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Abstract

A new approach has been developed by combining the K-mean clustering (KMC) method and a 

modified convolution kernel compensation (CKC) method for multi-channel surface 

electromyogram (EMG) decomposition. The KMC method was first utilized to cluster vectors of 

observations at different time instants and then estimate the initial innervation pulse train (IPT). 

The CKC method, modified with a novel multi-step iterative process, was conducted to update the 

estimated IPT. The performance of the proposed K-means clustering - Modified CKC (KmCKC) 

approach was evaluated by reconstructing IPTs from both simulated and experimental surface 

EMG signals. The KmCKC approach successfully reconstructed all 10 IPTs from the simulated 

surface EMG signals with true positive rates (TPR) of over 90% with a low signal-to-noise ratio 

(SNR) of −10dB. Over 10 motor units were also successfully extracted from the 64-channel 

experimental surface EMG signals of the first dorsal interosseous (FDI) muscles when a 

contraction force was held at 8 N by using the KmCKC approach. A ‘two-source’ test was further 

conducted with 64-channel surface EMG signals. The high percentage of common MUs and 

common pulses (over 92% at all force levels) between the IPTs reconstructed from the two 

independent groups of surface EMG signals demonstrates the reliability and capability of the 

proposed KmCKC approach in multi-channel surface EMG decomposition. Results from both 

simulated and experimental data are consistent and confirm that the proposed KmCKC approach 

can successfully reconstruct IPTs with high accuracy at different levels of contraction.
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I. INTRODUCTION

ENCOURAGED by highly successful achievements [1-7] in the decomposition of 

indwelling electromyograms (EMG) signals, various approaches have been developed over 

the past years to decompose surface EMG signals into their constituent motor unit action 

potential (MUAP) trains [8-10]. However, surface EMG signal decomposition presents 

many technical challenges [10], e.g. shape changes across different action potentials from 

each motor unit (MU), similarities of shape at various times among the action potentials of 

different MUs, the large dynamic range of amplitudes present among the action potentials of 

different interested MUs, and the overlap of action potentials from different MUs. These 

phenomena may also present together to make the surface EMG decomposition task even 

more difficult.

Recently, multi-channel amplifiers and high-density surface electrode grids which can 

partially solve aforementioned problems have become available for the non-invasive 

recording of human motor units [11]. Subsequently, a variety of techniques, including 

pattern recognition and blind source separation (BSS), that are capable of handling the 

multi-channel surface EMG data have also been developed [12-14]. Kleine et al. [15] 

investigated the importance of two-dimensional (2D) spatial filters in decomposing surface 

EMG signals, and the presented results demonstrate that the proposed 2D spatial filtering 

approach can detect the firing times of MUs with a high level of accuracy, but has difficulty 

in separating MUs with identical MUAP shapes. Gazzoni et al. [16] utilized a classification 

and template matching segmentation technique to extract and classify single MUAPs and 

further investigated the anatomical and physiological properties of the detected MUs. The 

main limitation of this method is that it is difficult to obtain complete firing patterns due to 

the superposition of MUAPs. Garcia et al. [17] modeled surface EMG signals as an 

instantaneous mixture of MUAP trains in order to separate MUs and claimed that they could 

successfully solve overlaps of MUAPs, even at 60% maximum voluntary contraction 

(MVC), by combining the preprocessing filters, independent component analysis (ICA), and 

template-matching techniques. Holobar and Zazula proposed both a convolution kernel 

compensation (CKC) method [18] and latterly a gradient convolution kernel compensation 

method (GCKC) [19] to handle convolution mixtures of innervation pulse trains (IPTs). The 

CKC method estimates the IPTs directly without calculating the unknown mixing matrix, 

and results show that over 30 concurrently active MUs can be extracted from multi-channel 

surface EMG signals with good quality [19]. This CKC method, however, is mainly applied 

in the case of relatively low force contractions for better results [20, 21]. The GCKC method 

has been demonstrated in previous studies to perform with high accuracy and noise 

robustness in decomposing surface EMG signals [19], but it has a requirement for the length 

of the signal to converge when a certain gradient-based update rule is utilized [22].

