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Abstract

Historically, difficulties in analyzing treatment outcome data from open enrollment groups have 

led to their avoidance in use in federally-funded treatment trials, despite the fact that 79% of 

treatment programs use open enrollment groups. Recently, latent class pattern mixture models 

(LCPMM) have shown promise as a defensible approach for making overall (and attendance class-

specific) inferences from open enrollment groups with membership turnover. We present a 

statistical simulation study comparing LCPMMs to longitudinal growth models (LGM) to 

understand when both frameworks are likely to produce conflicting inferences concerning overall 

treatment efficacy. LCPMMs performed well under all conditions examined; meanwhile LGMs 

produced problematic levels of bias and Type I errors under two joint conditions: moderate-to-

high dropout (30–50%) and treatment by attendance class interactions exceeding Cohen's d ≈.2. 

This study highlights key concerns about using LGM for open enrollment data: treatment effect 

overestimation and advocacy for treatments that may be ineffective in reality.
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Introduction

It is well-known among substance abuse treatment researchers and practitioners alike that 

the majority of psychosocial interventions for the treatment of drug abuse and alcoholism 
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treatment are delivered in group settings. In spite of the widespread use of therapy groups in 

substance abuse and alcoholism treatment, there has been a relative dearth of rigorous 

empirical research of group therapy for substance abuse (Weiss, Jaffe, de Menil & Cogley, 

2004). Indeed, standing in stark contrast to the way treatment is delivered in community 

practice (see Klostermann, Fals-Stewart, & Morgan-Lopez, 2008), the portfolio of federally-

funded research on psychosocial interventions for substance abuse has been dominated by 

studies of interventions delivered in a one-on-one counseling format (NIDA, 2003).

In response to the lack of research on group therapy, both NIDA and NIAAA sought to 

stimulate group therapy research by (a) the release of specific Requests for Applications 

(RFAs) which were explicitly geared towards group therapy research (e.g., RFA-

DA-04-008; NIDA/NIAAA, 2003a) or b) including group research into updates of Program 

Announcements (PAs) that had been previously released (e.g., PA-03-126; NIDA/NIAAA, 

2003b). As a result, there have been more research studies funded that have focused on 

group therapy for substance abuse, yet many well-founded concerns remain about the 

ecological validity (i.e., the match between treatment research designs and treatment-in-

practice) of many currently-funded group-based trials (Morgan-Lopez & Fals-Stewart, 2007, 

2008; Weiss et al., 2004).

Closed versus open enrollment groups

The majority of recently-funded group treatment trials use closed-enrollment groups, yet 

79% of all substance abuse treatment programs1 in the US use open-enrollment groups for 

treatment delivery (Klosterman et al., 2008); this discrepancy between the use of closed 

groups in practice and the use of open groups (or even individual therapies) in treatment 

research is at the heart of the ecological validity problem in substance abuse treatment 

research (Morgan-Lopez & Fals-Stewart, 2007). As described elsewhere (Morgan-Lopez & 

Fals-Stewart, 2006a, 2008), closed enrollment groups are formed with a core set of members 

and are designed to remain intact for a limited period of time. The typical length of closed 

treatment groups corresponds directly to the length of the prescribed treatment (e.g., if the 

treatment protocol calls for 6 sessions of treatment, the group only runs for 6 sessions and is 

disbanded thereafter) and, though membership dropout is usually inevitable, no new 

members are added after a specific point (usually after the initial session). However, in open 

enrollment groups, members can join the group at any point in time; coupled with 

graduations, termination and dropout, membership in open enrollment groups is in a state of 

constant flux.

Closed groups have the benefit of being easier to handle analytically because the nature of 

non-independence (i.e., nesting) of repeated measures from the same patients over time 

within therapy groups is clear (i.e., the composition of the group does not “change” over 

time; Morgan-Lopez & Fals-Stewart, 2006a). However, closed groups are neither practical 

nor economical for clinical practice (i.e., patients must wait until the requisite number of 

group members are available before they can begin treatment) nor do they reflect the reality 

of how treatment programs operate in general (Morgan-Lopez & Fals-Stewart, 2008). Data 

1However, differences in treatment efficacy were observed across latent attendance classes; furthermore, there were fluctuations 
across calendar time in the proportions of treatment group members within each attendance class.
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generated from open enrollment groups, on the other hand, have historically been difficult to 

analyze (at least in a statistically defensible manner) because membership turnover gradually 

changes the group composition over time; in fact, complete turnover in membership in open 

enrollment groups (nay times over for groups that run for extended periods of time) is the 

norm rather than the exception. Many treatment researchers who have proposed open 

enrollment group studies have faced significant criticisms in grant and/or manuscript review 

in part because of analytic (Morgan-Lopez & Fals-Stewart, 2006a) and logistical difficulties 

(Weiss et al., 2004) in executing open enrollment treatment trials. In the absence of 

resolutions to either set of these challenges, substance abuse treatment researchers have 

largely eschewed group therapy research to sidestep these issues (Morgan-Lopez & Fals-

Stewart, 2006a, 2008).

Modeling group membership turnover

Among the substance abuse and alcoholism treatment studies that have used groups, 

irrespective of whether open or closed enrollment was used, there have been three primary 

approaches to handle group-level nesting in the presence of membership turnover (Morgan-

Lopez & Fals-Stewart, 2006a, 2008): a) ignore group-level nesting (e.g., Fals-Stewart, 

Marks & Schafer, 1993), b) model group-level nesting in a conventional fashion, but assume 

that the continual addition (i.e., new admissions) and subtraction (i.e., dropout, termination, 

graduation) of members has no impact on group interdependence or treatment effects (e.g., 

Fals-Stewart, O'Farrell & Birchler, 2004) or c) model group-level dependency as session-

specific (i.e., treat each session as a new “group”, irrespective of any overlap in group 

membership from session-to-session; Fals-Stewart, Cordova et al., 2005).

Approach “a” is well-known for increasing the likelihood of Type I errors in group-

administered interventions (Baldwin et al., 2005; Hox, 2002; Snijders & Bosker, 1999). 

Approach “b” is ideal for contexts where group membership remains constant throughout 

the life of the study (Bryk & Raudenbush, 1992) but has been shown in at least one recent 

study to potentially lead to Type I errors with respect to treatment effect estimates when 

membership turnover is not accounted for (Morgan-Lopez & Fals-Stewart, 2007). Finally, 

approach “c” has been shown to be overly conservative, possibly leading to Type II errors 

(Fals-Stewart, Klostermann, Hoebbel & Kennedy, 2004).

