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Abstract

Aims/hypothesis—Vitamin D and related genetic variants are associated with obesity and 

insulin resistance. We aimed to examine whether vitamin D metabolism-related variants affect 

changes in body weight and insulin resistance in response to weight-loss diets varying in 

macronutrient content.

Methods—Three vitamin D metabolism-related variants, DHCR7 rs12785878, CYP2R1 

rs10741657 and GC rs2282679, were genotyped in 732 overweight/obese participants from a 2 

year weight-loss trial (POUNDS Lost). We assessed genotype effects on changes in body weight, 

fasting levels of glucose and insulin, and HOMA-IR at 6 months (up to 656 participants) and 2 

years (up to 596 participants) in response to low-protein vs high-protein diets, and low-fat vs high-

fat diets.

Results—We found significant interactions between DHCR7 rs12785878 and diets varying in 

protein, but not in fat, on changes in insulin and HOMA-IR at both 6 months (p for interaction 

<0.001) and 2 years (p for interaction ≤0.03). The T allele (vitamin-D-increasing allele) of 
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DHCR7 rs12785878 was associated with greater decreases in insulin and HOMA-IR (p<0.002) in 

response to high-protein diets, while there was no significant genotype effect on changes in these 

traits in the low-protein diet group. Generalised estimating equation analyses indicated significant 

genotype effects on trajectory of changes in insulin resistance over the 2 year intervention in 

response to high-protein diets (p<0.001). We did not observe significant interaction between the 

other two variants and dietary protein or fat on changes in these traits.

Conclusions/interpretation—Our data suggest that individuals carrying the T allele of 

DHCR7 rs12785878 might benefit more in improvement of insulin resistance than noncarriers by 

consuming high-protein weight-loss diets.

Trial registration—ClinicalTrials.gov NCT00072995
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Introduction

Vitamin D has a pleiotropic role in various metabolic functions beyond regulation of 

calcium and bone metabolism [1]. Compelling evidence has shown that low blood levels of 

25-hydroxyvitamin D (25(OH)D), an indicator of circulating vitamin D levels, is associated 

with obesity, insulin resistance and an increased risk of type 2 diabetes [2–8]. A recent 

genome-wide association study (GWAS) identified that variants in several genes involved in 

vitamin D metabolism, such as DHCR7, CYP2R1 and GC, were associated with 25(OH)D 

levels [9]. The DHCR7 gene encodes 7-dehydrocholesterol reductase (DHCR7), which 

converts 7-dehydrocholesterol (a precursor both for vitamin D and for cholesterol) to 

cholesterol, thereby reducing the availability of this precursor for cutaneous synthesis into 

vitamin D by the action of sunlight [10]. The enzyme encoded by CYP2R1, cytochrome 

P450, family 2, subfamily R, polypeptide 1, is a key vitamin D 25-hydroxylase [11]. The 

GC gene encodes vitamin D binding protein, which plays a major role in vitamin D transport 

and storage [12]. However, the causal relationships between vitamin D levels and 

cardiometabolic diseases inferred by Mendelian randomisation studies remain unclear [4, 

13–15]. For example, a vitamin D genetic score (based on variants in DHCR7 and CYP2R1) 

was found to be associated with blood pressure and hypertension [13], but this score was not 

associated with obesity in a previous analysis [4]. Afzal et al [14] reported that genetic 

variants associated with lower plasma 25(OH)D concentrations are associated with an 

increased risk of type 2 diabetes, while another study did not observe such associations [15]. 

Thus, examining whether vitamin D metabolism-related genetic variants affect long-term 

changes in body weight, glucose metabolism and insulin resistance may help explain the 

role of vitamin D in cardiometabolic diseases.

It has been shown that DHCR7 activity and DHCR7 gene expression could be regulated by 

vitamin D or other dietary nutrients [16–19], suggesting potential interactions between 

dietary factors and vitamin D metabolism-related genes. Protein-rich and fat-rich foods are 

the main sources of naturally occurring cholecalciferol (vitamin D3) [20]; therefore, we 

hypothesised that diets varying in protein or fat content might differentially affect the effect 
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of vitamin D metabolism-related variants on body weight and related metabolic traits. Thus, 

we tested this hypothesis among 732 participants in a 2 year randomised dietary intervention 

weight-loss trial, the Preventing Overweight Using Novel Dietary Strategies Trial 

(POUNDS Lost) [21]. We examined the effects of three GWAS-identified vitamin D 

metabolism-related variants in the DHCR7, CYP2R1 and GC genes on weight loss and 

improvement of glucose and insulin metabolism in response to diets varying in protein or fat 

content.