In the present study, a new hybrid surface EMG decomposition approach (KmCKC) was 

successfully developed by combining the K-means clustering (KMC) method and the CKC 

method modified with a novel multi-step iteration strategy to further improve the efficiency, 

noise robustness and accuracy of multi-channel surface EMG decomposition.
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II. METHODS

A. K-means Clustering Method, Data Model, and Convolution Kernel Compensation

The KMC method is employed in the proposed KmCKC approach for data clustering. If a 

set of data and the number of clusters were given, the data would be repeatedly put into 

different groups by the KMC by evaluating a distance function. The clustering criterion 

adopted in the KMC is the distance between two elements within the same group. A two-

stage iterative algorithm [23] is used also to minimize the sum of point-to-center distances 

over all clusters.

Given a linear time-invariant (LTI) multi-input multi-output (MIMO) system, the equation 

of CKC model can be stated as [18-19, 24]:

(1)

where X (n) = [x1 (n),..., xM (n)]T is the group of M convolution observations and xj (n) is the 

n-th sample of the j-th observation. e(n) = [e1(n),...,eM (n)]T is a vector of temporally and 

spatially zero mean white noise.

is an extended form of N sources, s(n) = [s1(n),...,sN(n)]T, and H is the mixing matrix, which 

consists of all of the channel responses hij = [hij (0),...,hij (P – 1)] (the j-th source in surface 

EMG signals appearing in the i-th measurement) of length P samples.

In order to improve the knowns-to-unknowns ratio, the model (1) is extended with K-1 

delayed repetitions of each original observation [18, 19]:

Adopting the extended form X̄ (n) and the model from (1), an activity index of global pulse 

train can be written as [18, 19]:

(2)

where CX̄ X̄ stands for the correlation matrix of the extended and observations X̄ (n), and T 

and −1 stand for transpose and inverse, respectively. Suppose the pre-multiplying vector X̄ 

(n0) is fixed in (2) to the sampling time n0, and the expression can be rewritten as [18]:

(3)

It has been proven that if only the j-th source is active in time instant n0, sn0(n) yields the 

estimation of the innervation pulse train of the j-th source [18]:
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(4)

A solution can then be achieved via (3) for the decomposition of a linear and convolution 

mixture of IPTs.

In order to improve sn0(n), X̄ (n0) in (3) is replaced with the average value CX̄sj [18],

(5)

where φ = {n0, n1 ,..., nm} denotes a set of firing times of the j-th MU, and card(φn) denotes 

the cardinal number of φn.

B. KmCKC Method

A pulse train sn0 was first estimated using time instant n0 according to (3), where a pulse 

was randomly selected and denoted by n1 – the time of its occurrence [18]. Then a new 

pulse train sn1 is obtained by using (3). According to [18], there should be one pulse train 

denoted by sj which is active in pulse train sn1. Some of the time instants (usually 30-60 time 

instants) associated with the highest peaks can then be selected from sn1 and denoted by φnc 

= {nc1, nc2, ...,nck}, where these instants are usually generated by one or more MUs. The 

observations X̄ (n) corresponding to φnc can then be classified into groups (usually 2-4 

groups are classified) by using the KMC. The group which contains the largest number of 

elements will be selected and the time instants in this group will be denoted by , where most 

of time instants in φnv = {nv1, nv2, ...,nvn}, where most of time instants in φnv should be fired 

by one MU in general. Then an initial pulse train  can be estimated from the observations 

X̄ (n) corresponding to φnv. Usually the initially estimated pulse train is not acceptable in 

cases with a low signal to noise ratio (SNR). Hence, the multi-step iteration as described 

below is necessary to improve the pulse train. The detailed algorithm steps are depicted 

below.

Step 1—Compute the correlation matrix of observations CX̄ X̄ and the associated inverse 

matrix.

Step 2—Compute γ(n) and  with (2) and compute sn0 with (3) [18]; 

find the maximum value in sn0, its time of occurrence n1, and reconstruct sn1 according to 

(3). Identify k time instants corresponding to the highest peaks in sn1, denoted by φnc = {nc1, 

nc2, ...,nck}.

