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AIM
Despite the continuous endeavour to achieve high standards in medical care through effectiveness measures, a quantitative framework for
the assessment of the benefit–risk balance of new medicines is lacking prior to regulatory approval. The aim of this short review is to
summarise the approaches currently available for benefit–risk assessment. In addition, we propose the use of pharmacokinetic–
pharmacodynamic (PKPD) modelling as the pharmacological basis for evidence synthesis and evaluation of novel therapeutic agents.
METHODS
A comprehensive literature search has been performed using MESH terms in PubMed, in which articles describing benefit–risk
assessment and modelling and simulation were identified. In parallel, a critical review of multi-criteria decision analysis (MCDA) is
presented as a tool for characterising a drug’s safety and efficacy profile.
RESULTS
A definition of benefits and risks has been proposed by the European Medicines Agency (EMA), in which qualitative and quantitative
elements are included. However, in spite of the value of MCDA as a quantitative method, decisions about benefit–risk balance continue
to rely on subjective expert opinion. By contrast, a model-informed approach offers the opportunity for a more comprehensive eval-
uation of benefit–risk balance before extensive evidence is generated in clinical practice.
CONCLUSIONS
Benefit–risk balance should be an integral part of the risk management plan and as such considered before marketing authorisation.
Modelling and simulation can be incorporated into MCDA to support the evidence synthesis as well evidence generation taking into
account the underlying correlations between favourable and unfavourable effects. In addition, it represents a valuable tool for the
optimization of protocol design in effectiveness trials.
Benefit–risk analysis: the current
situation

Despite the recognized implications of unmet medical
needs and challenges in dealing with new diseases, the
current regulatory framework in the European Union has
made drug approval a demanding task. This situation is
compounded by emerging safety findings, which have
led to post-approval withdrawals of more than a dozen
products with high therapeutic potential in the past
decade [1, 2]. Such a landscape places regulators, clinical
scientists and drug developers with yet another dilemma:
how to balance rapid access to new drugs vs. gathering rel-
evant data on efficacy and safety [3]? Currently, regulators
make these decisions in an isolated, fragmented and, to a
large extent, subjective manner.

In principle, the decision to approve a new medicinal
product is based on the assumption that a systematic review
of all available data provides an accurate, unbiased picture
of a drug’s efficacy and safety. This assumption may,
however, not be true for the large majority of drugs. The
evidence generated to support regulatory filing does not
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always account for the overall heterogeneity of the target
population, nor incorporates the impact of treatment on
disease progression or external confounding factors on
treatment response. Moreover, one needs to acknowledge
that the information gathered in the context of pivotal
clinical trials may not provide evidence that dose selection,
dosing regimen and treatment duration are truly optimal.
In fact, poor dose rationale has been a common denomi-
nator in numerous publications describing safety issues
and attrition in phase II and III trials.

Undoubtedly, efficient gathering and use of data are
required to answer the clinical questions that arise with
new drugs or therapeutic interventions. Among other things
one needs to distinguish effectiveness from clinical
response. In addition, it is crucial to understand whether
there is added value, as compared with other treatments.
These are multidimensional questions which require clear
understanding of how data will be generated and how ben-
efit and risk will be quantified. Whereas different theoretical
considerations and techniques have been used by health
technology assessment agencies, a clear framework for
benefit–risk assessment is still lacking during drug develop-
ment and subsequently at the time of regulatory approval.
Consequently, decision making at important milestones in
R&D and at submission remains empirical, inconsistent and
more often than not, non-transparent [1, 4–8].