One recently-developed approach, group-clustered latent class pattern mixture modeling 

(LCPMMs; Lin, McCulloch & Rosenheck, 2004; Muthén, Jo & Brown, 2003; Roy, 2003), 

provides a framework that more closely represents the process of turnover in group 

membership than traditional methods (e.g., group-clustered latent growth models) or even 

conventional pattern mixture models (Morgan-Lopez & Fals-Stewart, 2007). LCPMMs were 

primarily intended to model non-ignorable missing data, where the probability of 

missingness is related to the values of variables that are missing, even after conditioning on 

variables that are non-missing (e.g., dropout due to drug relapse in drug treatment studies; 

see Schafer & Graham, 2002). Morgan-Lopez and Fals-Stewart (2007) showed that 

LCPMMs can be structured to handle turnover in group membership under the following 

conceptual assumptions: that (a) there are hidden subpopulations (i.e., latent classes) within 

treatment groups, (b), the hidden populations are characterized by the joint variation in 
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treatment attendance patterns and treatment outcomes and (c) that, as membership changes, 

the proportion of treatment group members from each patient subtype (e.g., consistent 

attenders, dropouts, irregular attendees) fluctuates from session-to-session and throughout 

the course of the trial.

In a recently reported trial comparing open enrollment group therapy (called Getting Along) 

to individual therapy for alcoholism, Morgan-Lopez and Fals-Stewart (2007) found that 

under conventional (group-clustered) longitudinal growth modeling (gLGM), group therapy 

was superior to individual therapy in reducing alcohol use over time through termination of 

treatment; yet under (group-clustered) latent class pattern mixture modeling no overall1 

differences between the two conditions were observed. These contrasting results highlight 

the most important aspect of the modeling issues in group therapy research; the choice of 

approach matters and, in this particular case (and probably many others), it matters greatly. 

Further study is required in order to see if it is the case that gLGMs are overly liberal or 

gLCPMMs are overly conservative3 when used to model membership turnover in treatment 

outcome studies.

Motivation for the Present Study

In this article, we describe a statistical simulation study comparing gLCPMMs and gLGMs 

on their relative accuracy in treatment effect estimation and inference. This study is 

motivated by our interest in understanding the practical consequences (e.g., biased treatment 

effects, incorrect inferences) of selecting an analysis that is potentially sub-optimal (i.e., 

group-clustered LGM4) for modeling rolling group data; however, there may be 

circumstances when both approaches produce equivalent results, unbiased estimates and 

correct inferences the expected proportion of the time (i.e., 95%). Delineating the 

circumstances under which these approaches produce convergent and divergent results is not 

only of significant importance to those who are now doing some form of group therapy 

research, but also to those who will be moving their programmatic lines of research in this 

direction as interest in ecologically-valid group therapy research grows.

Method

Primer on Statistical Simulation

Prior to describing the simulation study, we felt it appropriate to familiarize readers with the 

execution of simulation studies in general. Statistical simulation studies, also commonly 

referred to as Monte Carlo studies (Muthén & Muthén, 2002), at their root, are 

investigations where sample data are artificially generated (and subsequently analyzed) from 

a population with known parameters (e.g., variances, regression coefficients); this process is 

designed to mimic the analogous process in “real” studies, where we take a sample of 

individuals from a population, collect data on the sample, and analyze their data to estimate 

population parameters based on the sample at hand.

3This question is dependent on which model is the true model in the population that underlies a set of data; we suspect that structure 
the LCPMM model is more consistent with what is occuring clinically (i.e., multiple patient subtypes, fluctuations over time in the 
subtype proportions) than single-population LGMs
4The single-class (group cluster-correlated) LCPMM and standard (group cluster-correlated) LGM under the assumption of data 
missing-at-random produce equivalent results.
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The fundamental difference between simulated data and real data (aside from the artificial 

data versus real data distinction) is that the true population parameters will always be 

unknown in real data, but are known and manipulable by the researcher conducting the 

simulation. This point of unknown population parameters in studies with real data, though 

familiar to anyone who has taken an introductory undergraduate statistics course, cannot be 

overemphasized with respect to simulation studies. In a real treatment outcome study, one 

can never know how close the sample estimates of interest (e.g., the treatment effect 

estimate) are to the corresponding true population parameters (e.g., the true treatment 

effect). However in simulation studies, because the population parameters are known, the 

estimates from a series of simulated samples can be directly compared to the true values in 

the population using many different metrics (Collins, Schafer & Kam, 2001; MacKinnon et 

al., 2002, 2004; Morgan-Lopez & MacKinnon, 2006).

Simulations can be conducted in general statistical packages such as SAS and SPSS or in 

many “model-specific” packages (e.g., Mplus, EQS, or LISREL in structural equation 

modeling). The key technical component of statistical packages that have simulation 

facilities is the random number generator, which allows artificial “variables” to be generated 

across a specified number of observations (i.e., artificial cases) under a specified population 

model; in many programs, these variables can be generated from a number of different 

distributions including normal (e.g., SAS rannor function), uniform (e.g., SAS ranuni) 

poisson (e.g., SAS ranpoi) just to name a few. Random number generation allows simulation 

modelers to generate the stochastic components of a model; the stochastic components of a 

model (e.g., predictor variables, residuals) are any components that vary across a particular 

set of units (e.g., individual cases, groups of cases). For example, in a simple regression 

model, the lone predictor “X” is a stochastic component, as the value of X, by definition, 

varies across individuals. The error term in a regression model is also stochastic; the residual 

terms vary across individuals as well. However, the regression coefficient in simple 

regression is the same for all individuals, or fixed.

In a very basic simulation model, three components are necessary: (a) specification of the 

number of observations to be generated (i.e., the simulated sample size); (b) generation of 

stochastic terms from a known distribution which vary across observations (e.g., predictors 

and residual terms) and (c) specification of fixed terms that do not vary across observations 

(e.g., intercepts, regression coefficients). The simulated data of sample size N can then be 

analyzed in the same way a real data set would be analyzed. This process of “generate-then-

analyze” can be repeated K times and would be a direct analog to the process of replicating a 

real treatment outcome study K times with successive new samples of size N. In simulation 

studies, given the possibility of comparing the sample estimates from each artificial sample 

to population parameters (in a way that cannot be done with real studies), simulation 

researchers can assess a number of properties of study designs and estimation procedures. 

For example, for a given statistical model, population parameter and sample size, a 

researcher can study the proportion of times the estimate of a key parameter is significantly 

different from 0 across K artificial samples, each of size N (i.e., statistical power; see 

MacKinnon et al., 2002; Muthén & Muthén, 2002) or the discrepancy between a population 

parameter and the average estimate of that parameter across K artificial samples (i.e., 
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parameter estimate bias; see Collins et al., 2001; Morgan-Lopez & MacKinnon, 2006a). 