Methods

Study participants

POUNDS Lost is a randomised intervention trial in which 811 overweight or obese 

participants aged 30–70 years were assigned to one of four energy-limited diets over a 2 

year period, in order to compare the effects of energy-reduced diets with different 

compositions of fat, protein and carbohydrate on weight loss. The detailed study design and 

methods have been described before [21]. Participants were excluded from this trial if they 

had diabetes treated with medication or unstable cardiovascular disease, if they used 

medications influencing body weight or if they expressed insufficient motivation at baseline 

examination. According to the two-by-two factorial design, two diets were low fat (20% of 

energy derived from fat) and two were high fat (40% of energy derived from fat), and two 

were average protein (15% of energy derived from protein) and two were high protein (25% 

of energy derived from protein). All these diets consisted of similar foods and met 

guidelines for cardiovascular health. The caloric prescription for each participant 

represented a deficit of 3138 kJ (750 kcal)/day from baseline, as calculated from the 

participant’s resting energy expenditure and activity level.

After 2 years, 80% of the participant (n=645) completed the trial. The main results of weight 

loss in POUNDS Lost have been reported before [21]. Most of the weight loss occurred in 

the first 6 months, and the amount of weight loss after 2 years was similar among different 

diet groups. Both self-reported dietary data and biomarkers confirmed that participants 

modified their intake of macronutrients in the direction of the assigned goals [21]. In the 

current study, a total of 732 participants with genotype data available were included (90% of 

the participants in POUNDS Lost). At 6 months, 656 participants with body weight 

measurement and 626 participants with blood samples were included for the analyses. At 2 

years, 596 participants with body weight measurements and 533 participants with blood 

samples were included for the analyses.

The study was approved by the human participants committee at the Harvard T.H. Chan 

School of Public Health and Brigham and Women’s Hospital, Boston, MA, and the 

Pennington Biomedical Research Center of the Louisiana State University System, Baton 

Rouge, LA, and by a data and safety monitoring board appointed by the National Heart, 

Lung, and Blood Institute. Written informed consent was provided by all participants.
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Measurements

At baseline examination and at 6 month and 2 year visits, body weight for each participant 

was measured in the morning before breakfast. Height was measured at baseline only. BMI 

was presented as weight/height2 (kg/m2). In the current study, ethnicity was self-reported 

and grouped as white, black and others. Fasting blood samples were collected at baseline 

and at 6 month and 2 year visits. Fasting glucose and insulin were measured using an 

immunoassay with chemiluminescent detection on the Immulite Analyzer (Diagnostic 

Products Corporation, Los Angeles, CA, USA). Analyses of glucose and insulin were 

performed at the Clinical Laboratory at Pennington Biomedical Research Center of the 

Louisiana State University System. Insulin resistance was estimated by HOMA-IR [22]: 

fasting glucose (mmol/l) × fasting insulin (pmol/l)/156.3. Dietary intake was assessed by a 

review of the 5 day diet records at baseline and by 24 h recall during a telephone interview 

on three nonconsecutive days at 6 months and at 2 years [21].

Genotyping

DNA was extracted from the buffy coat fraction of centrifuged blood using the QIAmp 

Blood Kit (Qiagen, Chatsworth, CA, USA). Three lead single nucleotide polymorphisms 

(SNPs) in vitamin-D-related loci, DHCR7 rs12785878 (p=2.1×10−27), CYP2R1 rs10741657 

(p=3.3×10−20) and GC rs2282679 (p=1.9×10−109), identified through a previous large-scale 

GWAS for 25-hydroxyvitamin D concentrations (up to 33,996 individuals) [9], were 

selected in the current study. Genotyping was performed using the OpenArray SNP 

Genotyping System (BioTrove, Woburn, MA, USA). The genotype success rate was 99%. 

Replicate quality control samples (10%) were included and genotyped with >99% 

concordance. The genotype frequencies in all participants or in white participants were in 

Hardy–Weinberg equilibrium (p >0.05).