In the past years awareness about the aforementioned
issues has increased significantly. Several projects [9–13]
have been funded to evaluate some of the available meth-
odologies and better understand the requirements for a
more systematic approach to benefit–risk analysis. In this
context, the work of the Committee for Medicinal Products
for Human Use (CHMP) of the European Medicines Agency
(EMA) is particularly relevant. Starting in 2006, a working
group was installed to examine the issue and provide rec-
ommendations about ways to improve benefit–risk assess-
ment, including aspects such as transparency, consistency
and communication between stakeholders [9]. Among the
techniques evaluated by the working group, quality-
adjusted life years (QALYs) and number needed to treat
(NNT) were found to be the most used concepts in clinical
practice, very likely due to their simplicity [9, 14]. However,
these methods are imprecise in nature and as such lack
some important features that allow one to make appropri-
ate inferences about quantitative differences, especially
when comparing treatment options. For example,
preventing a stroke is of greater value than preventing a
headache. Thus, treatments with dramatically different
overall benefit may have similar NNTs. Also, the NNT does
not incorporate the type of treatment or treatment ad-
verse effects. A different statistic, the ‘number needed to
harm’ (NNH) must be calculated to capture the risk of
side-effects. There is a clear need for more quantitative
methodologies, which enable better integration of data
and facilitate the evaluation of complex clinical scenarios
that arise in real life.
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Most of these complexities seem to have been ad-
dressed by the development of multi-criteria decision
analysis (MCDA), an integrative approach that has gained
interest from the scientific and clinical community over
the last few years. From 2009 to 2011, data can be found
for nine products which have been evaluated by MCDA
alone, or in combination with simulation, decision trees
or Markov modelling [15].

In this review, a brief overview of different tech-
niques for the evaluation of benefit and risk is pre-
sented, with especial focus on the contribution of
quantitative methodologies to the development and
approval of novel medicines. Two main topics are
discussed initially. First, the definition of benefit–risk
balance and the impact of qualitative and quantitative
methodologies on the assessment of benefit and risk
during the drug development process [7]. In addition,
we consider further refinement of the approaches
used to characterise benefit–risk balance by integrating it
with pharmacokinetic–pharmacodynamic (PKPD) model-
ling. It is envisaged that modelling and simulation may
account for correlations between therapeutic response
and adverse events, providing a biologically plausible
basis for the analysis of benefit and risk data. The avail-
ability of such an integrated approach may enable better
choices regarding treatment selection and dose ratio-
nale, in particular when dealing with special populations
or conditions involving small numbers of patients such as
rare diseases.
Methods

Initially, an exploratory literature search was performed
to retrieve relevant publications about the use of quan-
titative approaches for benefit–risk assessment and
their impact on decision making in drug development.
Seven publications [1, 4, 14, 16–19] were available prior
to the exploratory phase, which contributed to the iden-
tification and selection of 58 articles, books and reports.
From a pool of 65 publications 21 were found which fo-
cused on quantitative methodologies (see Table S1).
These data were used as a basis for a systematic litera-
ture search within PubMed, in which the name of the
methodology was combined with relevant terms, such
as benefit–risk assessment or analysis. A total of 253
publications from 1990 to 2014 were identified, of
which 231 were excluded based on title and abstract in-
formation. The resulting 22 publications, together with
the previous 65 publications from the exploratory
search were then reviewed. During the implementation
of the proposal, 23 publications were included based on
external advice. Altogether, 110 publications were
reviewed. The steps related to the literature search
and data abstraction are summarised in the diagram in
Figure 1.



Figure 1
Flow diagram describing the literature search strategy

Integrating PKPD relationships into benefit–risk analysis
Definition of benefit and risk

An important aspect of any benefit–risk analysis is the
definition of both terms, and more importantly, how to
measure or quantify them. Benefit is usually described as
a potential effect that moves the condition of the patient
from disease towards health, within a given (pre-defined)
context [20–23]. Risk is the opposite, a potential effect that
moves the condition of the patient from health towards
disease, also within a pre-defined context (Table 1). To
measure both possibilities, at least two concepts play an
important role: the magnitude or severity of the effect
and its incidence or frequency. Benefit or risk is then esti-
mated by the product of these concepts, possibly multi-
plied by the duration [21] or the reliability of the data [23].