Step 3—X̄(nci ), nci ε φnc are clustered into groups by using the KMC method. The group 

which contains the largest number of elements, denoted by φnv = {nv1, nv2, ...,nvn}, is then 

selected. According to (5), the observations X̄(n) over all time instants from φnv can be 

averaged as . An initial pulse train is estimated as 

 by using CX̄sj0 to replace X̄(n0) in (3).
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Step 4—Find r different highest peaks in  and their time of occurrence φnu = {nu1, 

nu2, ..., nur}. Average as X̄(φnu) as  and a new pulse train can be 

estimated as  according to (3) and (5).The r + Np (Np ≥ 1) highest 

peaks in ,  denoted by φnq = {nq1, nq2, ..., nqp}, and their times of occurrence are 

continually found, and is averaged X̄(φnq) is averaged as  . The 

pulse train is then updated as  and r is set to r+Np.

Step 5—Repeat step 4 for h times, until finally the j-th pulse train 

 is obtained.

Step 6—Set γ(d) = 0, ∀ d ε φnv [18].

Step 7—Repeat steps 2-6 for Nmdl times (usually depending on the maximum number of 

motor units that can be extracted). Finally, the IPTs are classified into groups for each 

specific MU.

C. Simulated Surface EMG Signals

1) Test 1: Test with Signals Generated by a Random Mixing Matrix—Ten trails 

were conducted in this test with the number of sources N being set to 10, and Nmdl in step 7 

from section II.B was set to 150. All the simulated signals were generated with the same 

protocol as described in [18], but the mean interpulse interval (IPI) of each input pulse train 

was set to 100 samples, parameter τ was set to 10 samples and the number of observations 

M was set to 25. The number of delayed repetitions K was set to 9 [18] so that the number of 

extended IPTs was 190 and the number of observations was 250. Each generated signal was 

corrupted by Gaussian zero-mean noises with the SNRs being set to −10dB, −5dB, 0dB, 

5dB and 10dB, respectively. The number of highest peaks r was set to 10 and the number of 

time instants (Np) added in each iteration step was also set to 10, while the number of 

iteration steps h (step 5 in section II. B) was set to 20.

2) Test 2: Test with Synthetic Surface EMG Signals—Synthetic surface EMG 

signals were generated by using a planar volume conductor model as described in [25]. The 

intracellular action potential of a muscle fiber was modeled as a current tripole (impulse 

amplitudes: I1 = 24.6 A/m2, I2 = −35.4 A/m2, I3 = 10.8 A/m2; distances between poles: a = 

2.1 mm, b = 6.9 mm) [26].

A grid of 8×8 electrodes with a 5-mm inter-electrode distance in both directions was 

assumed in the study for recording surface EMG signals. These surface EMG signals were 

sampled at a frequency of 2,000 Hz. Ten simulation trails were performed by assuming 10 

different active MUs, where the number of fibers, position of the active MUs, discharging 

patterns, and conduction velocity were all generated randomly in each trail. The surface 

EMG signals were corrupted by additive Gaussian zero-mean noises with different SNRs 
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varying from 0 to 20 dB, and the number of delayed repetitions of each original observation 

was set to 9 [18,19].

D. Experimental Surface EMG Signals of the First Dorsal Interosseous (FDI) Muscles

1) Test 3: Test with Experimental Multi-channel EMG Signals—The experimental 

surface EMG signals were collected from the first dorsal interosseous (FDI) muscles of three 

adult subjects. The study protocol was approved by the Institutional Review Board (IRB) of 

Northwestern University (Chicago, USA). Subjects were seated upright in a mobile Biodex 

chair (Biodex, Shirley, NY). A standard 6 degrees-of-freedom load cell (ATI Inc, Apex, 

NC) setup and procedures for minimizing spurious force contributions from unrecorded 

muscles as described in [27] were used to accurately record the isometric contraction force 

of the FDI muscles during index finger abduction. Surface EMG signals were recorded from 

the FDI muscles with a Refa amplifier (TMS International BV, The Netherlands) using a 

flexible 2-dimensional 64-channel (individual recording probes were 1.2 mm in diameter in 

8 × 8 formation, with a center-to-center probe distance of 4 mm) surface electrode array 

