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ABSTRACT
Background. A common research goal in transcriptome projects is to find genes
that are differentially expressed in different phenotype classes. Biologists might wish
to validate such gene candidates experimentally, or use them for downstream sys-
tems biology analysis. Producing a coherent differential gene expression analysis
from RNA-seq count data requires an understanding of how numerous sources
of variation such as the replicate size, the hypothesized biological effect size, and
the specific method for making differential expression calls interact. We believe an
explicit demonstration of such interactions in real RNA-seq data sets is of practical
interest to biologists.
Results. Using two large public RNA-seq data sets—one representing strong,
and another mild, biological effect size—we simulated different replicate size
scenarios, and tested the performance of several commonly-used methods for calling
differentially expressed genes in each of them. We found that, when biological effect
size was mild, RNA-seq experiments should focus on experimental validation of
differentially expressed gene candidates. Importantly, at least triplicates must be
used, and the differentially expressed genes should be called using methods with
high positive predictive value (PPV), such as NOISeq or GFOLD. In contrast,
when biological effect size was strong, differentially expressed genes mined from
unreplicated experiments using NOISeq, ASC and GFOLD had between 30 to 50%
mean PPV, an increase of more than 30-fold compared to the cases of mild biological
effect size. Among methods with good PPV performance, having triplicates or more
substantially improved mean PPV to over 90% for GFOLD, 60% for DESeq2, 50% for
NOISeq, and 30% for edgeR. At a replicate size of six, we found DESeq2 and edgeR
to be reasonable methods for calling differentially expressed genes at systems level
analysis, as their PPV and sensitivity trade-off were superior to the other methods’.
Conclusion. When biological effect size is weak, systems level investigation is
not possible using RNAseq data, and no meaningful result can be obtained in
unreplicated experiments. Nonetheless, NOISeq or GFOLD may yield limited
numbers of gene candidates with good validation potential, when triplicates or
more are available. When biological effect size is strong, NOISeq and GFOLD are
effective tools for detecting differentially expressed genes in unreplicated RNA-seq
experiments for qPCR validation. When triplicates or more are available, GFOLD is
a sharp tool for identifying high confidence differentially expressed genes for targeted
qPCR validation; for downstream systems level analysis, combined results from
DESeq2 and edgeR are useful.
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INTRODUCTION
Elucidating key genes associated with variation between different biological states at the

genomic level typically begins with the mining of high dimensional gene expression data

for differentially expressed genes (DEG). For a long time, biologists have been using

microarrays for gene expression studies, and over the years, the collective experience

of the community has congealed into a set of best practices for mining microarray

data (Allison et al., 2006). Hence, to determine optimal replicate size, one may use the SAM

package (Tibshirani, 2006); to call DEG, the moderated t-test (Smyth, 2005; Smyth, 2004)

would be applied (Jeanmougin et al., 2014), producing p-values for each gene that adjust for

multiple comparisons (Dudoit, Shaffer & Boldrick, 2014). Subsequently, joint consideration

of p-value and fold change (Xiao et al., 2014) allows the researcher to identify a set of DEG

with strong potential to be validated by qPCR. Riding on such confidence, the researcher

could further study functional enrichment to gain understanding of dysregulated

biological processes, or generate network-based hypotheses for targeted intervention.

Despite the microarray’s analytical maturity, RNA-seq, which is based on next-

generation sequencing technology—is set to become the method of choice for current

and future gene expression studies (Wang, Gerstein & Snyder, 2009). In RNA-seq, direct

transcript counting through mapping of short reads to the genome overcomes the

problem of limited dynamic range caused by signal saturation in microarrays. In addition,

the transcriptome can now be sequenced to unprecedented coverage, thus removing

dependence on prior transcriptome knowledge which is crucial for probe design in

microarrays. With the availability of numerous de novo transcriptome assembly tools (Li

et al., 2014), meaningful gene expression studies in non-model organisms can now be

done. While conceptually simple, RNA-seq requires the use of sophisticated algorithms to

transform raw reads into the final gene counts. These algorithms constitute an important

source of non-biological variation that must be appropriately accounted for Oshlack,

Robinson & Young (2010), if the result is to be interpretable.

The limited availability of biological material, and the costs of data production and

bioinformatic support, are the major limiting factors for replicate size in RNA-seq exper-

iments. As a result, RNA-seq data sets with little or no biological replicates remain quite

common today. In these type of data sets, statistical power to detect DEG is poor, and fur-

ther deteriorates when the biological effect size is not strong. In fact, the problem may be-

come worse from a multiple comparison point of view, as potentially many more genes are

scored. Studies that aim at a systems level understanding using the list of DEG must there-

fore prioritize large replicate sizes over sequencing depth (Rapaport et al., 2013). However,

large RNA-seq experiments remain the exception, rather than the rule at the moment.