Many other indicators of statistical performance can be examined across an infinite number 

of conditions (e.g., sample size, effect size, (im)proper model specification) in simulation 

studies; in fact simulations are used more as the rule rather than the exception in a number of 

different areas (e.g., quantitative psychology) and are even used frequently as a method for 

determining power in NIH grant submissions (Muthén & Muthén, 2002).

Hypothetical Context for the Simulation—The simulation is set within the 

hypothetical context of a study of the comparison of two treatments for alcoholism (N = 

150), which we will call “Treatment A” (focal treatment condition) and “Treatment B” 

(comparison condition/TAU). Treatment A is a group-administered treatment where there 

are three rolling treatment groups, each of which can have between 3 and 9 members on any 

given week. Treatment B is an individually-administered therapy. Both treatment protocols 

call for 6 weeks of treatment. The trial period lasts for 21 weeks, with open enrollment into 

each group (or into individual therapy) lasting from weeks 1 through 16 (i.e., no new 

admissions after week 16).

Model Overview—In this simulation study, the focal population model is a 3-Class, six 

timepoint (group-clustered) LCPMM model as shown in Figure 1, which is directly linked to 

our hypothetical treatment outcome study. The gLCPMM is both a special case of the 

general mixture SEM model which handles both continuous latent (e.g., growth parameters) 

and categorical latent (e.g., latent classes) variables (Muthén, 2002) and an extension of 

classical pattern mixture models for non-ignorably missing data (Hedeker & Gibbons, 1997; 

Schafer, 2003).

The focal point of the gLCPMM model is a categorical latent variable (called “Attend” in 

Figure 1) which represents membership in one of a finite number of latent classes (e.g., 

Attend = 1, 2…..C). This variable captures the fact that multiple hidden subpopulations may 

exist within our treatment outcome data. In gLCPMMs, as used for open enrollment group 

treatment outcome analyses (e.g., Morgan-Lopez & Fals-Stewart, 2007), differences among 

multiple hidden subpopulations, if there is indeed more than one subpopulation, manifest 

themselves in between-class differences among three sets of variables (see Figure 1).

First, differences across classes can manifest themselves in differences in the probabilities of 

treatment attendance on a2 through a6, which are binary indicators of whether each patient 

showed up for treatment at time t (0 = no-show, 1 = show) beyond the initial session for 

each person; these patterns over time may show consistently high probabilities of attendance 

for one class (i.e., consistent attenders) or steeply decreasing probabilities of attendance for 

another class (i.e., dropouts). Second, differences may emerge on the distributions of the 

timing of treatment entry (i.e., “Start Week”) which may show (a) fluctuations over time in 

the proportions of patients from each sub-population and (b) be indicative of variation in the 

makeup of treatment groups that is dependent on calendar time (Morgan-Lopez & Fals-

Stewart, 2007, 2008). Finally, differences across classes may emerge on differences in the 

impact of the treatment condition (“Tx A v. Tx B”) on growth over time in the outcome (i.e., 

βI, treatment effects on alcohol use).
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For example, in Morgan-Lopez and Fals-Stewart (2007), different attendance classes 

produced different patterns of treatment attendance (i.e., proxy for missingness) over time, 

and within each of these attendance patterns, a different pattern of findings emerged with 

regard to treatment effects for alcohol use (i.e., group treatment was better for erratic 

attendees, individual treatment was better for those who would eventually dropout); in this 

case, gLCPMMs also present opportunities for latent moderator effects to emerge from 

class-specific estimates of treatment efficacy.

If there is more than one class, the growth parameters (i.e., conditional growth parameter 

means, treatment effects) from each class are averaged and weighted by the class 

proportions and standard errors are calculated using the delta method (see Hedeker & 

Gibbons, 1997, p.74–76, Morgan-Lopez & Fals-Stewart, 2007, p.593) in order to estimate 

the overall treatment effect.

Population Parameters

Several of the key population parameters that were manipulated in the simulation, are 

loosely related to parameter estimates from the LCPMM exemplar illustrated in Morgan-

Lopez and Fals-Stewart (2007). These include (a) class-specific treatment effect sizes, b) the 

probabilities of missingness/attendance at time t (conditional on attendance class), c) the 

attendance class proportions and (d) the signs of the class-specific treatment effects. Various 

combinations of these factors were mixed-and-matched to examine the impact of purposeful 

(mis)specification of the number of classes (i.e., 1-class, 2-class), relative to the number of 

classes that exist in the population (i.e., 3), in analyzing open enrollment treatment data on 

the accuracy of treatment effect estimation under a variety of population scenarios. The 

improper specification of the single-class model is key, because it is directly analogous to 

the decision that behavioral treatment researchers make if they were to analyze open 

enrollment group data with conventional LGM. Until recently, LGM was the best and only 

choice that behavioral treatment researchers had (i.e., group-clustered growth models) in 

modeling treatment outcome data from open enrollment groups. Though initial evidence 

suggests that this approach may not be optimal for open enrollment data, it is clear that, in 

many cases, the treatment research community was “doing the best they c(ould) with what 

they ha(d)” (Morgan-Lopez & Fals-Stewart, 2007, p.591).

Attendance Patterns—The attendance patterns (i.e., probabilities for a2 through a6) for 

each of the three classes are described as follows: (a) Consistent Attenders: set to fluctuate 

between 74% and 93% probability of “attendance” across Weeks 2 through 6 of treatment; 

(b) Dropouts: set to have a constant decrease in the probability of attendance from 43% at 

Week 2 to 11% by Week 6; and (c) Erratics: probabilities of attendance were 20% for Week 

2, 90% for Week 3, 20% for Week 4, 70% for Week 5 and 90% for Week 6. It is noted that 

if a 0 is generated for any given case in a simulated sample, based on the conditional 

probabilities of time t attendance in the population, then the corresponding value on the 

outcome (YT) was set to missing.

Class-Specific Treatment Effects—Class-specific population treatment effects, defined 

as mean differences in growth over time on the outcome variable across the two treatment 
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conditions (i.e., Tx A v. Tx B → β(G)I), corresponded to r2s of .01, .14 and .43; these 

correspond directly to the class-specific r2s observed in Morgan-Lopez and Fals-Stewart 

(2007). These r2 values were converted to regression coefficients via covariance algebra (see 

Appendix A); the r2s of .01, .14 and .43 corresponded to regression coefficients of |.263|, |.

815| and |1.73|.

Class Proportions—The proportions of the population from each attendance class (i.e., 

Consistents, Dropouts, Erratics) varied across each combination and could be set to 50%, 

30% or 20%.