(TMS International BV, The Netherlands). The skin over the tested muscle was carefully 

prepared with gentle abrasion and a small amount of absorbable conductive electrode cream 

[28]. The electrode array was attached to the FDI muscle with a double adhesive sticker and 

further secured with medical tapes. The maximum voluntary contraction (MVC) was first 

measured; after that, each subject was asked to generate an isometric contraction force of the 

FDI muscles at different contraction levels at 2N, 4N, 6N and 8N, respectively. Multiple 

trials were performed at each force level in which the subject was asked to maintain the 

force as stable as possible for up to 10s. The signals were sampled at 2 kHz per channel, 

with a band pass filter setting at 10 - 500 Hz.

III. RESULTS

A. Simulated Surface EMG Signals

1) Test 1 Results—Fig. 1(a) shows the number of reconstructed IPTs and Fig. 1(b) shows 

the true positive rate (TPR) [20] achieved by the linear minimum mean square error 

(LMMSE) estimator [18], KmCKC, GCKC and classic CKC respectively at different noise 

levels. Parameters utilized in the KmCKC method and the corresponding computation times 

in this test are listed in Table I, where Ls is the number of samples in each channel's signal, 

tc is the computing time, and r, Np, h and Nmdl refer to the steps 4, 5 and 7 in the section II. 

B. The same amount of IPTs were reconstructed by all the four decomposition methods with 

SNRs over 0 dB, but the KmCKC method achieved a higher TPR than either the GCKC or 

classic CKC methods. All the 10 assumed IPTs were successfully reconstructed by the 

KmCKC method when the SNR is set to −5dB or −10dB, while both the GCKC and classic 

CKC methods failed to achieve such results. These results demonstrate that the proposed 

KmCKC method is robust to noise. Note that the LMMSE estimator assumes prior 

information that is known in the computer simulation, but is not available in experimental 

EMG signals. Therefore the LMMSE method stands for an ideal solution here but is not 

practicable in reality – the LMMSE results are listed here only as a reference.
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Let TIA denote the accuracy of time instants, TIT denote the total number of correctly 

identified time instants that were fired by one MU before estimating the final pulse train 

(e.g. For KmCKC, TIT stands for the total number of correctly identified time instants in 

step 5 used to calculate CX̄sj(h+1) ; whereas for CKC, TIT stands for the total number of 

correctly identified time instants in a common set Ψj in step 5 [18]), and TIW denote the 

total number of time instants fired by this MU, then TIA can be given as

(6)

Note that TIA is an important parameter to decide the quality of reconstructed IPTs, and 

TPR is a parameter utilized to measure the accuracy of time instants that are correctly 

identified after obtaining the final pulse train. Fig. 1(c) shows the average time instant 

accuracy achieved by the KmCKC and classic CKC, respectively, at different noise levels. It 

can be seen that the time instant accuracy of the IPTs reconstructed by the KmCKC reaches 

about 100% for all SNRs over −5dB. The time instant accuracy of the reconstructed IPTs 

does drop to about 30% when the SNR is set to −10dB, but overall the KmCKC approach 

offers higher time instant accuracy than the classic CKC at all noise levels.

It can also be seen that the performance of the KmCKC approach is similar to that of the 

LMMSE estimator. Please note that the original IPTs were delayed by samples in the range 

of [1, 10] to achieve better results when the LMMSE estimator was implemented. When the 

classic CKC was implemented, the number of nr, denoted by Nnr, was selected from 

200-300 [18], as it would not improve results to further increase the number of nr beyond 

this value. A threshold Thp was set to determine the number of pulses in the product of (11) 

of [18]. The parameter R was set to 4 and the number of combinations (n3, n4, ..., nR-1), 

denoted by Nc, contributing the number of pulses exceeding the threshold J in the common 

set Ψj was selected from 60-400 [18]. The main decomposition loops (steps 2-8 in Fig.1 of 

[18]) were performed 20 times with different parameters chosen from the above range in 

order to best fit the parameters for the classic CKC. The results were compared and the 

values that could reconstruct the greatest number of IPTs were selected, the main 

decomposition loops were then performed 300 times to obtain the final results (it again 

would not improve the results any more to further increase the number of main 

decomposition loops). The number of main decomposition loops and the number of 

iterations were set to 500 and 40, respectively, to estimate ĉtjX in (5) of [19] when the 

method of GCKC was implemented. The scalar function f (t) = (1 3)t3 was used as in (9) of 

[19]. The IPT was considered as real when its TPR was greater than 75%.