Currently a slightly different definition of benefit and
risk has been adopted by the EMA. They are defined, re-
spectively, as favourable and unfavourable effects and are
at the same time coupled to the uncertainty of both effects
(Figure 2) [14]. Whereas the reasoning seems intuitive, this
situation represents a mathematical challenge, i.e. integrat-
ing terms or factors that are measured in incommensurable
units and in different time scales. Any reliable product of
these factors imposes data manipulation or transformation
to ensure that all terms are expressed in the same unit and
time scale. However, the illusion of this mathematical preci-
sion tends to hide another important conceptual challenge:
what is acceptable [22]? This depends on the perception
and values of the stakeholders, i.e. the regulator, the clinical
experts and the patients. Procedures have been devised to
ensure that perceived benefits and risks are quantified in a
systematic manner. This process is known as prior
elicitation and involves expert judgment. It is aimed at
making subjective opinions more consistent, comprehen-
sive and transparent [20, 23, 24].
Current approaches

The assessment of benefit and risk has evolved in a rather
empirical manner and still relies on subjective criteria, in that
perceived benefits and risks depend on the context in which
the treatment is used, i.e. which standard of care is set as
reference and whether short and long term consequences
of the intervention are considered against the progression
of disease and any correlated co-morbidities or complica-
tions. Irrespective of the lack of consensus on how to assess
and weight any measures associated with benefit and risk,
one needs to consider two different dimensions of the
problem. First, a qualitative approach can be used that
provides explicit contextualization of the problem. It is cru-
cial to understand fully the main issues before any quantita-
tive analysis starts, i.e. to identify the factors that contribute
and/or determine benefit and risk as well as capture the
views and differences of opinion from different stakeholders,
especially with regard to the perception of risk, in terms of its
incidence, severity, chronicity and reversibility.

Whilst quantitative methods can be applied indepen-
dently from any previous qualitative evaluation, the use
of such a stepwise approach may support the identifica-
tion of suitable measures or criteria in terms of their clin-
ical relevance. However, the use of quantitative methods
imposes the availability of sufficient data for those
endpoints and measures which have higher weights. It
also imposes clear understanding of the trade-offs
between benefit and risk, especially of the correlations
between outcomes. Whereas these requirements seem
obvious, little attention has been paid to the biological
or pharmacological basis that determines treatment
outcome, i.e. how exposure–response (PKPD) relation-
ships underpin favourable and unfavourable events.

The next paragraphs will provide an overview of the
available techniques, including recent examples in which
benefit and risk have been evaluated in the context of
regulatory approval and treatment optimization. Addi-
tional details of the methodologies can be found in the
supplementary material (Supplementary Figures S1 and
S2 and Supplementary Tables S1 and S2).
Qualitative approaches
A qualitative framework is essential for characterising
benefit and risk, as it structures the problem and its con-
text, before any measurement is actually performed. It
provides clarity about the possible outcomes as well as
the input and the process in between, for example, by
defining which decision criteria are to be used. This
framework ensures that no alternative measures or
Br J Clin Pharmacol / 80:5 / 981



Table 1
Glossary of terms

Term Definition

ADE Adverse drug effects

Bayesian statistics Probability-based statistics, concerning parameter values derived from distributions

Benefit Favourable effect, accounting for the uncertainty of that effect (as defined by the EMA)

BILAG-index British Isles Lupus Assessment Group, a measure for severity of SLE

BRAT Benefit Risk Action Team, operating under PhRMA

CHMP Committee for Medicinal Products in Human Use, operating under the EMA

Decision tree Method to aid decision making by visualizing different scenarios as a series of events, and by calculating outcome based on assigned

probabilities of the events

DSD Death or serious disabled, measure of estimated outcome in the swine flu case study

EMA European Medicines Agency

FDA Food and Drug Administration [USA]

H1N1 Influenza virus categorized by surface proteins hemagglutinin and neuraminidase (in this case swine flu)

In silico Experiment in a computer, including estimation and prediction of virtual experimental conditions or scenarios

In vitro Experiments in cell culture, tissue or organ preparation

In vivo Experiment in animals (preclinical)

IPRED Individual prediction, possible outcome of PKPD modelling prediction variables and parameter values of an individual patient

Markov model Quantitative method based on parameters describing states and transitions between states

MCDA Multi criteria decision analysis, quantitative method analysing single weighted components of a problem before reassembling it to

aid a final decision

NDA New drug application, to be submitted to the FDA for approval before market access

NNH Number needed to harm, measure of the number of patients that has to be treated to yield a single adverse effect

NNT Number needed to treat, measure of the number of patients that has to be treated to prevent a single occurrence