Statistical analysis

General linear models for continuous variables and χ2 tests for categorical variables were 

applied for the comparison according to genotype groups at baseline. To improve normality, 

fasting insulin and HOMA-IR were log10 transformed before analyses. The primary 

outcomes were changes in body weight, fasting insulin, glucose and HOMA-IR over the 

time the participants remained in the trial. General linear models were applied to compare 

changes from baseline in these outcomes across genotype groups according to diet groups 

(high-protein vs low-protein diets and high-fat vs low-fat diets) at 6 month and 2 year visits, 

adjusted for age, sex, ethnicity and baseline value for the respective outcome. We used 

additive inheritance models (e.g. DHCR7 rs12785878 genotype groups were coded as 0, 1 

and 2 in continuous form for GG, GT and TT) in the analyses. To test potential gene–diet 

intervention interactions, a genotype-by-diet interaction term (e.g. DHCR7 rs12785878 

genotype × high-/low-protein diet group) was included in the models. In addition, 

generalised estimating equation methods were applied to test genotype effects on the 

trajectory of changes in fasting insulin and HOMA-IR over the 2 year intervention. As 

HOMA-IR was calculated on the basis of glucose and insulin, and the endpoints at 6 months 

and 2 years were correlated, we did not treat them as independent variables. All statistical 

analyses were performed in SAS version 9.4 (SAS Institute, Cary, NC, USA).
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Bonferroni’s adjustment was applied to adjust p values for 18 independent tests (3 

independently measured traits [body weight, glucose and insulin] × 3 genetic variants × 2 

diet comparisons) at each time point (p<0.0028). We used Quanto 1.2.4 (University of 

Southern California, Los Angeles, CA, USA; http://biostats.usc.edu/Quanto.html) to 

estimate the detectable effect sizes of genotype-by-diet interactions. For the DHCR7 

rs12785878 variant, the study had 80% power to detect gene–diet interaction effect sizes of 

2.55 and 3.53 kg for weight loss, 0.22 and 0.25 mmol/l for changes in fasting glucose levels, 

0.22 and 0.24 log-transformed unit for changes in fasting insulin levels, and 0.24 and 0.26 

log-transformed unit for changes in HOMA-IR at 6 months and 2 years, respectively, at a 

p<0.0028 level. More power calculation results are shown in electronic supplementary 

material (ESM) Table 1.

Results

Baseline characteristics

Table 1 shows the baseline characteristics of participants according to the genotypes of 

DHCR7 rs12785878, CYP2R1 rs10741657 and GC rs2282679. For all three genetic variants, 

the genotype frequencies were similar between men and women, high- and low-protein diet 

groups and high- and low-fat diet groups, while they differed among ethnic groups (p≤0.05). 

In addition, the CYP2R1 rs10741657 variant was associated with fasting glucose levels at 

baseline.

Weight loss and dietary intake

Consistent with the entire POUNDS Lost [21], the amount of weight loss was similar 

between the low- and high-protein diet groups (6 months: 6.5 vs 6.6 kg, p=0.71; 2 years: 3.6 

vs 4.5 kg, p=0.11) and between the low- and high-fat diet groups (6 months: 6.7 vs 6.4 kg, 

p=0.52; 2 years: 4.1 vs 3.9 kg, p=0.76) among study participants (ESM Table 2). The 

reported dietary intakes confirmed that participants modified their intake of macronutrients 

in the direction of the intervention (ESM Table 3). Participants in the high-protein diet 

groups and in the high-fat diet groups reported higher dietary protein intake and higher fat 

intake than those in the low-protein diet groups and in the low-fat diet groups, respectively 

(all p<0.05).

Genotypes and changes in weight, glucose and insulin resistance by diet groups

We observed significant interactions between DHCR7 rs12785878 and high-/low-protein 

diet intervention on changes in fasting insulin (p for interaction=0.0008) and HOMA-IR (p 

for interaction=0.0009) at 6 months, adjusted for age, sex, ethnicity and the baseline value 

for the respective outcome trait (Table 2). In the high-protein diet groups, the T-allele of 

DHCR7 rs12785878 was associated with greater decreases in fasting insulin (p=0.0009) and 

HOMA-IR (p=0.002; Table 2 and Fig. 1). These genotype–diet interactions and genotype 

effects remained significant after correcting for multiple testing (p<0.0028). In the low-

protein diet groups, there was no significant genotype effect on changes in fasting insulin or 

HOMA-IR (p ≥0.14). Results were similar but attenuated at 2 years (Table 2 and Fig. 1), and 

there were nominally significant genotype–diet interactions on changes in fasting insulin (p 
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for interaction =0.03) and HOMA-IR (p for interaction =0.02). These results did not change 

materially after further adjustment for weight loss (ESM Table 4).

