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Abstract

Motivation—Global protein interaction network (interactome) analysis provides an effective way 

to understand the relationships between genes. Through this approach, it was demonstrated that 

the essential genes in yeast tend to be highly connected as well as connected to other highly 

connected genes. This is in contrast to the genes that are not essential, which share neither of these 

properties. Using a similar interactome-transcriptome approach, the topological features in the 

interactome of differentially expressed genes in lung squamous cancer tissues are assessed.

Results—This analysis reveals that the genes that are differentially elevated, as obtained from 

the microarray gene profiling data, in cancer are well connected, whereas the suppressed genes 

and randomly selected ones are less so. These results support the notion that a topological analysis 

of cancer genes using protein interaction data will allow the placement of the list of genes, often of 

the disparate nature, into the global, systematic context of the cell. The result of this type of 

analysis may provide the rationale for therapeutic targets in cancer treatment.

1 Introduction

To adapt a famous passage of John Donne, no gene is an island. Systems biology, or more 

specifically network biology, is driven by the gradual realization that a single gene is seldom 

accountable for a discrete biological function (Barabasi and Oltvai, 2004). In response, 

contemporary biology has amassed a battery of methods to survey the global features of the 

cells, from DNA, RNA and proteins to small molecules (Ideker et al., 2001; Kitano, 2002).

Transcriptome analysis, enabled by technology such as oligonucleotide microarray, is a 

simultaneous interrogation of gene expression by measuring the transcriptional activity on a 

global scale (Lockhart et al., 1996). Microarray, as well as the genome project, were the first 

forays of humanity into the realm of systems biology. Other than the fact that microarray 
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analysis suffers from inherently noisy information (therefore requiring many replicates and 

often limited by cost and availability of materials), the other problem is the sheer volume of 

information obtained from this type of experiment (Claverie, 1999). Furthermore, the 

expression level change of a gene may be corollary to change in another gene and may not 

be the direct cause of the cellular phenotype. Additional information is required to place 

these genes in context.

Interactome analysis is a study of interactions between the biological molecules on a global 

scale (Ito et al., 2001). High-throughput mapping of protein interaction allows the global 

survey of protein interaction of organisms. The resulting maps of proteome-wide protein 

interactions are called protein networks.

Topological features of the protein networks have been demonstrated to reflect the 

functionality of the interacting genes. For example, essential genes in yeast tend to be well 

connected and globally centered in the protein network (Jeong et al., 2001; Wuchty and 

Almaas, 2005). Furthermore, globally centered interactions are more likely to be well 

conserved and serve as an evolutionary backbone for the network (Wuchty and Almaas, 

2005).

Protein network analysis will place the genes identified in microarray experiments in a 

broader biological context. Since protein networks reflect the functional grouping of these 

interacting or coordinately induced/suppressed genes, the roles of the subsets of co-

expressed genes may be resolved using the combined data. This may be done by evaluating 

the topological features of the sets of genes identified by microarray experiments.

Studies in cancer have validated the effectiveness of the microarray technique, allowing 

identification of tumor subclasses and marker genes for diagnosis and treatment of the 

disease (DeRisi et al., 1996; Sorlie et al., 2001). However, the genes identified have no 

further association with other genes that are co-regulated. Integration of protein network 

data may extend the reach of the established method of analysis by considering the genes in 

a broader context. Based on this notion, we seek to reveal the biological significance of 

differentially expressed genes in squamous cell lung cancer that is identified through our 

recent microarray gene expression profiling study by using interactome-transcriptome 

analysis. We find high centrality in these differentially induced genes, but not for the genes 

that are suppressed in cancer.

2 Materials and Methods

2.1 Sample preparation

Tissue biopsy samples were collected from five squamous cell lung cancer patients 

undergoing surgical removal of tumor. Total RNA was doubly extracted from these samples 

using TRIzol™ reagent (Invitrogen, Carlsbad, CA), following the manufacturer's 

instructions (Chomczynski and Sacchi, 1987).
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2.2 Microarray analysis

The double-extracted total RNA was submitted to our Institute's core microarray facility. 

cRNA samples were prepared and hybridized to the array (Affymetrix® Hg-U133A™); its 

signals were then scanned using the protocols suggested by the manufacturer.