The count-based nature of RNA-seq data prompted new development of statistical

methods to call DEG. Despite the latter, differential gene expression analysis remains
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challenging due to lack of standard guidelines for experimental design, read processing,

normalization and statistical analysis (Auer & Doerge, 2010; Auer, Srivastava & Doerge,

2012). Currently, there is a bewildering number of methods for calling DEG. Several

recent studies compared the relative performance of various DEG call methods using

simulated and also real RNA-seq data sets (eleven in Soneson & Delorenzi (2013); five

in Guo et al. (2013); eight in Seyednasrollah, Laiho & Elo (2015)). Recommendations

for method selection were offered. However, these studies did not explicitly consider

variation of the performance of DEG call methods in the context biological effect size and

unreplicated experiments, which are of practical concern to the biologist. It may not be

an overstatement to say that, at present, how researchers pick a DEG call method out of

the plethora of alternatives available is more guided by their degree of familiarity with the

methodology literature, computing convenience and democratic evaluation of personal

experiences in bioinformatics forums, rather than on empirical evidence.

Most DEG call methods are designed to address analysis of RNA-seq experiments that

have biological replicates. A minority such as ASC (Wu et al., 2010), NOISeq (Tarazona et

al., 2011) and GFOLD (Feng et al., 2012) were initially designed for analysis of unreplicated

experiments, though the latter two could also handle replicated experiments. While

unreplicated experiments are not suitable for reliable inference at the systems level, DEG

mined using particular DEG call methods may nonetheless be useful for targeted study

if their expression can be validated independently using qPCR. Such small incremental

gains can be crucial to build up the ground work in preparation for more extensive study

in non-model organisms. Our study aims to clarify the interaction between replicate size,

biological effect size and DEG call method, so as to provide practical recommendations

for RNA-seq data analysis that will help researchers get the most out of their RNA-seq

experiments.

MATERIALS AND METHODS
Statistical methods for calling differentially expressed gene
A large number of DEG call methods have been proposed (Table 1), with the majority of

them being parametric methods that make distributional assumption about the read count

data. An exhaustive comparison of all available methods for the present study was not

feasible, nor necessary, since the relative performance of various subsets of these methods

have been investigated in several studies (Soneson & Delorenzi, 2013; Guo et al., 2013; Zhang

et al., 2014; Seyednasrollah, Laiho & Elo, 2015). As a result, less promising methods can be

omitted from comparison.

Comparisons involving methods specifically designed for unreplicated experiments

received little attention, despite the abundance of such type of RNA-seq data. For this

reason, we included ASC, GFOLD and NOISeq. For replicated experiments, we focused

on methods that have received the most attention from the scientific community (as

reflected by their relatively high citations per year), such as edgeR, DESeq and its new

version, DESeq2. These are parametric methods that explicitly model the distribution

of count data using the negative binomial distribution. Initially designed for standard
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Table 1 Methods for calling differentially expressed genes in RNA-seq data analysis. Total citations
were based on Google Scholar search result as of 22 September 2015, and normalized by number of years
since formal publication. The methods were ranked according to their citations per year.

Method Total citations Citations per year Reference

DESeq* 2,987 597 Anders & Huber (2010)

edgeR* 2,260 452 Robinson, McCarthy & Smyth (2010)

Cuffdiff2 517 258 Trapnell et al. (2013)

DESeq2* 209 209 Love, Huber & Anders (2014)

voom* 143 143 Law et al. (2014)

DEGseq 592 118 Wang et al. (2010)

NOISeq*,a,b 324 81 Tarazona et al. (2011)

baySeq 310 62 Hardcastle & Kelly (2010)

SAMSeqb 114 57 Li & Tibshirani (2013)

EBSeq 107 53 Leng et al. (2013)

PoissonSeq 99 33 Li et al. (2012)

BitSeq 70 23 Glaus, Honkela & Rattray (2012)

DSS 46 23 Wu, Wang & Wu (2013)

TSPM 70 17 Auer & Doerge (2011)

GPseq 86 17 Srivastava & Chen (2010)

NBPSeq 65 16 Di et al. (2011)

QuasiSeq 47 16 Lund et al. (2012)

GFOLD*,a 44 15 Feng et al. (2012)

ShrinkSeq 30 15 Van De Wiel et al. (2013)

NPEBseqb 14 7 Bi & Davuluri (2013)

ASC*,a 32 6 Wu et al. (2010)

BADGE 2 1 Gu et al. (2014)

Notes.
* Methods included in the present study.
a Methods initially developed to analyze unreplicated RNA-seq data sets.
b Non-parametric method.