For genetic variants in CYP2R1 and GC, we did not find significant genotype–diet 

interactions or genotype effects on changes in body weight, fasting glucose, fasting insulin 

or HOMA-IR at 6 months or 2 years (all p>0.05; Table 2).

We also examined interaction between genetic variants and high-/low-fat diet interventions 

on changes in these metabolic traits (ESM Table 5). There were nominally significant 

interactions between CYP2R1 rs10741657 and dietary fat on changes in fasting insulin and 

HOMA-IR at both 6 months and 2 years (p for interaction <0.05). In the low-fat diet groups, 

the A allele of CYP2R1 rs10741657 showed a trend to be associated with less decreases in 

fasting insulin and HOMA-IR at both 6 months (p=0.04) and 2 years (p=0.03), while no 

genotype effect was observed in the high-fat diet groups. However, these results did not pass 

a threshold of p<0.0028 after correcting for multiple testing.

As the majority of participants in this study were white (~80%), we further performed 

sensitivity analyses by excluding other ethnic groups. Similar results were observed when 

the analyses were restricted to the white participants.

Trajectory of changes in insulin resistance by DHCR7 rs12785878 in response to high-/
low-protein diets

We then assessed the genotype of DHCR7 rs12785878 by time effect on improvement of 

insulin resistance over the 2 year intervention in the participants assigned to the high- and 

low-protein diets (Fig. 2). In the high-protein diet group, participants carrying the T-allele of 

DHCR7 rs12785878 (TT and TG genotypes) had a greater improvement of fasting insulin 

(p<0.0001) and HOMA-IR (P=0.0009) than non-T-carriers (GG genotype) across the 2 year 

intervention. As expected, the genetic associations with changes in fasting insulin and 

HOMA-IR appeared to be more pronounced at 6 months than at 2 years. In the low-protein 

diet group, there was no significant genotype effect on the trajectory of changes in insulin 

resistance over the 2 year intervention (p≥0.11). Similar results were observed when the 

analyses were restricted to the white participants.

Discussion

In this large, 2 year randomised dietary weight-loss intervention trial, we found significant 

interactions between a vitamin-D-related genetic variant DHCR7 rs12785878 and dietary 

protein intake on changes in fasting insulin and HOMA-IR; furthermore, results were 

consistent for short-term (6 months) and long-term (2 years) changes. The T-allele of 

DHCR7 rs12785878 was associated with greater improvement of insulin resistance among 

individuals who were assigned to the high-protein diets.

A large body of evidence implicates the DHCR7 gene in insulin resistance through effects 

on vitamin D levels. The T allele of DHCR7 rs12785878 was strongly associated with 

higher circulating 25(OH)D levels in GWAS (p=2.1×10−27) [9], while lower 25(OH)D 

levels have been associated with obesity, insulin resistance, systemic inflammation and the 
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risk of diabetes [2–8]. A recent Mendelian randomisation study found that the DHCR7 allele 

score but not the CYP2R1 allele score was associated with the risk of type 2 diabetes [14]. 

Several indices of insulin resistance were found to be significantly different across DHCR7 

rs12785878 genotypes in women with polycystic ovary syndrome [23]. In addition, DHCR7 

genetic variation was recently reported to interact with type 2 diabetes status to influence 

subclinical atherosclerosis [24]. However, no studies have investigated the interactions 

between DHCR7 genetic variants and diet/lifestyle factors in relation to cardiometabolic 

traits.

Although the mechanism underlying the observed DHCR7 rs12785878 gene–dietary protein 

interaction is unclear, several potential biological processes might be implicated. A perfect 

proxy SNP of DHCR7 rs12785878 (r2=1) has been found to modulate DHCR7 mRNA 

levels in liver [24]. In addition, protein-rich foods (e.g. fish, dairy if fortified and meat to a 

lesser extent) are the main sources of naturally occurring cholecalciferol (vitamin D3) [20], 

and cholecalciferol could suppress DHCR7 activity in human skin cells [19]. In POUNDS 