2) Test 2 Results—The sum of MUAP trains reconstructed by KmCKC from one typical 

channel of the synthetic surface EMG signals and the associated residual are shown in Fig. 

2(a). Fig. 2(b1) shows the number of reconstructed IPTs and Fig. 2(b2) shows the TPRs 

achieved by the LMMSE estimator, KmCKC, GCKC, and classic CKC respectively. 

Parameters utilized in the KmCKC approach and the computing time are listed in Table I. 

The implementation of the classic CKC method in this test is similar to its implementation in 

Test 1, but the main decomposition loops were performed 350 times. The parameters used in 

Ning et al. Page 7

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2015 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the GCKC method in this test are the same as in Test 1. Results show that the number of 

reconstructed IPTs achieved by all four of the decomposition methods increases as the SNR 

goes up. A maximal reconstructed IPT number of 4 is achieved by the classic CKC and 

GCKC methods when the SNR is increased to 15 dB, but does not increase further when the 

SNR is further increased to 20 dB. This phenomenon seems hint that only the MUs 

contributing Significantly to the surface EMG signals can be identified by the classic CKC 

and GCKC methods. The maximal reconstructed IPT number of 8 achieved by the KmCKC 

demonstrates a superior level of performance in reconstructing MUs.

B. Experimental Surface EMG Signals

1) Test 3 Results—Parameters utilized in the KmCKC method and the computing time 

are listed in Table I. Note that the implementation the classic CKC method in this test is 

similar to the implementation in Test 1, but the main decomposition loops were performed 

400 times. The parameters used in the GCKC method in this test are the same as the 

parameters used in the Test 1. The sums of the MUAP trains extracted by KmCKC and the 

residual after the subtraction of these extracted MUAP trains from the raw surface EMG 

signals of the FDI muscles are shown in Fig. 3(a). Fig. 3(b) shows the MUs identified by the 

classic CKC and KmCKC methods. Results show that both the KmCKC and classic CKC 

can identify the first six MUs, but the last eight MUs can only be identified by the KmCKC 

approach. The number of MUs extracted by the KmCKC, GCKC, and classic CKC methods 

corresponding to different force levels of contraction of three subjects are reported in Table 

II, where NMU-64 denotes the number of MUs extracted from all 64 channels. Overall the 

number of MUs identified by the KmCKC increases with the increasing contraction force, 

but the number of MUs identified by the classic CKC is reduced.

Experimental multi-channel surface EMG recordings from the three subjects were also 

utilized to validate the performance of the proposed KmCKC method in surface EMG 

decomposition by using the ‘two source’ approach. Surface EMG channels were divided 

into two independent groups: channels with odd channel numbers formed one group and 

channels with even channel numbers formed the other group. The number of MUs extracted 

from all channels for each independent group (denotes by NMUG1 and NMUG2 respectively), 

the number of common MUs extracted from the two independent groups (denotes by 

NCOMMU), and the percentage of common pulses generated by the common MUs (denotes 

by PCOMPUL) are reported in Table II. It is not surprising that the number of extracted MUs 

decreases significantly when the number of channels drops by half, especially in the case of 

high-force contractions. The fact that the percentage of common MUs and common pulses 

are still very high even when the number of MUs extracted is reduced demonstrates the 

reliability of the proposed KmCKC method in multi-channel surface EMG decomposition. 

In addition, to study the effect of number of channels on the decomposition performance, the 

first and last 16 channels as well as the first and last 48 channels were used to decompose 

sEMG signals respectively. These results are also presented in Table II, where NMU-16 and 

NMU-48 denotes the number of MUs extracted from 16 channels and 48 channels 

respectively.
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IV. DISCUSSION

There are two innovations in the proposed KmCKC approach compared to the classic CKC 

and the GCKC. One innovation is the employment of the KMC method in step 3, while the 

other is the use of the novel multi-step iteration approach in steps 4-5 in the proposed 

KmCKC approach.

