Skip to main content
. 2015 Oct 29;3:e1360. doi: 10.7717/peerj.1360

Table 2. Description of the core modeling strategy of differential gene expression analysis methods investigated in the present study.

Method Description Reference
NOISeq Non-parametric modeling of odds of signal against noise; Tarazona et al. (2011)
NOISeqBIO is a variant for handling replicated experiments which Tarazona et al. (2015)
integrates the non-parametric framework of NOISeq with an
empirical Bayes approach
ASC Empirical Bayes shrinkage estimation of log fold change Wu et al. (2010)
GFOLD Poisson count distribution; Bayesian posterior distribution Feng et al. (2012)
for log fold change
edgeR Negative binomial count distribution; genewise dispersion parameter estimation via conditional maximum likelihood; empirical Bayes shrinkage of dispersion parameter; exact test for p-value computation Robinson, McCarthy & Smyth (2010)
DESeq Negative binomial count distribution; local regression modeling of mean and variance parameters Anders & Huber (2010)
DESeq2 Negative binomial count distribution; generalized linear model; shrinkage estimation of dispersion parameter and fold change Love, Huber & Anders (2014)
voom Estimates of mean–variance trend from log-transformed Law et al. (2014)
count data are used as input for the limma empirical Bayes
analysis pipeline developed for microarray data analysis
Z-test The Z-statistic for testing the equality of two proportions