Programming language: C/C++ for GFOLD, Cuffdiff2 and BitSeq; Matlab for BADGE; R for the rest.

experiments with biological replicates, these methods were later modified to accommodate

analysis of unreplicated experiments as well, but their performance relative to ASC,

GFOLD and NOISeq remains unclear. We did not include two methods with high

citations per year: Cuffdiff2 and DEGSeq, based on conclusions from recent method

comparative analyses. For example, Cuffdiff2 was found to have very low precision when

replicate size increased in the analysis of two large RNA-seq data sets from mouse and

human (Seyednasrollah, Laiho & Elo, 2015). Furthermore, Zhang et al. (2014) showed that

edgeR had slightly superior performance in the receiver operating characteristic curve

compared to DESeq and Cuffdiff2. Another comparative study involving DESeq, DEGseq,

edgeR, NBPSeq, TSPM and baySeq showed that DEGseq had the largest false positive rate

among them (Guo et al., 2013).

The inclusion of the popular non-parametric method NOISeq provides a contrast

between performance of parametric and non-parametric methods. We included voom,

which connects log-transformed read count data to the mature limma analysis pipeline
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Table 2 Description of the core modeling strategy of differential gene expression analysis methods
investigated in the present study.

Method Description Reference

NOISeq Non-parametric modeling of odds of signal against noise; Tarazona et al. (2011)

NOISeqBIO is a variant for handling replicated experiments which Tarazona et al. (2015)

integrates the non-parametric framework of NOISeq with an

empirical Bayes approach

ASC Empirical Bayes shrinkage estimation of log fold change Wu et al. (2010)

GFOLD Poisson count distribution; Bayesian posterior distribution Feng et al. (2012)

for log fold change

edgeR Negative binomial count distribution; genewise dispersion
parameter estimation via conditional maximum likelihood;
empirical Bayes shrinkage of dispersion parameter;
exact test for p-value computation

Robinson, McCarthy &
Smyth (2010)

DESeq Negative binomial count distribution; local regression modeling of
mean and variance parameters

Anders & Huber (2010)

DESeq2 Negative binomial count distribution; generalized linear model;
shrinkage estimation of dispersion parameter and fold change

Love, Huber & Anders
(2014)

voom Estimates of mean–variance trend from log-transformed Law et al. (2014)

count data are used as input for the limma empirical Bayes

analysis pipeline developed for microarray data analysis

Z-test The Z-statistic for testing the equality of two proportions –

(Smyth, 2004; Smyth, 2005) that has been used so successfully for detecting DEG in

microarray data analysis. Finally, the Z-test for equality of two proportions was included to

set upper bounds in the tested performance metrics that are attainable by naive application

of a common textbook statistical method. Let Nij be the pooled normalized read counts of

the ith gene in the jth phenotype class (j = 1,2), N+j =


iNij the total normalized read

counts in the jth phenotype class, and Ni+ =


j=1,2Nij the total normalized read counts

of the ith gene in all phenotype classes. Specifically, the Z-test statistic for the ith gene

is given by

Zi =
p̂i1 − p̂i2

p̂i(1 − p̂i)/N
,

where p̂ij = Nij/N+j, p̂i = Ni+/N, and N is the total number of normalized counts.

Table 2 provides a description of the core modeling approaches of the eight methods

considered in the present study.

Criteria for differential expression
For edgeR, DESeq, DESeq2 and Z-test, we used a joint filtering criteria (Li, 2012) based

on fold change (φ) and p-value (p) to call DEG. Let y = −log10p and x = log2φ. Thus,

each gene is associated with a paired score (x,y) after differential expression analysis.

Following (Xiao et al., 2014), we required p < 0.01 and φ ≥ 2 to call for up-regulated genes,

and p < 0.01 and φ ≤ 1/2 to call for down-regulated genes. The product of y > 2 and
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|x| ≥ 1 yields the inequality y > 2/|x|. Thus, genes that fell in the region defined by y > 2/x

were differentially up-regulated, and those in the region of y > −2/x were differentially

down-regulated. The union of the sets of differentially up and down-regulated genes

constituted the set of DEG candidates.

To handle analysis of unreplicated experiments in edgeR, we set the biological

coefficient of variation (BCV) parameter as 0.4 for the Cheung data set (see details in

‘Benchmarking’), and 0.1 for the Bottomly data set, following recommendations in Chen et

al. (2015). The exact test option was used to compute p-values.

For NOISeq, we used the recommended criteria for calling DEG as described in

the NOISeq documentation—q = 0.9 for unreplicated experiments, and q = 0.95 for

experiments with biological replicates. For ASC, genes that had log2 fold change above 1

or −1, and posterior probability 99% or more were declared to be differentially expressed.

For GFOLD, we used the default significant cut-off of 0.01. A gene with GFOLD value of

1 or larger was considered differentially up-regulated, and differentially down-regulated if

GFOLD value was −1 or smaller. Except GFOLD, which is written in the C/C++ language

and requires the Linux platform, the other methods were executed in R version 3.1.3 (R

Core Team, 2015).