Lost, the difference between high- and low-protein diets is mainly from the difference in 

consumption of skinless turkey, lean beef and skimmed/nonfat milk, while the difference 

between high- and low-fat diets is mainly from the difference in consumption of walnuts and 

olive oil [21]. Thus, there might be a greater difference in vitamin D content between high- 

and low-protein diets than that between high- and low-fat diets. However, we could not 

exclude the possibility that other dietary nutrients might be also involved, since it has been 

suggested that DHCR7 gene expression might be regulated by dietary alpha-tocopherol [16], 

cholestyramine-plus-Lovastatin diet [17], and soy protein [18] in rats. In addition, dietary 

protein and amino acids are important modulators of glucose metabolism and insulin 

resistance [25–27]. Taken together, we speculate that cholecalciferol and/or other nutrients 

from protein-rich foods may interact with DHCR7 rs12785878 (or a causal variant indicated 

by this SNP) to influence DHCR7 function, thereby affecting vitamin D levels and 

eventually modifying the effects on changes in insulin resistance.

Diminished adherence occurred between 6 months and 2 years in POUND Lost [21]; 

therefore, it was not surprising that the genetic effects on changes in insulin resistance were 

attenuated at 2 years. Improvement of insulin resistance has been associated with changes in 

body weight in this intervention study. However, we did not find significant gene–diet 

interaction or genetic effects on changes in body weight, although it has been previously 

suggested that adiposity might be involved in the relationships between vitamin-D-related 

variants, 25(OH)D levels and type 2 diabetes [14]. Moreover, the genetic effects on 

improvement of insulin resistance were independent of weight loss, suggesting other 

pathways might be involved.

We did not find strong evidence for interactions between the other two vitamin-D-related 

genetic variants, CYP2R1 rs10741657 and GC rs2282679, and dietary interventions on 

changes in body weight or glucose/insulin metabolism in this 2 year weight-loss trial. Both 

genes have been largely implicated in vitamin D metabolism, and CYP2R1 rs10741657 

(p=3.3×10−20) and GC rs2282679 (p=1.9×10−109) were also strongly associated with 

circulating 25(OH)D levels in GWAS [9]. However, a recent study found that the expression 

levels of CYP2R1 in adipose tissues did not change during diet-induced weight loss [28]. 
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Nevertheless, further studies are warranted to validate the observed nominally significant 

interactions between CYP2R1 rs10741657 and dietary fat on changes in fasting insulin and 

HOMA-IR. It has been suggested that the quality of dietary fat influences glucose 

metabolism and insulin resistance [29]. However, it should be noted that diets varying in fat 

content (low-fat diets or high-fat diets) are not emphasised in the nutritional therapy 

recommendations for diabetes [30], and both extremely high- and low-fat diets might not be 

beneficial regarding glucose metabolism in diabetes [29].

To the best of our knowledge, this is the first study to show significant interactions between 

vitamin-D-related genetic variation and dietary protein on improvement of insulin resistance 

in a large and long-term randomised trial. Previous evidence has suggested the important 

implications of vitamin D in insulin resistance and type 2 diabetes. Our findings provide 

new insight into the utility of using knowledge of vitamin-D-related genetic variation to 

improve personalised dietary interventions. However, several limitations of this study 

should be addressed. We did not measure circulating vitamin D or 25(OH)D concentrations 

in this study, which limited our analysis to examine the role of vitamin D levels in the gene–

diet interaction and explore potential underlying mechanisms. Although our major findings 

remained significant after adjustment for multiple tests, replication of these results is needed 

in future. In addition, the majority of participants are white (80%) in our study and thus 

further studies are needed in other ethnic groups, since significant ethnic differences in 

circulating vitamin D levels and related genetic variants have been acknowledged [31].

In summary, our data indicate that dietary protein may modify the effect of the DHCR7 

rs12785878 variant on changes in insulin resistance over a 2 year dietary intervention. 