Cross-matching of Population Parameters—Class-specific treatment effects and 

class proportions were cross-matched under each attendance class; this cross-matching 

produced a total of 36 possible treatment effect/class proportion combinations

Sign of Class-Specific Treatment Effect—Based on limited pilot simulation work 

(Morgan-Lopez & Fals-Stewart, 2006b) and observations from real data (Morgan-Lopez & 

Fals-Stewart, 2007), we observed that there was a greater possibility of distortion of overall 

treatment effect estimates when the class-specific treatment effects were opposite in sign 

(e.g., treatment A is more efficacious for one class, treatment B is more efficacious for 

another). As a result, the 36 treatment effect/class proportion combinations were crossed 

with 7 treatment effect sign combinations (see Table 2) which produced a grand total of 252 

possible combinations.

Random subset of combinations—In lieu of an examination of each of the 252 

possible combinations, a random subset of 36 of these combinations (see Table 1) was 

examined in this simulation study; 18 of these were randomly selected from the 36 “all 

positive sign” set of combinations while the other 18 were randomly selected from the 

remaining larger set of 216 overall combinations. We aimed to balance coverage of a 

reasonable range of population conditions against computational burden.

For instance, it was estimated that an analysis of each of 250 replications (i.e., simulated 

datasets) for one combination would take a total of 6.75 hours5 in running 1-class (15 

minutes), 2-class (2 hours) and 3-class (4.5 hours) LCPMMs in succession on the same 

dataset(s). Based on this estimate, completion of an analysis of all 252 combinations would 

take 71 days if each analysis was run continuously with manual restarting of the analysis in 

Mplus, irrespective of the time of day (or night) that the previous analysis terminated. Even 

if simulated data from two full combinations per day were analyzed from start-to-finish 

(requiring ≈ 14 hours of computing time per day) it would still require over four months to 

complete.

In addition to the challenges outlined above, we also concluded that a random subset of the 

possible combinations would still provide reasonable variability in the combinations of 

population parameters (i.e., treatment effect sizes/signs, class proportions). This strategy is 

in the same spirit as the fractional factorial design, used when the interest is in examining a 

5Estimates based on a Pentium 4 processor with 3.2 Ghz of processing speed and 2.5GB of RAM.
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selected subset of all possible combinations of several independent variables in an 

experiment where resources are conserved and lower-order interaction effects of interest 

(e.g., 2-way interactions) can still be examined (Box, Hunter & Hunter, 2005).

Constants across conditions—Although several key factors were manipulated in the 

simulation study, there were a number of factors that were held constant across simulation 

conditions. As noted earlier, for each combination of treatment effect sizes/class 

proportions, there were always three classes in the population and each simulated dataset 

(250 per combination) had a sample size of 150. This was done to roughly represent the 

median sample size in behavioral treatment outcome studies. Group-level population 

variance components were set such that the group-level accounted for a) 4% of the 

variability in the intercept, α(G)I (i.e., an intercept ICC of .04) and b) 1% of the variability in 

the slope, β(G)I (i.e., a slope ICC of .01). Individual-level variance components for the 

intercept and slope were set to 1 in the population. Finally, the distributions for the week of 

trial entry variable were generated to be consistent with what was observed in Morgan-

Lopez and Fals-Stewart (2007). The week of trial entry variable was generated from a 

uniform distribution with values ranging from 1–16 for the consistent attenders class and the 

dropout class. For the Erratics class, week of trial entry variable was generated from a 

bimodal distribution where the two modes were 1 and 16.

Simulation heuristics—First, simulated data were generated in SAS v9 under a 3-class 

latent class pattern mixture population structure, with population values for the class-

specific treatment effects/signs and class proportions set based on the particular 

combination; 250 replications were generated, each with N = 150. Once generated, each of 

the 250 datasets was analyzed in Mplus v4.21 in the External Montecarlo analysis 

framework (Muthén & Muthén, 1998–2006, p.275) under maximum likelihood estimation 

for non-normal data and/or non-independent observations (Asparouhov, 2004; Yuan & 

Bentler, 2000). Each dataset was analyzed under three different scenarios: (a) correctly 

analyzed as a 3-class gLCPMM; (b) incorrectly analyzed as a 2-class gLCPMM (which still 

accounts for turnover in membership and non-ignorable missingness but estimates too few 

classes); and (c) incorrectly analyzed as a single-class gLCPMM (analogous to a 

conventional gLGM model and assumes that membership turnover is irrelevant and data are 

missing-at-random). The parameter estimates and parameter covariances from each set of 

analyses were saved; for 2- and 3-class LCPMMs, the weighted averaged treatment effect 

estimates and standard errors were calculated using the delta method (see Hedeker & 

Gibbons, 1997, p.74–76, Morgan-Lopez & Fals-Stewart, 2007, supplemental materials 

available at http://dx.doi.org/10.1037/0022-006X.75.4.580.supp).

Results

Analysis of Simulation Results

Simulation outcomes—Two outcome variables were calculated from the output of the 

analysis of simulation data, with a focus on discrepancies between the population values and 

sample estimates of the weighted averaged treatment effect (WATE): standardized bias and 

confidence interval coverage.
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Bias in simulation studies generally refers to the discrepancy between a known population 

parameter and the average estimate of that parameter across K simulated samples (see, for 

example, Muthén & Muthén, 1998–2006, p.281). However, whether bias is “small” or 

“large” in impact is dependent on the size of the “overall level of uncertainty” in estimating 

the parameter (Collins et al., 2001, p.340). To put bias on a more interpretable metric, 

Collins and her colleagues (2001) developed the standardized bias measure, 100 × (â − α)/ 

SE, where in this study â is the mean of the WATE estimates across all 250 replications per 

condition, α is the population WATE for the condition and SE is the standard deviation of 

the simulated distribution of the WATE estimates across the 250 replications; this measure 

capture the bias in relation to the overall level of sample-to-sample variability in estimating 

the treatment effect. Using the criteria outlined in Collins et al., (2001), standardized bias 

exceeding ±40% was considered problematic (i.e., severe under/overestimation of the WA 

treatment effect).

A second outcome variable of interest is confidence interval coverage. Coverage is defined 

as the proportion of times that a statistical method (e.g., 1-, 2- and 3-class LCPMM) 

produces confidence intervals that contain the population parameter (e.g., the true weighted 

averaged treatment effect in the population), irrespective of the actual inference made from 

the analysis; coverage rates are the direct inverse of Type I error. Optimal methods should 

produce confidence intervals that contain the true population parameter 95% of the time 

(just as the Type I error rate should ideally be .05), with coverage rates at or below 90% 

(Type I error rates above .10) considered problematic (Collins et al., 2001). A robustness 

interval of 92.5–97.5% coverage (Bradley, 1978) was used to indicate empirical coverage 

rates that did not deviate meaningfully from 95%.