Benchmarking
Data sets
To set up our benchmarking exercise, we needed two RNA-seq data sets whereby variation

in their phenotype classes produced mild and strong biological effect sizes in the tissue

of interest, respectively. We further required the RNA-seq data sets to have fairly large

replicate sizes to enable the simulation of different replicate size scenarios. To this end,

we identified two suitable RNA-seq data sets in the Recount database (Frazee, Langmead

& Leek, 2011). The latter contains unnormalized RNA-seq count data sets from 18 major

studies that have been assembled from raw reads using the Myrna (Langmead, Hansen &

Leek, 2010) pipeline.

The Bottomly data set (Bottomly et al., 2011) consists of gene expression data (22 million

Illumina reads per sample, read length of ∼30 bases) obtained from the brain striatum

tissues of two mice strains: C57BL/6J (n = 10) and DBA/2J (n = 11). Both mice strains are

known to show large, strain-specific variation in neurological response when subjected to

opiate drug treatment (Korostynski et al., 2006; Korostynski et al., 2007; Grice et al., 2007).

The Cheung data set (Cheung et al., 2010) consists of gene expression data (40 million

Illumina reads per sample, read length of 50 bases) from immortalized human B-cells of

24 males and 17 females. Sex hormones are known to modulate B cell function (Klein,

2000; Verthelyi, 2001). For example, estrogen modulates B cell apoptosis and activa-

tion (Grimaldi et al., 2002), while testosterone suppresses immunoglobulin production by

B cells (Kanda, Tsuchida & Tamaki, 1996). In the absence of antigenic challenge, however, it

seems reasonable to expect only a modest number of DEG in male and female B cells.

After removal of transcripts with zero counts in all samples, the Bottomly count table

contained 13,932 transcripts, down from an initial 36,536 transcripts, whereas the Cheung
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count table contained 12,410 transcripts, down from 52,580. Prior to analysis, the count

data were normalized using DESeq normalization (Anders & Huber, 2010), which has been

shown to be robust to library size and composition variation (Dillies et al., 2013). However,

raw counts were used for DESeq2 analysis since the method explicitly requires such type of

data as input.

Method for constructing a reliable reference DEG set
The construction of a reliable reference DEG set from which performance metrics for each

method is evaluated is a non-trivial problem, if one eschews a simulation-based approach.

To avoid circular reasoning, this reference set needs external validation from independent

evidence such as confirmation from qPCR results.

Here, we chose voom (Law et al., 2014; Ritchie et al., 2015) as the method of choice

for setting the reference DEG set. Unlike other DEG methods that primarily model

mean–variance relationships in the count data using discrete distributions such as the

Poisson or negative binomial distributions, voom log-transforms count data into a

microarray-like data type suitable for analysis using the robust limma pipeline (Smyth,

2004; Ritchie et al., 2015). Because of this, using voom to set the reference DEG set can

avoid biasing results of the called DEG due to algorithmic similarities. A gene was defined

as differentially expressed using the same joint filtering criteria for edgeR, DESeq, DESeq2

and Z-test. We found the nonparametric SAMSeq (Li & Tibshirani, 2013), which has

also been reported to have strong DEG mining performance, unsuitable for setting the

reference DEG set as it returned different DEG sets for different random seeds and number

of permutation parameters (Fig. S1).

The validity of voom as a tool for constructing reasonable in silico reference DEG sets

for the Bottomly and Cheung data set requires justification. To this end, we compared

its performance with other DEG call methods on an RNA-seq data set in which qPCR

validation results for sufficiently large numbers of genes are available. Briefly, the Rajkumar

data set (Rajkumar et al., 2015) consists of gene expression count data (26,119 genes;

minimum of 10 million Illumina reads per sample, read length of ∼50 bases) from the

amygdala tissues of C57BL/6NTac strain mice. There are two phenotype classes: wild type

(n = 8), and heterozygotes for the Brd1 gene deletion (n = 8). A total of 115 genes were

selected for qPCR validation (additional Table 5 in Rajkumar et al., 2015); differential

expression was observed in 60 of them, and not in the remaining 55. Each DEG call

method returns Ng differentially expressed gene candidates. We considered a method to

be sound for setting the reference DEG set if it did not return too few (tens) or too many

(thousands) candidates. Among methods that satisfied this criterion, the one that had

relatively higher positive predictive value (PPV; the complement of the false discovery rate)

would be preferred. Let NTP be the number of true positives, and NFP the number of false

positives. Then the number of DEG that lack validation result is U = Ng − NFP − NTP. If U

is not too large or too small, then the expected number of true positives can be estimated as

N∗

TP = NTP +
NTP

NTP + NFP
U.
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a) b)

Figure 1 Heat map of differentially expressed genes in (A) Bottomly data set (362 DEG) and (B)
Cheung data set (19 DEG). Phenotype class legend: (A) Black for DBA/2J strain (n = 11); yellow for
C57BL/6J strain (n = 10). (B) Black for female (n = 17); yellow for male (n = 24). The heat maps were
made using the gplots (Warnes et al., 2014) R package. Pairwise sample distances were estimated using
the Euclidean distance and sample clustering was done using the Ward algorithm. The DEG were sorted
based on the magnitude and sign of their t-statistic.