Since the MUAPs generated by the same MU have a certain degree of similarity in multi-

channel surface EMG signals, the firing times of the same MU can be clustered by using the 

KMC method via evaluating a distance function. The firing times of different MUs are often 

mixed into a single group if a small number of groups is clustered by KMC in step 3 (section 

II.B) and a large number of time instants in φnc is identified in step 2 (section II.B). 

Therefore, the number of clustered groups and time instants should ensure that the time 

instants in one group are fired by the same MU as completely as possible. In general, 30-60 

time instants are identified in φnc and 2-4 groups are clustered by KMC.

If the quality of the multi-channel surface EMG signals is good, as with signals generated in 

the case of low force muscle contraction with high SNR, the IPTs can be satisfactorily 

reconstructed even when steps 4 and 5 are skipped. In the case of complex surface EMG 

signals, such as the signals generated with high force level of contraction, the time instants 

fired by the same MU may not be clustered into one group successfully by using the KMC 

method, which means the IPTs cannot be satisfactorily reconstructed by only using the 

KMC method. In this case, the multi-step iteration approach proposed in the steps 4-5 is 

needed to improve the initial pulse train .

It is critical to obtain a satisfactory correlation matrix CX̄sj in (5) for all the CKC methods, 

including the classic CKC, the GCKC and the proposed KmCKC methods, in order to 

achieve good decomposition results. The CX̄sj2 estimation approach proposed in the 

KmCKC is novel, where CX̄sj2 is calculated as an arithmetic mean of X̄(φnq) in each iteration 

step. Once an IPT is estimated, the time instants corresponding to the highest peaks in the 

IPT, which are usually fired by the same MU [18], will be used to update the original IPT to 

form a new one. The quality of the new IPT will be improved when compared to the 

previous one, and new time instants corresponding to the highest peaks in the new IPT fired 

by the same MU will be identified. The new IPT will be updated by combining the new time 

instants with the previous ones. In this way the IPT will be iteratively updated and the 

quality of the IPT will be significantly improved after such a multi-step iteration process. In 

the tests conducted in this study, nearly all of the IPTs could be reconstructed after 10-30 

iteration steps. Clearly the CX̄sj estimating process employed in the proposed KmCKC 

methods is different from the existing CKC methods, including the classic CKC and GCKC 

methods. The feature that the IPTs can be gradually improved by the iterative process in 

steps 4-5 of the proposed CX̄sj estimating approach help to select more time instants fired by 

the same MU, and thereby push its performance to better approximate the performance of 

the LMMSE method. This then leads to its superior performance when compared to the 

GCKC and classic CKC methods in terms of the number of reconstructed MUs and TPRs, 

which is demonstrated in Fig. 1, Fig. 2(b1-b2), Fig. 3(b) and Table II.
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Fig. 1(c) shows that the time instant accuracy of the IPTs reconstructed by the KmCKC 

approach is as low as approximately 30% when a low SNR of −10 dB is considered. The 

time instant accuracy of 30% presented in Fig. 1(c) is an average value over all of the 

reconstructed IPTs, meaning that some of the reconstructed IPTs have time instant 

accuracies lower than 30% while others have time instant accuracies higher than 30%. It is 

surprising that the TPR of some reconstructed IPTs is still above 90%, even the time instant 

accuracy is lower than 5%. This may indicate that some time instants that do not belong to 

the same IPT will be helpful to improve CX̄sj for obtaining better results. The proposed 

method also demonstrates better noise robustness in test 1 when compared to the test 2. This 

is mainly because some of the signal components generated by smaller or deeper motor units 

are often considered as noise with low SNR (Fig. 2(b1-b2)).

The ‘two source’ method was employed in the present study to further evaluate the 

performance of the proposed KmCKC with experimental EMG signals. The high percentage 

of common MUs observed by the KmCKC method from the two independent groups of 

signals demonstrates its reliability in multi-channel surface EMG decomposition (Table II). 

Results also show that the number of reconstructed MUs significantly decreases as the 

number of surface EMG channels decreases. Therefore, it is important to increase the 

number of surface EMG channels in order to satisfactorily decompose surface EMG signals 

in cases of high force contraction.