General Simulation Results Summary

Three-class models—When simulation data were properly analyzed as a three-class 

LCPMM model, none of the 36 treatment effect by class proportion combinations yielded 

confidence interval coverage rates below 90% for the weighted-averaged overall treatment 

effect nor did any of the combinations yield standardized bias rates that exceeded ±40%. 

Two out of the 36 combinations had coverage values that fell outside of the robustness 

interval (i.e., fell between 90.1–92.4%) but did not fall below 90%. It was also noted that, 

although the models generally produced accurate estimates and inferences (as expected), the 

models produced anywhere from 0 to a maximum of 6.4% non-converged models (16 out of 

250) across all combinations; this suggests that there is a small risk of not being able to get a 

proper solution in 3-class LCPMMs with sample sizes of N = 150.

Two-class models—Even when simulation data were purposefully mis-analyzed under 

two-class LCPMM models, none of the 36 treatment effect by class proportion combinations 

yielded confidence interval coverage rates below 90% for the weighted-averaged overall 

treatment effect nor did any of the combinations yield standardized bias rates that exceeded 

±40%. Five out of the 36 combinations had coverage values that fell outside of the 

robustness interval (i.e., fell between 90.1–92.4%) but did not fall below 90%. There was 

also a maximum of 3.2% (8/250) non-converged solutions under the 2-class framework.
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Single-class models—When simulation data, generated under a 3-class LCPMM 

population model were analyzed under a single-class model (analogous to conventional 

growth modeling) only 15 out of the 36 combinations (41.6%) of the combinations 

examined had confidence interval coverage rates for the treatment effect within the specified 

robustness interval. Thirty-three percent (12/36) of the combinations examined yielded 

coverage rates below 90% (i.e., Type I error rates above .10); in fact, problematic coverage 

values ranged as low as 69.6% (i.e., Type I error rate of 31.4%). The other 9 combinations 

had coverage rates that fell out outside the robustness interval but not below 90% coverage. 

Fifty-eight percent of the combinations (21/36) examined produced standardized bias values 

that exceeded ±40%.

Analysis of Single-Class Simulation Results

It was clear from the summary of simulation results that specifying a single-class analysis 

for simulated rolling group data when multiple classes exist in the population can lead to 

biased estimates and higher-than-acceptable rates of Type I errors in many cases. Although 

the majority of the conditions examined in this study produced high rates of over/under-

estimation of treatment effects and poor confidence interval coverage rates, there were some 

combinations of class-specific treatment effects and class proportion/class type matches that 

produced minimal bias and acceptable coverage rates even when the analysis was 

misspecified. As a result, we analyzed the outcomes of the simulation in order to account for 

variability in the impact of model misspecification; in other words, we were interested in 

answering the question “When does choosing LGM to analyze data generated under the 

LCPMM model lead to greater problems analytically?”

It was suspected that combinations where the discrepancies between the three class-specific 

treatment effects were small would have been most likely to produce standardized bias 

values and confidence interval coverage rates that were acceptable. In fact, this would be 

consistent with Hedeker and Mermelstein's (2000) assertion that, when data are missing-at-

random, the treatment effect does not differ appreciably across the cause of (or patterns of) 

missingness. This may suggest that, the more similar the treatment effects are across 

attendance classes (i.e., as treatment X class interaction effects approach 0), the closer these 

data are to MAR and thus not need a non-ignorable missingness model such as LCPMM. So, 

at least a priori, we anticipated that as the size of the discrepancies between class-specific 

treatment effects (in essence, treatment x class interaction effects) were large, bias and 

coverage rates (under the single-class LCPMM/LGM) would be worse.

However, upon visual inspection of a table of simulation results, it appeared that the 

following combinations of factors seemed to produce low coverage/high bias when 

simulation data were (mis)analyzed under a single-class framework: a) heavy missingness 

(dropout class ≥ 30%) and “high” treatment effect discrepancies between the Completers 

Class and the other two classes. As a result, these two factors (along with size of the 

Completers class) were examined as predictors of bias and coverage in order to quantify the 

conditions under which model misspecification has little-to-no impact on treatment effect 

estimation and when it has a large impact on treatment effect estimates.
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Key Predictors

Proportion of the Dropout Class—The dropout class proportions could take values of 

20%, 30% or 50%, consistent with the corresponding condition as shown in Table X.

Proportion of the Completers Class—The completers class proportions could also 

take on values of 20%, 30% or 50%, consistent with the corresponding condition as shown 

in Table 1.

Treatment Effect Discrepancy—The treatment effect discrepancy (TED) measure is a 

contrast comparing the Completers treatment effect against the average treatment effect of 

the other two class types (e.g., Erratics, Dropouts) in a Cohen's D effect size metric. To 

capture this, we first calculated the absolute value of the difference between the completers' 

treatment effect and the average treatment effect in the other two classes (only for the results 

from datasets where the estimation procedure converged on an admissible 3-class solution) 

as follows:

(1)

We then derived and calculated the standard error for this discrepancy measure (See 

Appendix B) for each dataset, calculated the z-test value for the discrepancy measure and 

then converted the t-test value to a Cohen's D effect size based on the formula found in 

Rosenthal and Rosnow (1991).

Outcomes—Although the predictors listed above correspond to measures derived from the 

three-class models, the outcomes (standardized bias, coverage) correspond to the results 

from the single-class models. The two outcome variables were a) (the absolute value of) 

standardized bias from the single-class analysis and b) confidence interval coverage from 

the single-class analysis. The three-class discrepancy measures and dropout class 

proportions were merged with the single-class bias and coverage outcomes based on 

identification with the same simulated dataset (note that the bias and coverage measures 

from the single-class datasets that produced non-converged solutions under three-class 

analysis were dropped from this analysis). The logic underlying these analyses is “Given the 

size of the treatment effect differences across classes and size of the dropout class when a 

dataset is analyzed properly with three classes, how problematic is it to analyze the same 

dataset with the wrong method (single-class analysis)?” Simulation results were analyzed 

under the generalized linear mixed modeling framework, as the 8700+ datasets were nested 

within the 36 study combinations. Variability in standardized bias was examined under SAS 

Proc MIXED and variability in coverage was examined in SAS Proc GLIMMIX. It is noted 

that, because standardized bias is a summary measure across all replications, the value does 

not vary from datasetto-dataset within each of the combinations under study; however, 

coverage varies from dataset-to-dataset within a combination.