The expected PPV is therefore given by

PPV∗
=

NTP + N∗

TP

Ng
.

Characteristics of constructed reference DEG sets
Ideally, the in silico reference DEG set called using voom for the two test data sets should

be independently validated using qPCR, but evidence at such level may not always be

available. Where microarray data are available for the same study, a DEG candidate can

be considered reliable if it is called in both RNA-seq and microarray analyses, since fold

change of DEG from the latter has been found to correlate strongly with fold change

from qPCR (Wang et al., 2014). A total of 362 DEG for the Bottomly data set were thus

called (Fig. 1A). About 88% (320/362) of the DEG for the Bottomly data called using

voom were identical with those called in Bottomly et al. (2011) using edgeR (1,727

DEG). Approximately two fifths of them (153/362) were detected using limma applied

on Affymetrix or Illumina microarray expression data (Table S1).

For the Cheung data set, gender difference was the source of phenotype class variation.

We exploited this fundamental biological difference to infer the most reliable DEG

from the candidates returned using voom. Only DEG which were located on the sex
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chromosomes, or interacted with at least one gene product from the sex chromosomes

were used to construct the reference DEG set. This strategy resulted in a set of 19 DEG (Fig.

1B). Five of them were located on the Y chromosome, three on the X chromosome and the

remainder had known gene-gene interactions with at least one gene located on sex chro-

mosomes (based on BioGRID (Stark et al., 2006; Chatr-Aryamontri et al., 2015); Table S2).

Differentially expressed genes are characterized by between-phenotype variation that

is significantly larger than within-phenotype variation. However, occasionally some

genes may be wrongly declared as differentially expressed because some outliers within

a phenotype class were sufficiently extreme to cause relatively large between-phenotype

variation. To assess the quality of DEG called using voom, we used the Bland-Altman

plot (Bland & Altman, 1986; Fig. S2). Among the 362 DEG called for the Bottomly data

set, the majority of DEG showed good agreement of replicate variation between the two

phenotype classes—about 88% (318/362) were within 2SD (standard deviation) from

perfect agreement, and about 95% (345/362) were within 3SD. Similarly, among the 19

DEG called for the Cheung data set, within-phenotype variation difference was within 2SD

from perfect agreement for about 74% (14/19) of DEG, and within 3SD for about 84%

(16/19) of DEG. Generally, genes that showed large within-phenotype variation in both

phenotypes were not called by voom.

Once the DEG set had been constructed for the Bottomly and Cheung sets, it became

possible to operationally define what we meant by mild or strong biological effect size. For

the ith differentially expressed gene, define

T2
i =

(X̄i,1 − X̄i,2)
2

S2
i,1/n1 + S2

i,2/n2
,

where i indexes the genes, and j the phenotype classes (j = 1,2); X̄i,j and S2
i,j are the mean

and variance of normalized read counts respectively, and nj are the replicate sizes. Thus,

T2 is essentially the square of the t-statistic, which measures the magnitude of squared

deviation between mean counts in two different phenotype classes relative to the latters’

variances. By definition, the median values of T2 should be large in a data set that shows

strong biological effect size, and vice versa. For the Bottomly data set (strong effect size),

median T2 was 27.6; for the Cheung data set (mild effect size), it was 4.6. Both data sets had

approximately equal spread of T2 values around the median, the interquartile range being

38.3 and 34.5 for the Bottomly and Cheung data sets, respectively.

Simulation and performance evaluation
To simulate unreplicated experiments in both data sets, we used all possible sample pairs

(11 × 10 = 110) for the Bottomly data set, and 300 random sample pairs for the Cheung

data set. Except ASC, which only handles unreplicated experiments, we further examined

the behavior of other DEG call methods in cases of low to modest number of replicates. We

constructed 100 instances of experiments for each replicate size per phenotype class in the

Cheung data set (n = 3,6,10), and the Bottomly data set (n = 3,6) by random sampling

without replacement within each phenotype class.
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Table 3 DEG set size and expected PPV of the DEG call methods in the analysis of Rajkumar data
set. Variation in DEG set size and expected PPV were computed using bootstrapping for methods where
the DEG set size was not too small or too large.

Method DEG set size ± SE PPV∗± SE (%)

voom 287 ± 43 88.9 ± 4.1

edgeR 564 ± 694 72.6 ± 15.0

DESeq 3,384 NR

Z-test 9,417 NR

DESeq2 10 NR

NOISeq 31 NR

GFOLD 38 NR

Notes.
SE, standard error; NR, Not Relevant.