PhRMA Pharmaceutical Research and Manufacturers of America

PKPD Pharmacokinetics and pharmacodynamics, two disciplines within pharmacology concerning what the body does to the drug and what the

drug does to the body, respectively

PrOACT-URL Qualitative framework by Hammond, Keeney and Raiffa, consisting of Problem, Objective, Alternatives, Consequences, Trade-offs,

Uncertainty, Risk tolerance and Linked decisions

QALY Quality-adjusted life year, measuring the outcome of therapy by the adjustment of a quality life year, in which the patient can fully

function (economically)

Risk Unfavourable effect, accounting for the uncertainty of that effect [as defined by the EMA]

RV-NNT Relative value adjusted number needed to treat, a type of NNT accounting for the patient preference as value function

SLE Systemic lupus erythematosus, an autoimmune disease

SLEDAI DLE Disease Activity Index, a measure of severity of SLE

TURBO Transparent Uniform Risk–Benefit Overview

Favourable effects Uncertainty of 
favourable effects

Unfavourable effects Uncertainty of 
unfavourable effects

Figure 2
EMA’s definition of benefit and risk, where favourable effects are bene-
ficial to the population and unfavourable effects are undesirable for the
population. Uncertainty is caused by variation, biased data, limitations
of data or methodology etc. Based on [14]
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982 / 80:5 / Br J Clin Pharmacol
trade-offs are overlooked during the subsequent steps,
i.e. during which quantitative methods are applied.
The Pharmaceutical Research and
Manufacturers of America (PhRMA)
PhRMA assigned a Benefit Risk Action Team (BRAT) to
create a decision framework. Their framework consists of
six steps which are developed and implemented prior to
regulatory approval. Before phase III, focus is given to the
definition of a decision frame, identification of relevant
outcomes, identification of the data sources and customi-
zation of the framework for benefit–risk analysis. At the
time of filing and New Drug Application review, attention
is paid to the outcome itself as well as to the quantification
and interpretation of key benefit–risk metrics [13, 14]. It
should be noted that this framework seems to end with
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the decision and defence after which a drug is approved or
rejected. It does not involve post marketing data, which are
known to potentially change benefit–risk balance.

EMA PrOACT
The qualitative framework suggested by the EMA is
based on Hammond’s, Keeney’s & Raiffa’s PrOACT
approach [25], combined with the less known addition
of the so-called URL: problem, objective, alternatives,
consequences, trade-offs, uncertainty, risk tolerance and
linked decisions. In this way, the problem is clearly struc-
tured and information can be gathered in a consistent
way to assist the decision-making process [14]. Despite its
general nature, the use of PrOACT-URL has proven its
success since 1999. In contrast to PhRMA BRAT, the
inclusion of uncertainty paves the way for amore statistically
sound implementation of the approach.

Quantitative approaches
The use of a qualitative framework for assessing benefit and
risk may be sufficient when complexity is minimal. This is
however not the case in drug development where very com-
plex scenarios arise. To include all data and present a sound
overview of all alternatives, consequences and trade-offs, as
well as differentiate between objectives otherwise consid-
ered comparable, one or more quantitative techniques are
required [1, 4, 11, 14, 16, 17, 21, 23]. A qualitative framework
will still be essential to define the problem and the objec-
tives of the analysis and as suchwill precede the implemen-
tation of a quantitative benefit–risk analysis.

In the past decades several methodologies have been
developed and used to evaluate the benefit–risk balance of
a number of drugs. Thesemethodologies present completely
different features and their use has been tailored for very
specific cases, contributing to an increase in the number of
options available when starting an analysis. These specific-
ities have however made them unsuitable for subsequent
application in a general benefit–risk framework. An overview
of these methods [1, 4, 16–19,21, 23, 26–107], including
advantages and limitations, is provided in Supplementary
Table S1. By contrast, multi-criteria decision analysis (MCDA)
in combination with decision trees has been suggested as a
plausible quantitative approach that embeds the needed
features for a generalized and structured framework for
benefit–risk evaluation.