Standardized Bias—There was a 3-way interaction effect between Dropout Class 

proportion x Completer Class proportion X TED on standardized bias, b = 602.56 (23.97), t 
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= 25.14, p<.0001. The predicted values of standardized bias (in absolute value) were 

calculated and plotted (see Figures 2 and 3) across the ranges of Dropout Class proportion 

(20–50%) and a range TED values in Cohen's D metric; the figures are separated based on a) 

the highest possible proportion for the Completers class (Figure 2) and b) the lowest 

possible proportion for the Completers class (Figure 3).

Based on the plot in Figure 2, bias appears to be more pronounced as the size of the Dropout 

class gets larger when the Completers class is as large as possible. When the dropout class is 

50% of the population, predicted bias exceeds more than twice the level of bias that is 

considered problematic by Collins and colleagues (2001), irrespective of the size of the 

treatment effect discrepancy across classes (within the range of TED values studied); in 

general, bias did not exceed problematic levels when the Dropout class consisted of ≤ 30% 

of the population.

The general trend was similar when the Completers class was as small as possible (relative 

to the sizes of other two classes; Figure 3); bias was severe when the Dropout class was 50% 

of the population though, oddly, it appeared to decrease as the treatment effect discrepancy 

increased. When the Dropout class was 20% of the population, bias was generally lower 

than 40% across the range of TED values studied. However, when the Dropout class was 

30% of the population (and the Completers = 20%/Erratics = 50%), bias increased sharply 

as the size of the discrepancy between treatment effects across classes increased.

Confidence Interval Coverage—There was a 3-way interaction effect between Dropout 

Class proportion x Completer Class proportion X TED on confidence interval coverage, b = 

−18.56 (9.22), t = −2.04, p=.04. The predicted proportions for CI coverage were calculated 

and plotted (see Figures 4 and 5) across the ranges of Dropout Class proportion (20–50%) 

and a range of TED values in Cohen's D metric; the figures are separated based on a) the 

highest possible proportion for the Completers class (Figure 4) and b) the lowest possible 

proportion for the Completers class (Figure 5).

Based on the plot in Figure 4, coverage does not drop below 90% when the Dropout class ≤ 

30% of the population (and the Completers class is as large as possible), irrespective of the 

size of the discrepancy in treatment effects across classes. However, when the Dropout class 

was 50% of the population (and Completers = 30%/Erratics = 20%), CI coverage rates 

dropped to a rate of well below was is acceptable as the size of the TED increased; in fact, 

when the TED approached a Cohen's D of .3, the Type I error rate approached a rate of four 

times (.18) the rate that a researcher would believe he/she was operating under when 

incorrectly specifying a single-class model.

The general trend for coverage was different when the Completers class was as small as 

possible (relative to the sizes of other two classes; Figure 5); coverage was consistently 

below 90% across the range of TED under study when the dropout class was 50% of the 

population, though (again, unexpectedly) it appeared to increase as the treatment effect 

discrepancy increased. When the Dropout class was 20% of the population, coverage rates 

increased as the TED values increased. However, when the Dropout class was 30% of the 
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population (and the Completers = 20%/Erratics = 50%), coverage rates decreased sharply as 

the size of the discrepancy between treatment effects across classes increased.

Discussion

Oveview of findings

The results from this study indicate that, when multiple-class LCPMM data are analyzed 

under conventional growth modeling, there is a non-trivial risk of observing (a) problematic 

discrepancies between the true treatment effect and the estimated treatment effect within a 

sample, and (b) making incorrect inferences concerning the sample treatment effect; in fact, 

bias and coverage reached problematic levels across the majority of conditions examined in 

this study. However, our interest was in understanding the variation in bias and coverage 

when we analyzed 3-class open enrollment data under LGM, as there were conditions where 

selecting the wrong analytic framework still led to accurate estimates and inferences.

Implications

Thus, here are some of the general conclusions, and with them, recommendations for when 

treatment researchers need to be careful about using conventional growth models for 

modeling data from open enrollment group therapy trials:

1) Heavy dropout is problematic when the size of the differences in treatment 

effects across classes exceeds Cohen's D = .15.

Under conditions 50% dropout and attendance class by treatment interaction effects that 

exceed a Cohen's D of .15, we found that bias and coverage reached problematic rates across 

the entire range of treatment effect discrepancies (TED) under study. When the Completers 

class was the next largest class (30%), the findings were more clear cut and consistent with 

expectations: a) standardized bias never decreased below 88%, which is more than twice the 

acceptable level of bias (see Figure 2) and b) confidence interval coverage dropped to the 

point where the Type I error rate could reach above three times the rate (18%) a researcher 

would believe s/he was operating under (5%) (Figure 4).When the Erratics class was the 

next largest class (30%), findings were somewhat counterintuitive: as the treatment effect 

discrepancy increased, standardized bias decreased (Figure 3) and coverage rates increased, 

though within the range of TEDs studied, both were still in the problematic range based on 

model predicted values.

2) Moderate dropout (30%) in combination with increasing TEDs across classes 

can be problematic

When moderate dropout existed in our simulated open enrollment trial data, bias and 

coverage was problematic under the following combination of circumstances: when the TED 

increased and when the Erratics class was the largest class in the population (50%). Steep 

increases in standardized bias (Figure 3) and steep decreases in confidence interval coverage 

(Figure 5) occur under moderate dropout as the TED increases (if the Erratics class is the 

largest class); however, bias and coverage are not problematic when moderate dropout exists 

and the Completers class is the largest class (Figures 2 and 4).
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3) Strange findings are possible when there is a great deal of intermittent treatment 

attendance

The results from this study were generally intuitive when the Erratics class was not the 

largest class. In this situation, the consequences of selecting the incorrect analysis 

framework were greater as the treatment effect discrepancy increased so long as the Erratics 

class was the smallest class (see Figures 2 and 4). However, as the Erratics class size was 

larger, some conditions look better as the treatment effect discrepancies looked worse 

relative to the predicted values of standardized bias and confidence interval coverage 

(Figures 3 and 5). Further complicating matters is the fact that, under the combinations 

where the Erratic class was 50% of the population, the observed coverage values never drop 

below 90%, regardless of a) the size of the treatment effect discrepancy or b) the sizes of the 

other two classes, a phenomenon requiring further study among quantitative methodologists 

interested in the behavior of latent class pattern mixture models in general.