To evaluate method performance, we used sensitivity and positive predictive value

(PPV). For each DEG call method, we computed sensitivity as the proportion of reference

DEG that were called. PPV was computed as the proportion of DEG called that were

members of the reference DEG set. The mean and standard deviation (SD) of these

metrics were then reported. Methods that show good PPV are particularly interesting

in the context of unreplicated experiments, since DEG obtained from them offer the best

potential of being validated. For systems level analysis, DEG should preferably be called

using methods with good balance of sensitivity and PPV.

RESULTS & DISCUSSION
Validity of voom for setting the reference DEG set
The DEG set size and expected PPV of each method in the analysis of the Rajkumar data

set are given in Table 3. The results indicate that only voom and edgeR produced call sizes

that were of reasonable order of magnitude. However, voom had relatively higher expected

PPV over edgeR; additionally, the DEG set size called using voom had standard error (SE)

that was an order of magnitude smaller compared to edgeR (bootstrap sampling with

replacement of biological replicates; 1,000 iterations). Therefore, it seemed reasonable to

use voom as the method of choice to construct the reference DEG set for the Bottomly and

Cheung data sets.

We note with interest from Table 3 that the number of DEG called by DESeq2 dropped

drastically compared to DESeq. Since DESeq2 implements a shrinkage estimation of

dispersion parameter and fold change to improve the performance of DESeq, the present

suggests that this may occasionally lead to over-correction, resulting in DEG set size that is

too small.

Performance of DEG call methods in the Cheung and Bottomly
data sets
Positive predictive value and sensitivity
The ASC package provided by Wu et al. (2010) failed to run for particular combinations

of sample pairs. Only 24.5% (27/110) and 41.3% (124/300) pairs of samples from the
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Bottomly and Cheung data set respectively could analyzed using ASC. The simulation

results show that optimality of a DEG call method for a given replicate size depended on

whether biological effect size was mild or strong (Fig. 2). In the Cheung data set (mild

biological effect size), all methods had very low (about 1%) mean positive predictive value

(PPV) for unreplicated experiment (Fig. 2A and Table S3), suggesting that no meaningful

biological insights were possible. However, mean PPV (±SD) increased substantially for

NOISeq to 43.5 ± 31.5%, and for GFOLD to 29.6 ± 15.8%, for n = 3 (Fig. 2B). Doubling

and approximately tripling replicate size to n = 6 (Fig. 2C) and n = 10 (Fig. S3) further

improved mean PPV for NOISeq to 87.0 ± 16.1% and 92.2 ± 12.9%, and for GFOLD to

36.3 ± 14.9% and 52.6 ± 18.8%, respectively. In all four replicate sizes, mean PPV was low

for the other methods. It did not exceed 12% for DESeq2, and was never more than 3% for

edgeR, DESeq and Z-test.

A markedly different pattern of method performance was observed in the analysis

of the Bottomly data set (strong biological effect size). In unreplicated experiments

(Fig. 2D), mean PPV was relatively high for NOISeq (50.6 ± 20.3%), ASC (47.2 ± 25.9%)

and GFOLD (31.2 ± 25.6%), compared to just about 15% in edgeR and 5% in DESeq and

Z-test. DESeq2 did not perform well, with mean PPV (29.6 ± 28.4%), and an extremely

low sensitivity (0.2 ± 0.6%) as a result of making too few calls. Interestingly, GFOLD

attained very high mean PPV at n = 3 (94.3 ± 6.9%; Fig. 2E), with marginal change to

92.5 ± 3.3% at n = 6. However, GFOLD was also the method with the lowest sensitivity

(below 10%) for these two replicate sizes, which was caused by its small DEG set size

(Fig. 3).

DESeq2 struck the best balance between PPV and sensitivity as replicate size increased,

but edgeR showed reasonable performance too. At n = 3 (Fig. 2E) and n = 6 (Fig. 2F),

DESeq2 had mean PPV of 52.5 ± 10.8% and 62.1 ± 7.7%, with mean sensitivity of

36.0 ± 5.7% and 65.1 ± 4.5%, respectively. For edgeR, its mean PPV was 28.7 ± 4.1%

and 33.9 ± 3.0%, with mean sensitivity of 59.8 ± 5.4% and 79.0 ± 4.6%, respectively. At

n = 6, DESeq2 had similar sensitivity compared to its older version DESeq, and a superior

mean PPV that was about four times higher. Unsurprisingly, the Z-test remained the worst

performer, with mean PPV just about 6%.

The general increase in mean sensitivity for replicated experiments was consistent with

the finding that the increase in statistical power for detecting DEG is primarily determined

by biological replicate size, and less by sequencing depth (Liu, Zhou & White, 2014).

