with

a computer monitor and a keyboard. The experiment was run on a

personal computer using Presentation� software 12.2

(Neurobehavioral Systems, Albany, CA). Stimuli were shown on a

1900 computer monitor (resolution: 1024� 768 pixels) at a distance

of about 50 cm. The two keys on the keyboard that had to be pressed

in order to make a decision (‘F’ key and ‘J’ key) were marked with glue

dots to make them easily recognizable. Stimuli were images of two urns

containing six balls each (image size 53� 32 mm) and images of col-

ored balls (blue and green, image size 14� 14 mm) shown on the

screen of the computer monitor. In order to reduce eye movements,

the distance between the two urns was kept to a minimum (21 mm).

After application of the electrodes, each participant was asked to

read through detailed instructions explaining the experimental set-

up. By means of an experimental protocol, the experimenter checked

that the central aspects had been comprehended and clarified any mis-

conceptions that the participant had with the rules or mechanisms. In

addition, participants were instructed to move as little as possible

during the computer task, to keep their fingers above the correspond-

ing keys of the keyboard, and to maintain their gaze focused at the

fixation cross in the center of the screen.

Each participant, while under supervision of the experimenter, com-

pleted three practice trials in order to become accustomed to the com-

puter program. These trials did not differ from the following

experimental trials except for the fact that outcomes were not re-

warded. After the practice trials, the Bayesian updating experiment

was started, during which the EEG was recorded. For the duration

of the computer task, the participant was alone in the soundproof

experimental chamber. When the experimental trials were completed,

the amount of money earned during the task was displayed on the

screen. Depending on the time the participant took for his/her deci-

sions, the experimental task lasted about 10-15 minutes. After the com-

puter experiment, participants filled out a questionnaire comprising

several questions about personality characteristics, skills, and demo-

graphic information. Finally, participants were thanked, paid, and

debriefed.

Decision task

The decision task, previously used by Charness and Levin (2005) and

Achtziger and Al �os-Ferrer (2014), captures the conflict between

reinforcement learning and rational decision making. Uncertainty is

represented by two urns, left and right, each containing six balls of

different colors (blue or green). Participants choose which urn a ball

should be randomly extracted from (with replacement), and are only
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paid for drawing balls of a fixed color (e.g. blue; winning colors were

counterbalanced between participants). After the outcome of this first

draw is revealed, the participant chooses an urn again, a new ball is

extracted, and the participant is paid again if the ball is of the winning

color. The distribution of balls in the urns is known but varies de-

pending on an unknown state of the world (up or down; Figure 1A).

The sequence of events for Study 1 is depicted in Figure 1B. The state

of the world is constant across both draws, and participants know the

prior probability of the states (½). The composition of the urns is such

that expected payoff for the first draw according to the prior is iden-

tical for both urns. For the second draw, the rational decision involves

choosing the urn with the highest expected payoff, given the posterior

probability updated from the prior through Bayes’ rule after observing

the color of the first extracted ball.

Participants repeated the two-draw decision 60 times. Following

previous studies (Charness and Levin, 2005; Achtziger and Al �os-

Ferrer, 2014), in the first 30 rounds the initial draw was forced, alter-

natingly from left or right, and for the remaining rounds it was free. In

this paradigm, many participants deviate from rational behavior by

following reinforcement in a ‘win-stay, lose-shift’ form, i.e. choose

the same urn as in the first draw if they won and switch otherwise

(Charness and Levin, 2005). However, after an initial draw from left,

Bayes’ rule prescribes to switch to the right urn if the draw was suc-

cessful, and stay if not. In this case both processes are in conflict

(prescribe different responses), and errors are called reinforcement

errors. After an initial draw from right, the opposite pattern is pre-

scribed. In this case both processes are aligned, and errors are usually

rare. Research on response times (Achtziger and Al �os-Ferrer, 2014) has

shown that reinforcement errors are faster than correct responses,

which is evidence for the automaticity of reinforcement in this

paradigm.