MCDA presents several advantages compared with
other methodologies. The main one is the simplification
of a complex problem by breaking it into smaller pieces
and making them comparable by weighting their scores
on a single scale. Normalizing the different criteria allows
comparison on the same ground. In addition, the uncer-
tainty carried by the subjective component, is further
reduced by the possibility of performing a sensitivity
analysis, in which the model provides different outcomes
depending on weights variation. There are, however, still
limitations. Given the complexity of the scenarios
analysed, it is often expected to observe correlations be-
tween the endpoints considered. This is not yet taken into
account within the methodology, where each endpoint is
analysed in an independent manner. In the systemic lupus
erythematosus (SLE) case, which is discussed in the supple-
mentary material, the immunosuppressive effect of
Benlysta and the incidence of infection might very well
be correlated in a non-linear way. This might influence
the outcome, leading to biased results.

Furthermore, it is a matter of concern how the input
data for the decision model is provided. This is not a
direct limitation of the methodology, but of how the
analysis is implemented. Many quantitative methods
are limited by statistics and inclusion of uncertainty, con-
founding factors or limited data. The latter concerns both
the experimental data, as well as preference values of
different stakeholders required for the weighting criteria
[1]. MCDA offers a statistically sound method, where
probability and uncertainty are combined with prefer-
ence. Its limitation lies in the complexity of the data
required, which are often unavailable, as well as in the
subjective judgement that is required and the depen-
dence on risk perception differences. Besides, sequential
decisions require data gathering over a longer time
period, especially in case of conditional approval [108].

Despite the aforementioned advantages, MCDA, like
any other quantitative method, still relies on subjectivity.
This is partly overcome by structuring the analysis in a
transparent, consistent manner and by incorporating
communication with different stakeholders as a critical
step [14, 15]. In fact, communication with different stake-
holders is also accounted for in NNT/NNH. Although
applicability of the former to benefit–risk assessment in
general is very limited because of the lack of preference
data, as well as limited statistical power [59, 60], it high-
lights an important issue in communication. For instance,
individual patients seem unable to estimate objectively
their own chances. In a distribution of 1 out of 20, all 20
patients expect to be the exception, when it comes to a
beneficial effect, but not in case of an adverse effect. As a
result, the magnitude of risk is misperceived, as the chances
of common consequences are underestimated and those of
rare consequences are overestimated [8]. This problem of
risk perception is essential when considering including
different stakeholders. Although MCDA does present data
in a transparent and consistent way, it is not a technical pro-
cess, but an effective design of the social processes required
for subjective weighting (see Supplementary Figure S3) [43].
Integration of PKPD modelling into
benefit–risk analysis

Modelling and simulation techniques represent an invalu-
able resource for drug development. Of relevance for
benefit–risk analysis is the opportunity that PKPD
Br J Clin Pharmacol / 80:5 / 983
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modelling offers in terms of describing variability in a
parametric manner. This allows the characterisation and
prediction of the time course of treatment response at an
individual level under physiological and pathological
conditions [109, 110]. The current emphasis on mechanism-
based modelling has also the advantages of increased
understanding about drug-specific and system-specific
properties such as target site distribution, binding,
pharmacokinetic interactions, pharmacodynamic inter-
actions, homeostatic feedback, tolerance and disease
progression [111–113]. In addition, model-based simulations
can provide insight into conditions that may not have
been tested experimentally, unravelling patterns or
responses that may represent clinically relevant changes
in the benefit–risk balance.

From a technical, scientific point of view, modelling and
simulation allows for the integration of data and know-
ledge in a continuous, objective and reproducible manner,
thereby enhancing the quality of decision making [110].
Over the last decade, the regulatory perception of the role
of modelling and simulation in drug development has
changed. Its relevance in clinical development has been
acknowledged and processes are in place to support a
more structured assessment of the use of modelling and
simulation in the regulatory approval process [111, 114].

In the next paragraphs we describe how the integration
of modelling and simulation can be advantageous to
further improve the existing framework for the evaluation
of benefit–risk balance, as suggested by the EMA. To this
purpose, we consider three main aspects, namely, 1) the
optimization of evidence that is generated by clinical trials,
2) the evaluation of virtual scenarios and 3) mechanism-
based multivariate analysis. The optimization of the input
data available for decision making entails not only the inte-
gration of data from different trials, but also the use of op-
timality concepts for the design of prospective clinical
studies. The availability of an integrated model allows for
the creation of virtual experiments, which provide a more
coherent, biologically plausible basis for performing inter-
polations and extrapolations. In contrast to current practice,
multivariate modelling allows one to establish correlations
between therapeutic and adverse events of interest, which
are often linked by the very pharmacological nature of the
treatment. This overview is complemented by a brief dis-
cussion of the issues associated with prior elicitation, which
could be better guided by the use of models, rather than
empirical distributions. As such, a model-based approach
could provide somewhat less subjective weighting and
preferences.