DEG set size
Figure 3 shows the distribution of DEG set size in the Cheung and Bottomly data sets for

different replicate sizes (for details, see Table S3). Although DESeq2 could be used to call

DEG for unreplicated experiments, it was shown to behave erratically in the Bottomly data

set, with extremely low mean DEG set size (2.5 ± 6.8). In general, for replicated studies,

methods such as DESeq2, DESeq, edgeR and Z-test made large numbers of calls that

were typically one or two order of magnitudes more (depending on underlying biological

effect size) compared to GFOLD or NOISeq. Consequently, it is expected that the formers’

sensitivity would increase at the expense of their PPV.
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Figure 2 Scatter plots of PPV against sensitivity. The n = 1,3,6 scenarios are given in (A, B, C) for
the Cheung data set, and (D, E, F) for the Bottomly data set, respectively. The diameter of a circle is
proportional to the DEG set size (scale provided in Fig. 2D). Color legend: blue (Z-test), pink (DESeq),
red (edgeR), brown (DESeq2), purple (GFOLD), green (NOISeq), orange (ASC). For n = 10 in the
Cheung data set, see Fig. S3.
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Figure 3 Box plots of distribution of DEG set size (in log10 scale) by method. The n = 1,3,6
scenarios are given in (A, B, C) for the Cheung data set, and (D, E, F) for the Bottomly data set,
respectively. Color legend: blue (Z-test), pink (DESeq), red (edgeR), brown (DESeq2), purple (GFOLD),
green (NOISeq), orange (ASC). For n = 10 in the Cheung data set, see Fig. S4.
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Table 4 Pragmatic DEG call methods for four combinations of biological effect size and replicate size,
with suggested applications.

Biological effect size

Replicate size Mild Strong

1 Nothing works GFOLDv, NOISeqv

3+ GFOLDv, NOISeqv GFOLDv, DESeq2s, edgeRs

Notes.
v, for validation work; s, for systems biology work.

Optimality requires a context
The current results suggest that unreplicated RNA-seq experiments, which are still

very common among underfunded labs working with non-model organisms, may be a

cost-effective way to generate candidate DEG with reasonable likelihood of being validated,

provided that the underlying biological effect size is strong. Thus, for unreplicated

RNA-seq experiments with phenotype classes such as those associated with pathogenic

challenge and physico-chemical stress, we expect DEG called using NOISeq or GFOLD

to be good candidates for validation. ASC may also be useful, though it should be noted

that it could fail to run for particular combinations of sample pairs, as we found out in

the present study. For validation work, GFOLD and NOISeq should be even more efficient

once triplicates are available, but further replicate size increase produced only marginal

mean PPV gain in the Bottomly data set, suggesting that using more than triplicates is not

a cost-effective approach when validation of DEG candidates is the main research goal.

When biological effect size is strong, we suggest DESeq2 or edgeR as promising methods to

mine DEG for systems biology work, on account of their good PPV and sensitivity balance.

However, users should be aware of possibility that shrinkage estimation of dispersion

and fold change procedure in DESeq2 may over-correct the initial estimates of these

parameters, leading to a DEG set size that is too small, as discovered in the analysis of

the Rajkumar data set (Table 3).

Research programs focusing on the investigation of weak or modest biological effect

sizes must have replicates, use NOISeq or GFOLD for DEG calling, and then to restrict the

research goal to validation of the DEG candidates. Pursuing a systems biology (e.g., gene

set analysis, functional enrichment) direction in such programs is not feasible, since in the

Bottomly data set, the DEG set size of both GFOLD and NOISeq at n = 10 became too

small (below 20).

Table 4 summarizes the recommended DEG call methods and research goals for the

combinations of biological effect size and replicate size considered in the present study.

Transcriptome coverage effect
Transcriptome coverage can be another important source of variation for the observed

RNA-seq gene counts (Sims et al., 2014). Assuming transcriptome size was approximately

equal for human and mouse, relative transcriptome coverage was about three times larger

in the Cheung data set (human) compared to the Bottomly data set (mouse). Despite

this, detection of DEG remained difficult when biological effect size was mild, suggesting
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that the effect of transcriptome coverage on DEG calling was probably marginal in the

present study.

Limitations
In the present study, we justified the use of voom for setting the reference DEG set on the

basis of its performance in the Rajkumar data set, which has 115 qPCR-validated genes.

Ideally, analyses of additional data sets of this nature would help us better understand the

variability of method performance. Unfortunately, RNA-seq data sets that are coupled with

extensive qPCR validation results remain uncommon.