In Study 1, we varied the magnitude of incentives (high vs low)

to test for the effect of monetary incentives on reinforcement and

performance. We conjectured that increased incentives would lead to

increased reliance on reinforcement learning and fail to improve

performance. There were 20 participants in a high-incentive condition

(18 cents for each winning ball) and 20 in a low-incentive condition

(9 cents for each winning ball). On average, participants earned 8.66 E

(11.60 E, resp. 5.72 E per condition), in addition to a 5 E show-up

fee.

To confirm that the automatic reinforcement process counteracts

the effect of incentives, we conducted Study 2, in which reinforcement

learning was blocked. This was implemented by disentangling infor-

mation from win/lose feedback, using a removal-of-valence manipu-

lation which has been shown to reduce error rates in our paradigm

(Charness and Levin, 2005; Achtziger and Al �os-Ferrer, 2014). The

changes are as follows. All first draws are forced left and unpaid; the

color of a rewarded ball in the second draw varies randomly from trial

to trial and is revealed only shortly before the second draw. Hence,

feedback on the first draw (ball color) now provides non-affective

information about the decision outcome so that reinforcement pro-

cesses are not elicited automatically, but participants can still use the

information as an indicator of the distribution of the balls in the urns.

Since only every second draw was remunerated, in Study 2 the pay-

ment for a winning ball was set at 18 cents for the low-incentive con-

dition and 36 cents for the high-incentives one, keeping total

incentives comparable across studies. The low-incentive condition

consisted of 22 participants and the high-incentives condition of 23

Fig. 1 A. Distribution of balls in the urns. In state ‘up’, the left urn contains four blue and two green balls, and the right urn contains only blue balls. In state ‘down’, the left urn contains two blue and four
green balls, and the right urn contains only green balls. B. Sequence of stimuli and decisions in Study 1.
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participants. On average, participants earned 8.55 E (11.38 E, resp.

5.59 E per condition), in addition to an 8 E show-up fee.

EEG Procedures

EEG acquisition

Data were acquired using Biosemi Active II system (BioSemi,

Amsterdam, The Netherlands, www.biosemi.com) and analyzed

using Brain Electrical Source Analysis (BESA) software (BESA

GmbH, Gräfelfing, Germany, www.besa.de) and EEGLAB 5.03

(Delorme and Makeig, 2004). Data were acquired using 64 Ag–AgCl

pin-type active electrodes mounted on an elastic cap (ECI), arranged

according to the 10–20 system, and from two additional electrodes

placed at the right and left mastoids. Eye movements and blinks

were monitored by electro-oculogram (EOG) signals from two elec-

trodes, one placed approximately 1 cm to the left side of the left eye

and another one approximately 1 cm below the left eye (for later re-

duction of ocular artifact). As per BioSemi system design, the ground

electrode during data acquisition was formed by the Common Mode

Sense active electrode and the Driven Right Leg passive electrode. Both

EEG and EOG were sampled at 256 Hz. All data were re-referenced off-

line to an average mastoids reference and corrected for ocular artifacts

with an averaged eye-movement correction algorithm implemented in

BESA software.

FRN analysis

Stimulus-locked data were segmented into epochs from 500 ms before

to 1000 ms after stimulus onset (presentation of the drawn ball); the

prestimulus interval of 500 ms was used for baseline correction. In

Study 1, epochs locked to first-draw positive and negative feedback

were averaged separately, producing two average waveforms per par-

ticipant. In Study 2, epochs were locked to first-draw pooled feedback.

Epochs including an EEG or EOG voltage exceeding �100 mV were

omitted from the averaging, in order to reject trials with excessive

electromyogram (EMG) or other noise transients. Grand averages

were derived by averaging these ERP waveforms across participants.

Before subsequent analyses, the resulting ERP waveforms were filtered

with a high-pass frequency of 0.1 Hz and a low-pass frequency of

30 Hz. On average 24% (Study 1) respectively 22% (Study 2) of

trials were excluded due to artifacts.