Optimizing input dataModelling and simulation techniques
can be used to optimize the input data available for the
benefit–risk analysis. PKPD modelling allows the creation of
a framework that can be refined and improved throughout
the development process, by integrating data from
different sources as well as by pooling the information
984 / 80:5 / Br J Clin Pharmacol
gathered across different phases of development. This
iterative process allows one to understand and distinguish
drug-specific from system-specific properties. Most
importantly, it enables the identification of sources of
variation and clinical implications thereof. Among other
things, benefit–risk analysis could be performed with and
without the residual variability or in by inclusion of
variability in a stepwise manner. In other words, these
procedures increase the value of data whilst decreasing
uncertainty [111]. On the other hand, modelling and
simulation can also be used to optimize the design of
prospective clinical trials. The quality of the information
collected can be considerably improved through optimal
design [115–117], enabling the generation of more
informative data input for the decision analysis. This is
particularly important in special populations where limited
evidence is generated, such as in the case of paediatric and
rare diseases [111, 118, 119]. The assumptions about the
informative value of data obtained from randomized
clinical trials are often overlooked. It is assumed that the
output or results from a trial are a consequence of the drug
treatment, rather than a consequence of the interaction
between drug properties, disease processes, patient
characteristics and experimental protocol.

Evidence from virtual scenarios A second aspect that could
be beneficial for benefit–risk assessment is the use of PKPD
modelling for simulation purposes. The availability of a
qualified or validated model may provide the opportunity
to perform virtual experiments. This allows one to explore
scenarios that have not been evaluated during clinical
development. Not only efficacy and safety data can be
considered, but also the influence of covariates such as
disease severity, co-medications, co-morbidities and drug
compliance can be evaluated. By inter- or extrapolating,
new input data can be generated for a different
population or different dosing regimens. The results from
these simulations can be subsequently used as input for
benefit–risk analysis. As mentioned previously, scenario
analysis by modelling and simulation may have an even
larger impact when considering special populations and
rare diseases [119–122].

Correlatingmultiple endpoints Thus far we have highlighted
the fact that PKPD modelling may reduce the
uncertainty in a benefit–risk analysis by optimizing the
information used as input. Modelling and simulation
techniques may overcome another important
limitation of benefit–risk methodologies, namely the
assumption that favourable and unfavourable events
are clinically, pharmacologically and statistically
independent from each other. This assumption violates
our current understanding of the nature and cause of
adverse events. Hence, any analysis involving multiple
endpoints in a multidimensional system will have to
account for the correlations between them. Moreover,
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we believe that these correlations are often non-linear,
requiring some advanced statistical techniques to ensure
that interactions between variables and covariate factors
are captured accordingly. Multidimensional models can
be used to assess quantitatively how endpoints are
linked together and how response changes with
changes in drug exposure [26].

Advantages from the integration of modelling and
simulation techniques to benefit–risk analysis are not
only conceptual. From a technical perspective, PKPD
models may contribute to bias reduction during prior
elicitation. In addition, it may provide a stronger basis
for sensitivity analysis. Although weighting is a subjec-
tive procedure, expert opinions can be modelled using
prior elicitation. Moreover, if the uncertainty associated
with the weights is assessed, it is possible to factor in
the impact of each expert’s opinion on the overall
analysis. Other possibilities exist to weight the experts
input, by scaling their precision based on training and
experience, or by assigning them to groups of thought
that are more or less representative of the common
opinion [28, 64]. PKPD models describing the underlying
disease processes as well as the impact of treatment over
time through virtual scenariosmay facilitate prior elicitation,
providing systematic, consistent input for the evaluation
of weights and uncertainties.