Bioconductor (Dudoit et al., 2003), a biological data analysis package based on R statistical 

programming language (Ihaka and Gentleman, 1996), was used for array data analysis and 

integration with other gene annotations. Robust microarray analysis (RMA) was used for 

normalization (Irizarry et al., 2003). RMA-derived expression values were used for the rest 

of the analysis (Galfalvy et al., 2003). Paired t-tests were used to distinguish the genes in 

which expression levels in the cancer cells differed from the paired normal lung tissue. 

Paired t-tests were possible because the control samples were taken from the normal lung 

tissues of the same individuals from whom the lung cancer samples were obtained.

2.3 Integration of array data to protein network

Online predicted human interaction database (OPHID, obtained on April 26, 2005) was used 

for the analysis of human protein interaction (Brown and Jurisica, 2005). Briefly, OPHID 

contains 16 034 known human protein interactions obtained from various public protein 

interaction databases, as well as 23 889 additional protein interactions that are predicted.

Genes in the array were matched to those in OPHID using gene symbols and protein 

sequences. In order to identify which genes in OPHID corresponded to which genes listed in 

the array data, we have used the following methods: (1) using the gene symbol that is 

directly indicated in the OPHID protein database and (2) using FASTA program to compare 

the peptide sequence of the OPHID protein to the peptide sequence of the array probe targets 

(Pearson and Lipman, 1988). As a result, 2137 genes on the microarray were matched to the 

protein network from OPHID.

2.4 Connectivity analysis of protein interaction map

Analysis was conducted on the connectivity of genes in the protein interaction map. For 

each connectivity l, genes in the protein network with exactly l links were selected (nl). 

From these genes, differentially expressed genes (DEGs) were counted . The fraction 

 was calculated (fraction genes, or FG) for each connectivity. Pearson's r was used to 

measure the correlation between the FG and the connectivity. In order to determine the 

significance of the correlation, the same number of genes that were differentially expressed 

was randomly chosen from the protein interaction map. Pearson's r of each set of randomly 

sampled genes was compared against the r obtained from DEGs to determine the likelihood 

that the correlation can occur by chance.

2.5 k-core analysis of protein interaction map

k-core analysis is an iterative process in which the nodes are removed from the graphs in 

order of least connected (Wuchty and Almaas, 2005). More specifically, for each iteration of 

k, given the network from the previous iteration, genes with less than k connections are 
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removed from the graph. This will result in a series of subgraphs that gradually reveal the 

globally central region of the original network.

In order to measure the centrality of the selected set of genes, the excess retention (ER) of 

the differentially expressed genes was calculated for each k-core. ER is a measure of the 

degree to which proteins from a particular group are represented relative to the entire protein 

network. The detailed explanation of ER has been described elsewhere (Wuchty and 

Almaas, 2005).

3 Results

3.1 Expression profiles of lung cancer

To obtain a list of genes that are differentially expressed in cancer, tissue samples from five 

patients with squamous cell carcinoma (SCC) of the lung were collected. Additionally, an 

equal number of normal tissues surrounding the tumor were collected from the same patients 

for comparison. This control minimizes the effect of variation in gene expression between 

the individuals, yielding a more accurate characterization of the genes differentially 

expressed in the disease.

Following the normalization of the array data from these samples, genes that were 

consistently different from normal tissue (paired t-test, P < 0.05) were selected as DEG. 

Furthermore, only the genes that can be mapped to the existing protein network were 

chosen. As a result, 360 DEGs were chosen as genes that were upregulated in squamous 

carcinoma, whereas 270 DEGs were chosen as genes that were downregulated in squamous 

carcinoma (see online supplement for the list of genes). DEGs were subsequently mapped to 

protein interaction maps for further analysis.

3.2 Topological analysis of lung cancer genes

In order to determine the topological features of the DEGs, the edge distribution for DEGs 

was compared to the rest of the graph (Section 2.4). We find that the genes that are 

upregulated in lung cancer have a positive correlation with the number of edges associated 

with them (Fig. 1a). This positive correlation indicates that lung cancer DEGs that are 

upregulated are highly connected. Down-regulated genes have a slightly lower, but positive 

correlation to connectivity (Fig. 1b).

Because only a subset of genes in the graph is present on the microarray that was used, bias 

of the selected DEGs is of concern. However, there is no correlation between the genes in 

the array to the connectivity in the protein network (Fig. 1c). Thus, the gene representation 

of the microarray itself poses no bias to the connectivity of the DEGs.