To quantify the FRN in the averaged ERP waveforms for each par-

ticipant, the peak-to-peak voltage difference between the most negative

peak occurring 200–300 ms after feedback onset and the positive peak

immediately preceding this negative peak was calculated (Yeung and

Sanfey, 2004; Frank et al., 2005). This time window was chosen because

previous research has found the feedback negativity to peak during this

period (Miltner et al., 1997; Holroyd and Coles, 2002). In accordance

with previous studies, the FRN amplitude was evaluated at channel

FCz, where it is normally maximal (Miltner et al., 1997; Holroyd and

Krigolson, 2007). To create topographies of the FRN, peak-to-peak

differences were calculated at each electrode site using voltages at the

peak latencies identified for channel FCz. Positive values (indicating

the absence of a negative peak) were set to zero.

In the results section of the paper, we report on the FRN analysis for

Study 1 only. In Study 2, no FRN on first-draw feedback was expected

as no valence was attached to this draw. Indeed, the grand-average ERP

waveform at FCz on first-draw feedback revealed no typical FRN in the

time window 200–300 ms.

RESULTS

Behavioral Results

The average individual error rates for reinforcement errors were 58.3%

in Study 1 and 25.1% in Study 2. Figure 2 illustrates the error rates

disentangling win-stay and lose-shift errors and distinguishing partici-

pants with low and high incentives. The win-stay average error rate

decreased from 62.8% (Study 1) to 21.9% (Study 2). Lose-shift error

rates decreased from 52.4% (Study 1) to 28.4% (Study 2). Mann-

Whitney-Wilcoxon tests (MWW, one-sided) on individual error

rates confirmed a significant difference across studies for win-stay

(z¼ 4.68, P < 0.001) and lose-shift errors (z¼ 3.23, P < 0.001). Please

note that one-sided tests were used here because we had directional

hypotheses on the effect of incentives and treatment effects. In Study 1,

errors after a first draw from right, when both processes are aligned,

were far less frequent (average error rate of 9.29%), as in Achtziger and

Al �os-Ferrer (2014). Error rates remained stable over time

(see Supplementary Figure S1).

Fig. 2 Error rates in Studies 1 and 2 for reinforcement errors of the win-stay and lose-shift type, classified according to condition (high and low incentives). Error bars indicate one standard error from the
mean.
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Incentives did not significantly decrease error rates in Study 1

(MWW, one-sided; win-stay errors: low incentives 57.3%, high incen-

tives 68.3%; z¼ 0.78, P¼ 0.778; lose-shift errors: low incentives 52.9%,

high incentives 51.8%, z¼ 0.04, P¼ 0.484). In Study 2, however, error

rates were lower in the high-incentive condition (MWW, one-sided;

win-stay errors: low incentives 27.1% high incentives 16.9%, z¼ 1.99,

P < 0.05; lose-shift errors: low incentives 34.7%, high incentives 22.4%,

z¼ 1.68, P < 0.05). Hence, we find the expected link between higher

incentives and increased performance in Study 2, where the reinforce-

ment process was shut down, but this link is absent in Study 1, where

the reinforcement process was active.

ERP Analysis

To analyze whether automatic reinforcement learning is responsible

for the failure of incentives in Study 1, we analyzed the FRN following

first-draw outcomes. A substantial FRN was observed, being more

pronounced on negative (non-rewarded ball) than positive feedback

(rewarded ball; Figure 3A).

To investigate the relation between the FRN and error rates in Study

1, participants were classified as having low or high reinforcement

error rates using a median-split procedure, separately for each incen-

tive condition. To test for differences in the FRN, we conducted a two-

way analysis of variance (ANOVA) using the between-subjects factors

incentive magnitude (low vs high) and reinforcement error rates.

Because the FRN reflects a negative prediction error occurring on

negative feedback only (Holroyd and Coles, 2002), we included only

trials with negative feedback.