Individuals carrying the T allele (vitamin-D-increasing allele) of DHCR7 rs12785878 might 

benefit more in improvement of insulin resistance than noncarriers by consuming high-

protein weight-loss diets. Our findings of gene–protein dietary interaction are biologically 

plausible, provide additional evidence for the roles of vitamin D in insulin resistance, and 

suggest new insights into effective strategies for type 2 diabetes prevention and intervention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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GWAS Genome-wide association study

25(OH)D 25-Hydroxyvitamin D

POUNDS Lost Preventing Overweight Using Novel Dietary Strategies Trial

SNP Single nucleotide polymorphism

References

1. Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocr Rev. 
2005; 26:662–687. [PubMed: 15798098] 

2. Mitri J, Pittas AG. Vitamin D and diabetes. Endocrinol Metab Clin North Am. 2014; 43:205–232. 
[PubMed: 24582099] 

3. Song Y, Wang L, Pittas AG, et al. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: 
a meta-analysis of prospective studies. Diabetes Care. 2013; 36:1422–1428. [PubMed: 23613602] 

4. Vimaleswaran KS, Berry DJ, Lu C, et al. Causal relationship between obesity and vitamin D status: 
bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013; 
10:e1001383. [PubMed: 23393431] 

5. Guadarrama-Lopez AL, Valdes-Ramos R, Martinez-Carrillo BE. Type 2 diabetes, PUFAs, and 
vitamin D: their relation to inflammation. J Immunol Res. 2014; 2014:860703. [PubMed: 
24741627] 

6. Muscogiuri G, Sorice GP, Prioletta A, et al. 25-Hydroxyvitamin D concentration correlates with 
insulin-sensitivity and BMI in obesity. Obesity (Silver Spring). 2010; 18:1906–1910. [PubMed: 
20150902] 

7. Alemzadeh R, Kichler J, Babar G, Calhoun M. Hypovitaminosis D in obese children and 
adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season. Metabolism. 
2008; 57:183–191. [PubMed: 18191047] 

8. Lu L, Yu Z, Pan A, et al. Plasma 25-hydroxyvitamin D concentration and metabolic syndrome 
among middle-aged and elderly Chinese individuals. Diabetes Care. 2009; 32:1278–1283. 
[PubMed: 19366976] 

9. Wang TJ, Zhang F, Richards JB, et al. Common genetic determinants of vitamin D insufficiency: a 
genome-wide association study. Lancet. 2010; 376:180–188. [PubMed: 20541252] 

10. Kuan V, Martineau AR, Griffiths CJ, Hypponen E, Walton R. DHCR7 mutations linked to higher 
vitamin D status allowed early human migration to northern latitudes. BMC Evol Biol. 2013; 
13:144. [PubMed: 23837623] 

11. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human 
CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci U S A. 2004; 101:7711–
7715. [PubMed: 15128933] 

12. Nagasawa H, Uto Y, Sasaki H, et al. Gc protein (vitamin D-binding protein): Gc genotyping and 
GcMAF precursor activity. Anticancer Res. 2005; 25:3689–3695. [PubMed: 16302727] 

13. Vimaleswaran KS, Cavadino A, Berry DJ, et al. Association of vitamin D status with arterial blood 
pressure and hypertension risk: a mendelian randomisation study. Lancet Diabetes Endocrinol. 
2014; 2:719–729. [PubMed: 24974252] 

14. Afzal S, Brondum-Jacobsen P, Bojesen SE, Nordestgaard BG. Vitamin D concentration, obesity, 
and risk of diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2014; 2:298–
306. [PubMed: 24703048] 

15. Ye Z, Sharp SJ, Burgess S, et al. Association between circulating 25-hydroxyvitamin D and 
incident type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2015; 
3:35–42. [PubMed: 25281353] 

16. Rota C, Barella L, Minihane AM, Stocklin E, Rimbach G. Dietary alpha-tocopherol affects 
differential gene expression in rat testes. IUBMB Life. 2004; 56:277–280. [PubMed: 15370891] 

Qi et al. Page 9

Diabetologia. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17. Kim JH, Lee JN, Paik YK. Cholesterol biosynthesis from lanosterol. A concerted role for Sp1 and 
NF-Y-binding sites for sterol-mediated regulation of rat 7-dehydrocholesterol reductase gene 
expression. J Biol Chem. 2001; 276:18153–18160. [PubMed: 11279217] 

18. Su Y, Shankar K, Simmen RC. Early soy exposure via maternal diet regulates rat mammary 
epithelial differentiation by paracrine signaling from stromal adipocytes. J Nutr. 2009; 139:945–
951. [PubMed: 19321580] 

19. Zou L, Porter TD. Rapid suppression of 7-dehydrocholesterol reductase activity in keratinocytes by 
vitamin D. J Steroid Biochem Mol Biol. 2015; 148:64–71. [PubMed: 25500071] 