At first glance, these results related to high levels of intermittent attendance may be seen as 

irrelevant, because the likelihood of the emergence of such a pattern in substance abuse 

treatment may generally be considered low. In Morgan-Lopez and Fals-Stewart (2007), the 

Erratics class only composed of 12% of the sample, and the majority of those patterns 

occurred during specific points of the calendar year that are intuitively related to intermittent 

attendance (e.g., the Winter holiday season). However, it may be premature to suggest that 

intermittent attendance by patients cannot occur in larger proportions and may be 

population-specific. For example, there tends to be a relatively high proportion of women 

who have comorbid substance abuse disorders and PTSD symptoms who attend treatment 

intermittently because they choose to modulate the amount of re-exposure to the trauma 

during treatment by consciously limiting the number of sessions they attend consecutively 

(Hien, D.A., personal communication, 17 June 2007).

4) When in doubt, execute LCPMM and conventional LGM if treatment effect 

discrepancies occur across attendance classes

The practice of sensitivity analysis in modeling data that has some form of non-ignorable 

missingness is not new (Schafer & Graham, 2002) and such a recommendation is in order 

for the present context. As we have shown, there may be some clear and identifiable 

conditions where divergent inferences are more likely between the two approaches than 

others. The primary conditions where diverging inferences may be anticipated are when 

treatment effect discrepancies are observed across attendance classes that are between small 

and medium in effect size (e.g., Cohen's D ≈ .2) and moderate-to-heavy dropout is 

expected; other situations where conflicting inferences would occur between LCPMM and 

LGM are much less clear. As such, it is probably prudent to examine open enrollment 

treatment data under both frameworks in order to get a sense for the level of impact of 

missingness that may be conditionally related to unobserved values of the outcome of 

interest (i.e., alcohol/drug use) and membership turnover on estimates of treatment efficacy.

There may be some temptation on the part of substance abuse treatment researchers to 

dismiss these findings and suggest that the conditions under study in this simulation work 

may not represent the reality of treatment research and practice settings (i.e., “I don't need to 
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worry about this, so I'll stick to LGM”). This line of thinking may be correct if investigators 

can be reasonably assured that they can (a) mitigate dropout from their studies successfully 

and, more importantly, and (b) be reasonably certain that their treatment effects will be 

exactly the same for patients who show up consistently for treatment and for those who are 

prone to dropping out. However, experts on missing data in clinical trial contexts (Schafer & 

Graham, 2002) and subsequent empirical work with data from open enrollment groups 

(Morgan-Lopez & Fals-Stewart, 2007) suggest that those assumptions may be tenuous at 

best.

Limitations

Although this study gives some initial clues into the consequences of model misspecification 

on treatment effect estimation in open enrollment trial data, this study was purposefully 

limited in scope. However, these limitations do have some impact on how this study should 

be viewed more globally. Because all possible combinations of class-specific treatment 

effects, attendance class proportions and treatment effect signs were not examined 

correlations between predictors in the analysis of simulation data may have contributed to 

some distortions in predicted values (Pedhazur, 1991). Although the overall trends in 

relation to the factors examined in the study may be generally valid, the predicted values 

represented in Figures 2–5 would be estimated more accurately in the absence of 

correlations between predictors (i.e., had the study been a full factorial design).

Also, a number of key factors were not manipulated that could serve as moderators of the 

effects observed in this study, the clearest one being sample size. We used a sample size of 

150 for all simulated datasets which is representative of the median N for behavioral 

substance abuse treatment trials, which typically range between Ns of 80 to 400. However, 

smaller samples may see a more severe impact of model misspecification on bias and 

coverage rates and, because of the large number of parameters in LCPMMs, may be subject 

to greater likelihood of non-converged solutions that were observed in this study.

Finally, this study was constructed based on class-specific treatment effects from one of the 

few published studies to examine LCPMMs as an option for modeling the impact of group 

membership turnover on treatment effect estimation in open enrollment group trials 

(Morgan-Lopez & Fals-Stewart, 2007), although the key focus of the simulation study was 

the á posteriori examination of the effect sizes for the differences between those class-

specific treatment effects. Because this area of treatment methodology research is in its 

infancy, the literature offered us no additional clues as to which parameters to use other than 

those which we ourselves have published. However, methodologists, particularly those who 

may be generally interested in research on LCPMMs (an area that is underdeveloped) may 

consider focusing on manipulating the size of the discrepancies between treatment effects 

(i.e., the sizes of the treatment x class interaction effects) rather than manipulating the class-

specific treatment effects (i.e., manipulating the within-class treatment main effects).

Conclusion

The federal funding agencies charged with the caretaking of the substance abuse and 

alcoholism treatment research portfolio in the United States (i.e., NIDA, NIAAA) have 
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recognized and, to their credit, attempted to eliminate (NIAAA/NIDA, 2003a, 2003b) the 

gap between the predominant use of open enrollment groups for behavioral treatment 

conducted in community settings and their scant use in the designs of behavioral treatment 

research trials. The logistical and methodological difficulties accounting for those gaps have 

been well documented and have served to stymie grant applications with ecologically-valid 

designs (all things equal). Changes over time in group membership structure have been cited 

as the top analytic concern in the development and evaluation of open enrollment therapy 

trials (NIDA, 2003); recent advances in modeling non-ignorable missing data via latent class 

pattern mixture models (Lin et al., 2004; Muthén et al., 2003; Roy, 2003) have shown 

promise in handling the problem of turnover in group membership in ways that conventional 

longitudinal growth models cannot (Morgan-Lopez & Fals-Stewart, 2007, 2008). With these 

advances has come the recognition that the choice of analysis is critical to making sound 

inferences about the efficacy of group treatments; we illustrated this in the context of a 

single dataset in the evaluation of an open enrollment group therapy trial for men with a 

primary diagnosis of alcoholism (Morgan-Lopez & Fals-Stewart, 2007) and, in this article 

have identified conditions where treatment researchers should be most concerned about the 

choice of analytic framework for the evaluation of their respective open enrollment group 

trials. It is our desire that these continuing advances will free up behavioral treatment 

researchers to defensibly analyze data they currently have from open enrollment groups or 

encourage them to submit grants on new and/or empirically-supported therapies that 

incorporate open enrollment groups in the ultimate hope of bridging the gap between how 

treatment research is designed and conducted and how substance abuse and alcoholism 

treatment are implemented in practice.
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Appendix A

Converting Regression Coefficients to R2 values

Consider the following mixture SEM, structured as a K-class latent class pattern mixture 

model:

where the probability of membership in attendance class K is:
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captured by an intercept-only (i.e., unconditional) multinomial logit model for class 

membership (Muthén & Muthén, 1998–2004, p.29), the probability of ait conditional on 

membership in Attendance Class K (i.e., the probability that patient i will show up for 

treatment at time t, given membership in attendance class K) is captured in the following 

logit model:

Finally, the distribution of the outcome variable, dit takes the following form:

Where the mean structure of dit (conditional on class membership) is:

And the covariance structure for dit is:

The mean and covariance structure take on the same form (within each attendance class) as 

the standard confirmatory factor analysis model, which is then structured to model linear 

growth over time in dit.