The ANOVA revealed a significant main effect of the reinforcement

error rate, F(1,36)¼ 4.44, P < 0.05, d2
¼ 0.11, i.e. the FRN was substan-

tially more pronounced for participants with high reinforcement error

rates (Figure 3B,C). However, this effect is due to the high-incentives

condition. Indeed, the interaction between reinforcement error rates

and incentives was significant, F(1,36)¼ 7.05, P < 0.05, d2
¼ 0.16, sup-

porting our main hypothesis. That is, the FRN amplitude was stronger

for high incentives for high-error participants. Separate t-tests for the

two incentive conditions confirmed this interpretation. For the high-

incentives group (Figure 3H,I), low-error-rate participants had a sig-

nificantly smaller FRN than those with high error rates (low rate:

M¼ 2.65, s.d.¼ 1.98; high rate: M¼ 8.80, s.d.¼ 7.42; t(7.671)¼ 2.29,

P < 0.05, one-sided). This effect was absent for the low-incentives con-

dition (Figure 3E,F; low rate: M¼ 3.96, s.d.¼ 3.24; high rate: M¼ 3.25,

s.d.¼ 2.69; t < 1). We remark for completeness that the main effect of

incentives without separating participants according to error rates

missed significance (Figure 3D,G; F(1,36)¼ 2.70, P¼ 0.109,

d2
¼ 0.07), but of course our hypothesis concerned the (significant)

interaction.

The results indicate that, for high incentives, there is a link between

reinforcement processes (revealed by the FRN) and error rates, which

is absent under low incentives. To confirm this link beyond the median

split, we analyzed the relation between reinforcement error rates and

the FRN. Since individual error rates take values in the [0,1] interval,

no linear relation should be expected, hence we started the analysis by

looking at Spearman’s correlation. This revealed a strong positive

correlation for the case of high incentives (�¼ 0.449, P < 0.05) but

no relation for low incentives (�¼ 0.047, P¼ 0.844). To confirm this

difference while further controlling for individual differences, we con-

ducted a regression analysis. Again, since the dependent variable is the

individual reinforcement error rate, which is bounded but is not a

censored variable, linear or tobit regressions are not appropriate.

We conducted a maximum-quasi-likelihood estimation for fractional

dependent variables with binomial distribution, logit link function, and

robust standard errors (‘fractional logit’; Papke and Wooldridge,

1996). The regressions, which control for gender, age, whether the

participant followed a statistics course, knowledge of probabilities,

self-reported mastery of difficult problems, and self-reported effort

confirm our results (Table 1; see Supplementary material for a discus-

sion of the controls). As an illustration, separate regressions show a

strong positive relation between FRN amplitude and reinforcement

error rate for high incentives (first column of Table 1), but not in

the case of low incentives (second column). Our main regression

(third column in Table 1) pools all the data to confirm that the dif-

ference is significant, that is, the interaction of incentives and FRN is

significant and positive, indicating a stronger correlation in case of

high incentives.

DISCUSSION

Increased monetary incentives do not always result in increased per-

formance. Research in economics and psychology has reported on a

number of phenomena which greatly complicate the mappings from

incentives to performance, including crowding out of intrinsic motiv-

ation (Gneezy and Rustichini, 2000; Ariely et al., 2009), ceiling effects

(Camerer and Hogarth, 1999), and choking under pressure

(Baumeister, 1984). The present research identified an additional

mechanism leading to counter-intuitive effects of incentives on per-

formance. Strikingly, the basic human tendency to repeat successful

actions and avoid those which led to failure (reinforcement learning;

Thorndike, 1911; Sutton and Barto, 1998) can impair performance by

focusing attention on win/lose outcomes and away from the probabil-

ities of the relevant uncertain events.

We explored this phenomenon in two experimental studies. In

Study 1, higher incentives failed to increase performance. Instead,

higher incentives produced a positive correlation between FRN amp-

litudes and error rates. Since the FRN is a neural correlate of reinforce-

ment learning (Holroyd and Coles, 2002; Holroyd et al., 2003), this

indicates that additional errors were created by an increased reliance

on reinforcement processes. In the low-incentive condition, there was

no correlation between FRN amplitudes and error rates. A natural

explanation is that, while incentives do have a positive effect on per-

formance, this effect is offset by automatic reinforcement learning,

leading to the observed relationship between FRN and reinforcement

error rates in the high-incentive condition. In Study 2, where the re-

inforcement process was blocked, the link between incentives and per-

formance was restored. We conclude that increased incentives might

induce errors, and the neural mechanism behind this link is a re-

inforcement learning process. Higher incentives make win/lose feed-

back more prominent and lead to a higher reliance on faulty

reinforcement.