We then randomly selected the genes from the graph to see if we can get a high positive 

correlation. The same number of genes as DEGs was randomly sampled from genes that 

match the array. Then the correlation was calculated and compared the correlation to that of 

the DEGs. For the upregulated genes, average of 7.7% equaled or exceeded r of DEGs (σ = 

1.8, n = 11). For the downregulated genes, average of 86.2% equaled or exceeded r of DEGs 

(σ = 0.8, n = 11). Since the only difference between the two analyses is the number of genes 
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sampled (370 for upregulated genes and 270 for downregulated genes), the significance 

value is highly sensitive to the number of genes selected. Thus, one can conclude that, at a 

minimum, for the upregulated genes the positive correlation between the connectivity and 

the DEGs is not likely due to chance.

3.3 k-core analysis of protein network

Using the k-core analysis method, we have measured how DEGs were close to the 

topological center of the protein network (Fig. 2). In this analysis, an increase in excess 

retention as value of k is increased indicates that the selected group of genes is located near 

the topological center of the protein network. Higher the k the ER is maintained, the closer 

the genes are to the center of the network. For the upregulated genes, the excess retention 

(ER) increases as k approaches 30, then drops precipitously around 35 (Fig. 2a). For the 

downregulated genes, ER increases as k approaches 20 and then descends beyond this point 

(Fig. 2b). The early peak of the downregulated genes relative to that of the upregulated 

genes indicates that the upregulated genes are more centrally located in the protein network 

than the downregulated genes.

In order to test the significance of this finding, ER has been calculated for the same number 

of nodes that has been randomly selected from the graph. When genes were chosen from the 

entire graph, ER remained near unity, on average (Fig. 2c). However, when genes that 

correspond to the microarray probesets were chosen, ER did increase on average (Fig. 2d) 

up to k = 20. A distinct difference in the ER for each k-core can be seen between cancer 

gene and random control (average of 7 out of 1000 randomly chosen genes out of array 

probes are above the ER for upregulated genes where 1 < k < 35). Moreover, it is apparent 

that downregulated genes do not show a significant difference in ER against the genes that 

were randomly chosen from the arrays. From these results, we can conclude that the 

upregulated genes are centrally located in the protein network, but the same conclusion 

cannot be made for the downregulated genes.

4 Discussion

Transcriptional profiling of cancer using microarray has revolutionized the field by allowing 

researchers to discover tumor subclasses and target genes for diagnosis and therapy. Protein 

interaction mapping using high-throughput yeast-two-hybrid (HT-Y2H) methods has been 

hailed as the harbinger for the systematic approach to functional genomics, allowing 

individual genes to be placed in a global context of cellular functions (Mendelsohn and 

Brent, 1999). This leads to the question how are genes that are differentially regulated in 

cancer placed in the global context of the protein interaction map? In this study, we exploit 

the most recent advances in interactome analysis to answer this question.

Much of the biological diversity of tumors is the result of variation in the transcriptional 

programs (Perou et al., 2000). Microar-ray analysis of cancer cells has allowed the 

identification of specific genes or proteins that could serve as molecular targets for improved 

diagnosis and therapy. The subsequent interpretation of the genes identified by the 

microarray analysis was analyzed in a context where a single gene was accounted for the 
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individual phenotype. However, this ignores the fact that proteins rarely act in isolation from 

one another, and their specific functions are determined by association with other proteins.

A rational starting point for taking the proteins into proper context is to use the protein 

network or interactome. Interactome analysis has made a remarkable progress in the past 

decade, mainly due to the development of high-throughput screening methods such as HT-

Y2H. To date, interactomes of three eukaryotes have been mapped by HT-Y2H (Giot et al., 

2003; Li et al., 2004; Uetz et al., 2000). Due to high cost and labor, human HT-Y2H maps 

may not be available for some time. Predicted mapping of human protein interaction can 

serve as a surrogate map, years before the complete human protein network based on direct 

experimental evidence becomes available.