The cost of not constructing the reference gene set using a simulation approach was the

lost of one degree of freedom in the number of DEG call methods that could be evaluated,

since we had to select one of the methods to determine the reference DEG set. Because

of this, it may be possible that voom was actually the ideal method for making DEG calls

when sufficient replicates are available. Therefore, in practical situations where systems

level analysis is desired, one may wish to consider taking the union of DEG set called using

voom with that from DESeq2 or edgeR. If the size of the union set is too large, one may

consider taking the intersection set instead to obtain a smaller, but higher confidence DEG

set (Zhang et al., 2014).

Future prospects
Many biologists have difficulty publishing results of RNA-seq experiments with no or few

biological replicates. Despite including qPCR validation results, these studies are often

dismissed by reviewers simply on grounds of ‘not having enough sample size.’ This stand is

unnecessarily dogmatic, and does not take into account that some particular combinations

in the trinity of replicate size-effect size-call method can potentially yield biologically

meaningful results, as shown in the present study.

It is gradually being appreciated that RNA-seq analysis is a complex analysis that needs

to address the numerous sources of variation from library preparation to bioinformatic

processing (Kratz & Carninci, 2014) to yield an interpretable result. As a corollary,

we suggest that one-size-fits-all pipelines for RNA-seq analysis commonly adopted by

bioinformatics service providers should not be expected to always yield the most optimal

set of DEG. There is a certainly a need for greater consultation between scientist and the

bioinformatician to fine-tune pipelines by taking into account interactions in the replicate

size-effect size-call method trinity.

As more high-quality RNA-seq experimental data continue to accrue in public

databases, a better understanding of the anticipated behavior of various DEG calling

methods under different biological and replicate size scenarios should gradually emerge

from systematic comparison studies such as the current one. A complete dummy’s guide to

RNA-seq differential gene expression analysis may not be too far ahead in the future.

CONCLUSIONS
In RNA-seq experiments, biological effect size is an important determinant of whether a

research program at the individual gene or systems level would yield the most biological
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insight. When it is expected to be mild, RNA-seq experiments should primarily aim

at mining DEG for validation purpose, using at least triplicates and either NOISeq or

GFOLD for DEG calling. Moreover, systems level analysis remains difficult as none of

the methods considered presently showed satisfactory sensitivity and positive predictive

value performance. When strong biological effect size is expected, analysis of unreplicated

experiments using GFOLD or NOISeq can yield DEG candidates with optimistic

validation prospects. The use of triplicates or more not only improves the statistical power

of DEG call methods (Liu, Zhou & White, 2014), but also unlocks the analytical potential

of RNA-seq data sets. Thus, users can apply GFOLD to pinpoint a DEG set for targeted

qPCR validation, and simultaneously implement DESeq2 or edgeR to identify a DEG set

for systems level analysis. Combining results from voom with those from DESeq2 or edgeR

may lead to further improvements.
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Le Crom S, Guedj M, Jaffrézic F, French StatOmique Consortium. 2013. A comprehensive
evaluation of normalization methods for Illumina high-throughput RNA sequencing data
analysis. Briefings in Bioinformatics 14:671–683 DOI 10.1093/bib/bbs046.

Dudoit S, Shaffer JP, Boldrick L. 2014. Multiple hypothesis testing in microarray experiments.
Statistical Science 18:71–103 DOI 10.1214/ss/1056397487.

Khang and Lau (2015), PeerJ, DOI 10.7717/peerj.1360 17/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.7717/peerj.1360#supplemental-information
http://dx.doi.org/10.1038/nrg1749
http://dx.doi.org/10.1186/gb-2010-11-10-r106
http://dx.doi.org/10.1534/genetics.110.114983
http://dx.doi.org/10.2202/1544-6115.1627
http://dx.doi.org/10.1093/bfgp/elr041
http://dx.doi.org/10.1186/1471-2105-14-262
http://dx.doi.org/10.1016/S0140-6736(86)90837-8
http://dx.doi.org/10.1371/journal.pone.0017820
http://dx.doi.org/10.1093/nar/gku1204
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://dx.doi.org/10.1371/journal.pbio.1000480
http://dx.doi.org/10.2202/1544-6115.1637
http://dx.doi.org/10.1093/bib/bbs046
http://dx.doi.org/10.1214/ss/1056397487
http://dx.doi.org/10.7717/peerj.1360


Feng J, Meyer CA, Wang Q, Liu JS, Liu XS, Zhang Y. 2012. GFOLD: a generalized fold change
for ranking differentially expressed genes from RNA-seq data. Bioinformatics 28:2782–2788
DOI 10.1093/bioinformatics/bts515.

Frazee AC, Langmead B, Leek JT. 2011. Recount: a multi-experiment resource of analysis-ready
RNA-seq gene count datasets. BMC Bioinformatics 12:449 DOI 10.1186/1471-2105-12-449.

Glaus P, Honkela A, Rattray M. 2012. Identifying differentially expressed transcripts from
RNA-seq data with biological variation. Bioinformatics 28:1721–1728
DOI 10.1093/bioinformatics/bts260.
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