The level-1 (within-patient) model (within each class) would be:

The level-2 (between-patient) model would be:

Note that there is not an explicit 3rd level for variation between treatment groups; instead, 

standard errors for the model parameters are corrected for non-independence due to third-

level clustering of observations using robust ML estimation (Yuan & Bentler, 2000).
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Our focus is on the converting r2 values from Morgan-Lopez and Fals-Stewart (2007) to a 

regression parameter (Γ11) in the between-patient model capturing the impact of the 

treatment condition on variation in growth over time on dit (i.e., α1i). If:

then the total variance of α1i (based on the rules of covariance algebra) equals:

In this case, the r2 of interest is defined as the proportion of variance in the slope-over-time 

in the outcome α1i that is accounted for by the treatment condition (relative to the total 

variance in α1i).

If the V(Treatment) = .25 (as it would with equal Ns in the treatment and comparison 

conditions) and V(g1i) is set to variance 1, and the r2 of interest is .43 (for example), then 

solving for Γ11 yields a regression coefficient of |1.73|.

Appendix B

Delta Method Standard Errors and Cohen's D values for the Difference 

between the Completers Class Treatment Effect and the Average Treatment 

Effect in the Other Two Classes

The delta method is used to derive the variance of functions (e.g., sums, products, sums of 

products) of normally distributed random variables (e.g., regression coefficients). The 

asymptotic distribution of the estimator (i.e., f(θ')) is given by (Bishop et al., 1975, p.493):

(1)

Where f(θ') is a single function of interest, ∂f/∂θ is a vector of partial derivatives and Σ(θ') is 

a covariance matrix among all parameters that appear in the function f(θ). The function of 

interest in the present case is the difference between the Completers treatment effect and the 

average of the treatment effects in the Dropout and Erratics classes (i.e. the treatment effect 

discrepancy measure (TED) in absolute value):

(2)

The partial derivatives of the function (θ) with respect to each parameter are as follows:
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The covariance matrix among the treatment effect estimates from the three classes are pre- 

and post-multiplied by the vector of partial derivatives of the functions of interest:

Where C = completers, E = erratics, and D = dropouts. The square root of this new quantity 

is the standard error for the TED. The standard error is:

The z-test for significance of the TED is:

This value is then converted to a Cohen's D effect size using the formula in Rosnow and 

Rosenthal (1991): 2z/√(df), where the degrees of freedom equal the sample size.
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Figure 1. 
Latent Class Pattern Mixture Model. Attend = Latent Attendance Class Variable. d1-d6 = 

Observed simulated outcome variable (e.g., past week substance use) from person weeks 

1-6. a1-a6 = Binary indicators of treatment attendance from weeks 1-6. StartWeek = The 

week that the trial was in when individual i joined the trial (ranges from trial week 1 to trial 

week 16). X = Treatment condition (Open Enrollment Group = 1; Individual Therapy = 0). 

α0GI = estimated level of the outcome at time = 0 (i.e., baseline). α1(G)I = estimated rate of 

per week change in the outcome from weeks 1-6. Paths from “Attend” to the growth 

parameters (i.e., α0(G)I, α1(G)I) indicate that the conditional means of the growth parameters 

vary across attendance class. Paths from “Attend” to the X → growth parameter links (as 

connected by the “dots”) indicate that the treatment effects vary across attendance classes.
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Figure 2. 
Treatment Effect Discrepancy by Dropout Class Proportion Interaction: Standardized Bias 

(When the Completers Class Size is Highest).
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Figure 3. 
Treatment Effect Discrepancy by Dropout Class Proportion Interaction: Standardized Bias 

(When the Completers Class Size is Lowest).
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Figure 4. 
Treatment Effect Discrepancy by Dropout Class Proportion Interaction: Confidence Interval 

Coverage (When the Completers Class Size is Highest).
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Figure 5. 
Treatment Effect Discrepancy by Dropout Class Proportion Interaction: Confidence Interval 

Coverage (When the Completers Class Size is Lowest).
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Table 1

Cross-Matching of Simulation Parameters

Combination C% Cγ E% Eγ D% Dγ Weighted-Average γ

1 50% 1.73 30% .263 20% .815 1.1069

2 50% .815 30% 1.73 20% .263 .9791

3 50% .815 30% .263 20% 1.73 .8324

4 50% 1.73 20% .263 30% .815 1.1621

5 50% .815 20% .263 30% 1.73 .9791

6 50% .263 20% 1.73 30% .815 .722

7 50% .263 20% .815 30% 1.73 .8135

8 30% 1.73 50% .815 20% .263 .9791

9 30% .815 50% 1.73 20% .263 1.1621

10 30% .263 50% 1.73 20% .815 1.1069

11 30% .263 50% .815 20% 1.73 .8324

12 20% 1.73 50% .815 30% .263 .8324

13 20% .263 50% 1.73 30% .815 1.1621

14 20% .263 50% .815 30% 1.73 .9791

15 20% 1.73 30% .815 50% .263 .722

16 20% .815 30% .263 50% 1.73 1.1069

17 20% .263 30% 1.73 50% .815 .9791

18 20% .263 30% .815 50% 1.73 1.1621

19 50% −.263 30% 1.73 20% .815 .5505

20 50% −.815 20% .263 30% 1.73 .1641

21 30% −.263 50% .815 20% 1.73 .6746

22 50% .263 20% −1.73 30% .815 .0300

23 30% .263 20% −1.73 50% .815 .1404

24 20% 1.73 30% −.815 50% .263 .2330

25 20% −.815 50% −1.73 30% .263 −.9491

26 20% −1.73 30% −.815 50% .263 −.459

27 20% −1.73 30% −.263 50% .815 −.0174

28 50% .815 30% 1.73 20% −.263 .8739

29 30% .815 20% .263 50% −1.73 −.5679

30 20% .263 30% .815 50% −1.73 −.5679

31 50% −.815 30% .263 20% −1.73 −.6746

32 20% −1.73 30% .815 50% −.263 −.233

33 20% −1.73 30% .263 50% −.815 −.6746

34 50% 1.73 20% −.815 30% −.263 .6231

35 20% 1.73 30% −.815 50% −.263 −.0300

36 20% .815 30% −1.73 50% −.263 −.4875

Notes. C = Completers. E = Erratics. D = Dropouts. γ = regression parameter for the treatment effect on growth over time on the outcome.
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