Hypothetical human protein interaction maps are relatively new (Brown and Jurisica, 2005; 

Lehner and Fraser, 2004). The prediction of protein interaction is based on sequence-based 

searches for conserved protein interactions, also known as interologs (Matthews et al., 

2001). Because these human interaction maps are hypothetical, it is likely to have many 

false positives as well as missing protein interactions. There is a claim that approximately 

half of the predicted interactions using interologs between microorganisms can be 

experimentally validated (Sharan et al., 2005). While the lack of accuracy in the interologs 

approach may instill little confidence in the predicted map, it is easy to envision its role in 

the validation of the HT-Y2H global protein network mapping.

The topological analyses using a hypothetical human protein interaction map suggest that 

the genes upregulated in the squamous lung carcinomas are rich in global hubs. Global hubs 

are well-connected nodes that are also located near the center of the protein network. 

Evidence is lacking to make the same claim to the down-regulated genes. Centrality of the 

genes is associated with the essential functions of the genes in the yeast (Jeong et al., 2001). 

It has been shown that the essential genes, those that are lethal when mutated, tend to be 

well connected. Another study shows that the yeast genes that are not essential but provide a 

vital function in toxin metabolism also have high number of edges associated with the 

nodes, albeit less well-connected than that of the essential genes (Said et al., 2004). k-core 

analysis has been performed on the yeast essential genes and were shown to be global hubs, 

whereas non-essential genes were not (Wuchty and Almaas, 2005). The study also indicates 

that these global hubs are conserved throughout different species.

One can surmise, from the centrality of the cancer-associated genes, the evolutionary 

constraints to the genes expressed in cancer cells. Whatever the mechanism, there must be a 

core set of genes that needs to be maintained throughout the course of somatic evolution in 

the tumor microenvironment. These genes are the ‘essential genes’ for the cancer and share 

the topological characteristics that the essential genes do in yeast. This may be manifested 

by the upregulated genes in our cancer samples that tend to be, but not restricted to, the 

global hubs. Downregulated genes tend to be less constrained in this way, either because the 

genes are suppressed by the upregulated genes (secondary effect of the core cancerous gene 

expression) or because the suppressed genes are overwhelmed by circumvention from the 

alternate or compensatory pathway that induces the upregulation of the cancerous genes.
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Our analysis concludes that squamous cell lung cancer genes share similar topological 

features for essential proteins. This finding fulfills the somatic evolution model of cancer. 

Cancerous cells undergo frequent mutation, division and selection, ultimately leading to the 

fittest ‘disregulated’ phenotype. Given this, it is reasonable to assume that the genes, which 

are differentially expressed in contrast to the surrounding normal tissue, are essential for 

survival and proliferation. Thus, given that the centrality of the genes in a protein network is 

characteristic of the essential genes in yeast, it follows that the genes essential for cancer 

cells would also share the topological characteristics of these essential genes.

This is the first time the predicted human protein interaction map has been used for the 

analysis of cancer. While microarray analysis has been used extensively for the 

identification of marker genes for various types of cancer, our approach may facilitate the 

development of drugs that target the genes that may be directly responsible for the disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Correlation of connectivity (links) versus the fractions of select genes with exactly l links. 

The genes with exactly l links were chosen from the protein network, and then the fraction 

of selected genes from this subset was calculated. (a) Upregulated genes (n = 360) in SCC of 

lung have Pearson's r, which demonstrates high positive correlation (r = 0.82). (b) 

Downregulated genes (n = 270) in SCC have slightly less correlation (r = 0.75). (c) 

Microarray probesets that match the genes in the protein network (n = 2137) show no 

correlation to link number (r = 0.06). Thus, using the genes on the microarray does not 

contribute to bias in the number of links for genes differentially expressed in SCC. (FG 

values of 1 and 0 are not excluded for r values.)
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Fig. 2. 
k-core analysis of differentially expressed genes in SCC of lung. k is the number of iterative 

decomposition of the graph (k-core subgraph), starting from the outermost edge. Higher k 

represents the central placement of the subset of genes in the original graph (k= 1). ER is the 

degree to which genes from a k-core is under- (ER < 1) or over-represented (ER > 1) relative 

to the original graph. a: ER of the upregulated genes (n = 360) in SCC; b: ER of the 

downregulated genes (n = 270) in SCC; c, c + σ, c − σ: mean ER of 1000 randomly selected 

genes from the entire network (n = 360), plus or minus the standard deviation (±σ); d, d + σ, 

d − σ: mean ER and ±σ for the 1000 randomly selected genes (n = 360) present in the 

microarray used in the experiment that matches the genes in the graph (n = 2137).
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