Some previous brain imaging studies have looked at paradoxical

effects of large incentives. Mobbs et al (2009) and Chib et al. (2012)

examined performance in skilled tasks requiring eye-hand coordin-

ation and found that too high incentives led to performance decreases

(choking under pressure). Mobbs et al (2009) found that performance

reduction for large incentives was correlated with midbrain activation

as measured by the BOLD signal, and interpreted it as an overmotiva-

tion signal in the face of large incentives. Chib et al (2012) showed that

performance reductions correlated with ventral striatum deactivations

for high incentives. Both were associated with a behavioral measure of

loss aversion, which suggests that high incentives might be encoded as

a potential loss arising from failure. Both studies are qualitatively

aligned with ours in the sense that high incentives make the loss/

gain feedback more prominent. However, a direct comparison is not

possible because our paradigm uses a cognitive decision-making task,

while Mobbs et al (2009) and Chib et al (2012) use manual ability

tasks. Further, our Study 2, where higher incentives successfully
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improved performance, shows that choking under pressure does not

occur in our setting.

The insight that reinforcement processes might break the link from

incentives to performance is highly relevant for economic decision

making and the debate on performance-based pay. Reinforcement

processes are linked to extremely early brain responses and are very

difficult to control. An excessive increase of performance-based mon-

etary payments in e.g. managerial settings where similar decisions are

Fig. 3 Grand-average FRN as a function of feedback valence on the first draw, and corresponding topographies in Study 1. The nine panels correspond to the possible combinations of incentives (high, low,
pooled) and reinforcement error rates following a median split (high, low, pooled). Waveforms were filtered (0.1/15 Hz) for presentation.
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made frequently in a changing environment (lending and investment,

supplier contracts, hiring, personnel allocation) might lead to an

increased weight of reinforcement-based decisions (ex-post justified

as ‘managerial gut feeling’) instead of increasing performance. Our

research also points out the need for decision-making strategies

removing the emotional attachment generated by win/lose outcomes,

hence restoring the incentives-performance link.
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Table 1 Fractional logit estimations for reinforcement error rates

Variable High incentives Low incentives Joint regression

� SE � SE � SE

FRN (normalized) 0.531*** 0.159 �0.346 0.493 �0.439 0.487
SVD �0.898*** 0.266 0.855*** 0.310 0.283 0.228
Incentives (1¼High) 1.139 0.951
Incentives X FRN 1.151** 0.519
Incentives X SVD �0.509 0.313
Gender (1¼Male) �0.362 0.588 2.110** 0.916 �0.188 0.402
Age �0.261*** 0.098 �0.155*** 0.055 �0.185*** 0.067
Mastery 0.451** 0.229 1.208*** 0.236 0.717*** 0.150
Knowledge of Probabilities �0.176 0.142 �0.282** 0.122 �0.383*** 0.100
Statistics Course (1¼Yes) �1.016 0.674 3.604*** 0.650 0.934* 0.485
Effort 0.186 0.272 �1.960*** 0.401 �0.798*** 0.215
Cb 0.831 0.730 �0.754* 0.421 �0.162 0.463
Constant 4.448* 2.708 7.935*** 2.279 6.721*** 2.057
pseudo-log likelihood �7.002 �5.989 �14.731

The individual FRN is the normalized FRN after negative feedback. Cb is counterbalance (1 if the
winning color was blue). SVD is the subjective (self-reported) valence difference between the
winning and the losing colors. Mastery and knowledge of probabilities (self-reported) were measured
in a 0–10 scale. Statcourse is a dummy indicating that the participant reported having followed a
statistics course. Effort was the self-reported effort invested in the task (0–10). N¼ 20 for low
incentives, N¼ 19 for high incentives (1 subject dropped due to missing questionnaire data).
*P < 0.1. **P < 0.05. ***P < 0.01.
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