An example of the impact of modelling and simula-
tion concepts on benefit–risk analysis is given in Table 2.
Discussion and conclusion

In this short review, an overview was given of the method-
ologies currently used for the evaluation of benefit–risk
balance. Growing consensus suggests that a combined
approach involving qualitative and quantitative methods
is required to ensure meaningful evaluation and interpreta-
tion of benefit and risk data. In fact, this is recommended
by the EMA, which suggests the use of PrOACT-URL and
MCDA.

Even though a more structured approach is still lack-
ing for benefit–risk analysis, MCDA seems to address
the need for a multidimensional characterisation of the
scenarios that arise in drug development and in the clin-
ical practice. One of its limitations is the way uncertainty
is handled. There is a need to reduce further the uncer-
tainty or preferably to capture it accordingly. Attempts
have been made to construct stochastic multi-attribute
models, also known as stochastic multi-criteria accept-
ability analysis (SMAA), which incorporates uncertainty
regarding the criteria measurements. Among other
things, SMAA provides the possibility to include the sam-
pling variation. It also allows the characterisation of typi-
cal trade-offs supporting a drug benefit–risk profile
without eliciting the (exact numerical) preferences be-
forehand [123]. An analysis without preference
information is valuable when preferences cannot be elic-
ited or when the potential benefits of a drug have to be
assessed across a wide range of preferences. This latter
situation occurs, for example, when different subgroups
of patients are considered. However, stochastic methods
do not eliminate discrepancies between perceived risk or
benefit and their biological and pharmacological plausi-
bility. Undoubtedly, integration of mechanism-based
modelling to multi-criteria decision methods will en-
hance our ability to characterise benefit–risk balance. It
will provide indirect evidence from virtual scenarios in a
more effective manner than sensitivity analysis and other
statistical techniques have allowed for. Such an inte-
grated approach will also represent an advancement for
the field of modelling and simulation, which is often re-
stricted to single endpoints, facilitating the assessment
of causality and correlation between favourable and
unfavourable events [124].

Unfortunately, there are very few examples in the pub-
lished literature that present in a clearmanner the concepts
discussed throughout this manuscript. It is worth mention-
ing two publications which provide an excellent illustration
of these concepts. The work carried out by Bender et al.
[125] shows how exposure-response relationships deter-
mined by modelling of multiple endpoints can be used to
explore and assess benefit–risk across different dosing reg-
imens in the context of oncology trials. In the sameway, the
work by Pink et al. [126] shows the feasibility of integrating
modelling and simulation with pharmacoeconomic analy-
sis to inform decision making throughout the whole drug
development process and possibly achieve personalized
evaluations. Both examples support the fact that PKPD rela-
tionships are crucial in the assessment of a drug’s efficacy
and safety profile and should not be omitted when
performing a benefit–risk appraisal.

In addition, we propose here the use of PKPD model-
ling as the pharmacological basis for evidence synthesis
and evaluation of novel therapeutic agents at the time
of regulatory approval. Whilst network meta-analysis
(NMA) may be invaluable in the post-marketing authorisa-
tion phase, PKPD becomes crucial for a comprehensive
benefit–risk evaluation when limited data are available.
Various methodologies can be used for the purpose of ev-
idence synthesis, and among them NMA has been widely
used in benefit–risk analyses to combine all available evi-
dence [127, 128]. These approaches rely, however, on a
very large amount of information and as discussed previ-
ously depend only on the evidence generated. Moreover,
in contrast to a model-based approach, they do not war-
rant understanding of the underlying PKPD mechanisms
and therefore are not suitable for prospective evaluation
of virtual scenarios through Clinical Trial Simulations
and/or Not-in-trial Simulations [129].

In conclusion, it should be highlighted that models do
not make decisions, people do. Ultimately, patients,
clinicians, drug developers and regulators need to
Br J Clin Pharmacol / 80:5 / 985
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Integrating PKPD relationships into benefit–risk analysis
acknowledge that decisions are better made when data
are presented and communicated in a clear, systematic
manner. PKPD modelling can complement evidence gen-
eration by providing stakeholders the opportunity to ex-
plore conditions that have not been experimentally
tested at the time of the benefit–risk analysis. Regardless
of the limitations models and simulation scenarios may
have, model-based evaluation is likely to outperform gut
feeling, which often prevails in clinical decision-making.
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