V. CONCLUSIONS

In conclusion, a new KmCKC approach has been developed by combining a modified CKC 

method and the K-mean clustering method for multi-channel surface EMG decomposition. 

The KMC is performed as an initial step to cluster the time instants fired by the same MU 

and the classic CKC, which is modified with a novel multi-step iterative process, is 

performed to update the IPTs iteratively. These two innovations lead to the superior 

performance of the proposed KmCKC method in decomposing multi-channel surface EMG 

signals when compared to the GCKC method and classic CKC method in terms of the 

decomposition accuracy and robustness against noise. The present promising simulation and 

experimental results suggest that the proposed KmCKC method can be expected to 

accurately and efficiently decompose multi-channel surface EMG signal from different 

levels of contraction.
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Fig. 1. 
Compares the performance of difference decomposition methods with the simulated surface 

EMG signals. (a) shows the number of reconstructed IPTs, (b) shows TPR and (c) shows the 

accuracy of the time instants of the reconstructed IPTs, achieved by different decomposition 

methods at different noise levels. The results are obtained by averaging the 10 simulation 

trails (Test 1).
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Fig. 2. 
(a) The top panel represents the sum of the MUAP trains (red lines) reconstructed by the 

KmCKC method compared to the raw signals (blue lines) in one typical channel from the 

synthetic surface EMG signals with SNR=20dB, the middle panel shows an expanded 

segment of the raw signal, and the bottom panel represents the residual after subtraction of 

reconstructed MUAP trains from the raw surface EMG signals. (b1) shows the number of 

reconstructed IPTs and (b2) shows the TPR of the reconstructed IPTs achieved by different 

decomposition methods at different noise levels. The results are averaged over 10 simulation 

trails (Test 2).
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Fig. 3. 
(a) The top panel shows the sum of the MUAP trains (red lines) extracted by the KmCKC 

method compared to the raw surface EMG (blue lines) recordings from FDI muscles 

(Subject B) in one typical channel, the middle panel shows an expanded segment of the 

signal, and the bottom panel shows the residual (red lines) after subtraction of extracted 

MUAP trains from the raw surface EMG compared to the raw surface EMG (blue lines). (b) 

shows MU firing patterns identified by the KmCKC (red lines) and classic CKC (blue lines) 

from surface EMG signals of the FDI muscles, the isometric constant force of contraction 

was held at 10% MVC (Test 3).
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TABLE I

PARAMETERS USED AND COMPUTING TIMES IN THE IMPLEMENTATION OF THE KMCKC 

METHOD IN THE 3 TESTS (TESTS 1-3)

Signal Nmdl r Np h Ls tc (s)

Test 1 150 10 10 20 20000 37.3

Test 2 200 5 5 7 6001 9.4

Test 3 350 5 5 40 27001 339.4
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TABLE II

EXPERIMENTAL SURFACE EMG DECOMPOSITION RESULTS (MEAN ± STD. DEV.) ACHIEVED 

FROM DIFFERENT NUMBERS OF CHANNELS AT DIFFERENT FORCE LEVELS OF CONTRACTION 

(TEST 3)

Method Parameters
Contraction force

2N 4N 6N 8N

CKC NMU-64 4.7±1.5 5.7±2.5 3.3±2.3 2.7±2.5

GCKC NMU-64 5.7±2.5 8.0±0 5.7±4.0 6.7±2.3

KmCKC

NMU-64 10.7±4.2 10.7±1.5 10.7±3.1 12.7±0.6

NMU-48 7.7±2.8 10.5±1.2 8.2±2.3 8.3±1.6

NMUG1 6.7±2.5 9.3±1.5 8.0±1.7 5.7±2.1

NMUG2 6.7±1.5 8.0±1.0 7.3±2.5 6.0±2.6

NCOMMU 5.7±2.5 7.7±0.6 6.3±2.1 5.0±2.6

PCOMPUL (%) 92.2±5.6 92.2±5.4 94.3±4.2 97.0±4.1

NMU-16 3.3±1.6 4.2±1.2 3.7±1.9 2.5±1.5
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