NOISeq |
Non-parametric modeling of odds of signal against noise; |
Tarazona et al. (2011)
|
|
NOISeqBIO is a variant for handling replicated experiments which |
Tarazona et al. (2015)
|
|
integrates the non-parametric framework of NOISeq with an |
|
|
empirical Bayes approach |
|
ASC |
Empirical Bayes shrinkage estimation of log fold change |
Wu et al. (2010)
|
GFOLD |
Poisson count distribution; Bayesian posterior distribution |
Feng et al. (2012)
|
|
for log fold change |
|
edgeR |
Negative binomial count distribution; genewise dispersion parameter estimation via conditional maximum likelihood; empirical Bayes shrinkage of dispersion parameter; exact test for p-value computation |
Robinson, McCarthy & Smyth (2010)
|
DESeq |
Negative binomial count distribution; local regression modeling of mean and variance parameters |
Anders & Huber (2010)
|
DESeq2 |
Negative binomial count distribution; generalized linear model; shrinkage estimation of dispersion parameter and fold change |
Love, Huber & Anders (2014)
|
voom |
Estimates of mean–variance trend from log-transformed |
Law et al. (2014)
|
|
count data are used as input for the limma empirical Bayes |
|
|
analysis pipeline developed for microarray data analysis |
|
Z-test |
The Z-statistic for testing the equality of two proportions |
– |