20. Schmid A, Walther B. Natural vitamin D content in animal products. Adv Nutr. 2013; 4:453–462. 
[PubMed: 23858093] 

21. Sacks FM, Bray GA, Carey VJ, et al. Comparison of weight-loss diets with different compositions 
of fat, protein, and carbohydrates. N Engl J Med. 2009; 360:859–873. [PubMed: 19246357] 

22. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model 
assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin 
concentrations in man. Diabetologia. 1985; 28:412–419. [PubMed: 3899825] 

23. Wehr E, Trummer O, Giuliani A, Gruber HJ, Pieber TR, Obermayer-Pietsch B. Vitamin D-
associated polymorphisms are related to insulin resistance and vitamin D deficiency in polycystic 
ovary syndrome. Eur J Endocrinol. 2011; 164:741–749. [PubMed: 21389086] 

24. Strawbridge RJ, Deleskog A, McLeod O, et al. A serum 25-hydroxyvitamin D concentration-
associated genetic variant in DHCR7 interacts with type 2 diabetes status to influence subclinical 
atherosclerosis (measured by carotid intima-media thickness). Diabetologia. 2014; 57:1159–1172. 
[PubMed: 24663808] 

25. Tremblay F, Lavigne C, Jacques H, Marette A. Role of dietary proteins and amino acids in the 
pathogenesis of insulin resistance. Annu Rev Nutr. 2007; 27:293–310. [PubMed: 17666010] 

26. Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat 
Med. 2011; 17:448–453. [PubMed: 21423183] 

27. Cheng S, Rhee EP, Larson MG, et al. Metabolite profiling identifies pathways associated with 
metabolic risk in humans. Circulation. 2012; 125:2222–2231. [PubMed: 22496159] 

28. Wamberg L, Christiansen T, Paulsen SK, et al. Expression of vitamin D-metabolizing enzymes in 
human adipose tissue -- the effect of obesity and diet-induced weight loss. Int J Obes (Lond). 
2013; 37:651–657. [PubMed: 22828938] 

29. Schwab U, Lauritzen L, Tholstrup T, et al. Effect of the amount and type of dietary fat on 
cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and 
cancer: a systematic review. Food Nutr Res. 2014; 58:25145.

30. Evert AB, Boucher JL, Cypress M, et al. Nutrition therapy recommendations for the management 
of adults with diabetes. Diabetes Care. 2014; 37(Suppl 1):S120–S143. [PubMed: 24357208] 

31. Powe CE, Evans MK, Wenger J, et al. Vitamin D-binding protein and vitamin D status of black 
Americans and white Americans. N Engl J Med. 2013; 369:1991–2000. [PubMed: 24256378] 

Qi et al. Page 10

Diabetologia. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Changes in insulin (a, b) and HOMA-IR (c, d) by DHCR7 rs12785878 genotype in response 

to low-protein diets and high-protein diets at 6 months and 2 years. Black bars, DHCR7 

rs12785878 TT genotype; grey bars, DHCR7 rs12785878 TG genotype; white bars, DHCR7 

rs12785878 GG genotype. Dara are means ± SE, adjusted for age, sex, ethnicity and 

baseline value for the respective outcome traits. p=0.0008 and 0.03 for interactions between 

DHCR7 rs12785878 and diet intervention on changes in fasting insulin at 6 months (a) and 2 

years (b), respectively. p=0.0009 and 0.02 for interactions between DHCR7 rs12785878 and 

diet intervention on changes in HOMA-IR at 6 months (c) and 2 years (d), 

respectively. †p=0.0009 and ‡p=0.002 for genotype effects on changes in insulin (a) and 

HOMA-IR (c), respectively, at 6 months in the high-protein diet groups
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Fig. 2. 
Trajectory of changes in insulin and HOMA-IR by DHCR7 rs12785878 genotype in 

response to low-protein diets (a, c) and high-protein diets (b, d) over a 2 year intervention. 

Black circle and solid line, DHCR7 rs12785878 TT genotype; grey circle and dashed line, 

DHCR7 rs12785878 TG genotype; white circle and dotted line, DHCR7 rs12785878 GG 

genotype. Data are means ± SE, adjusted for age, sex, ethnicity and baseline value for the 

respective outcome traits. †p<0.0001 and ‡p=0.0009 for genotype effects on changes in 

insulin (b) and HOMA-IR (d), respectively, in the high-protein diet groups
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