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Abstract

Introduction: Preclinical testing plays an integral role in the development of HIV prevention modalities. Several models are used

including humanized mice, non-human primates and human mucosal tissue cultures.

Discussion: Pharmaceutical development traditionally uses preclinical models to evaluate product safety. The HIV prevention field

has extended this paradigm to include models of efficacy, encompassing humanized mice, non-human primates (typically Asian

macaques) and human mucosal tissue (such as cervical and colorectal). As our understanding of the biology of HIV transmission

improves and includes the influence of human behaviour/biology and co-pathogens, these models have evolved as well to address

more complex questions. These three models have demonstrated the effectiveness of systemic (oral) and topical use of anti-

retroviral drugs. Importantly, pharmacokinetic/pharmacodynamic relationships are being developed and linked to information

gathered from human clinical trials. The models are incorporating co-pathogens (bacterial and viral) and the effects of coitus

(mucosal fluids) on drug distribution and efficacy. Humanized mice are being tailored in their immune reconstitution to better

represent humans. Importantly, human mucosal tissue cultures are now being used in early clinical trials to provide information on

product efficacy to more accurately characterize efficacious products to advance to larger clinical trials. While all of these models

have made advancements in product development, each has limitations and the data need to be interpreted by keeping these

limitations in mind.

Conclusions: Development and refinement of each of these models has been an iterative process and linkages to data generated

among each of them and from human clinical trials are needed to determine their reliability. Preclinical testing has evolved

from simply identifying products that demonstrate efficacy prior to clinical trials to defining essential pharmacokinetic/

pharmacodynamic relationships under a variety of conditions and has the potential to improve product selection prior to the

initiation of large-scale human clinical trials. The goal is to provide researchers with ample information to make conversant

decisions that guide optimized and efficient product development.
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Introduction
Since the identification of HIV as the causative agent of

acquired immunodeficiency syndrome (AIDS), advances have

been made in the treatment and care of HIV-infected persons

with drug cocktails that extend lives. Biomedical interventions

for prevention, such as medical male circumcision, treatment

for prevention, pre-exposure prophylaxis (PrEP), microbicides

and vaccines have been implemented or are being developed/

tested with the goal of creating an AIDS-free generation [1].

Many of the advances in HIV biomedical interventions have

depended upon preclinical testing to define efficacy, prior to

use in humans. Early preclinical testing relied solely on in vitro

assays typically using primary immune cells or cell lines, which

provided limited information on the activity of the drug.

The clinical trials undertaken in the 1990s and early 2000s

evaluating these products failed to show comparable efficacy

to the preclinical testing in most instances. Through the

decades, advances in preclinical testing were made to include

the use of animals such as ‘‘humanized’’ mice and non-human

primates as well as human mucosal tissue cultures. Preclinical

models provide researchers with the ability to perform work

that would be unethical in humans, such as exposure to virus

and other pathogens, high doses of experimental drugs and

intensive tissue sampling. While advances in these models

are ongoing, there is no one comprehensive model; each pro-

vides important information, but limitations exist. Can these

limitations be mitigated to more effectively inform pro-

duct development? This review provides an overview of the

humanized mouse, non-human primate and human mucosal

tissue models used primarily for evaluating PrEP and micro-

bicide efficacy results.

Discussion
Humanized mouse models

Attempts to use mice, rats and rabbits to study HIV patho-

genesis and therapeutic interventions began soon after the
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isolation of HIV, since these animals were already a corner-

stone of basic science research efforts. It soon became apparent

that these animals could not be infected with HIV [2]. Human

co-factors were required for infection, thus leading to the

identification of the CD4 receptor [3] and the chemokine

co-receptors [4] as critical for HIV entry into human cells.

Even with mice engineered to express human CD4 and

co-receptors, blocks in HIV replication and processing were

identified [5] suggesting that mice needed to be ‘‘humanized’’

(i.e. engrafted with human immune cells) for further devel-

opment of this model. In the late 1980s, researchers began

to manipulate immunosuppressed mice strains such as the

severe-combined immunodeficient (SCID) mice. These mice

have a genetic mutation that results in a lack of functional

T and B cells, but they do have functional NK cells. Using SCID

mice, several human-SCID (hu-SCID) models were developed

by administering human peripheral blood mononuclear cells/

lymphoid tissue [6�8]. These early attempts resulted in mice

with limited human immune cell repopulation, including a lack

of human cells in the genital tract, with mice eventually

succumbing to graft-versus-host disease. However, using hu-

SCID mice repopulated with human peripheral blood mono-

nuclear cells, vaginal application of non-nucleoside reverse

transcriptase inhibitors (NNRTIs) [9,10] protected against cell-

associated HIV in the presence of semen. These early studies

demonstrated that vaginal application of antiretrovirals can

prevent cell-associated HIV from infecting the mice and

encouraged further development of this model. Refinements

of the humanized mouse model over the past decade

were done using non-obese diabetic (NOD)-SCID mice or

recombination-activating gene (RAG) knock-out mice (RAG�/�)

in which the IL-2 receptor common gamma chain gene knock-

out was introduced, thus allowing these mice to better accept

the transplanted cells/tissue and demonstrate immune repo-

pulation throughout the animal, including the mucosa [11�14].
RAG-hu mice have been used to evaluate neutralizing anti-

HIV antibodies passively transferred or continuously produced

either by i) implantation of the antibody-producing tumour

cells or ii) the incorporation of the antibody gene into adeno-

viral vectors administered to the mice [15,16]. These mice

were protected from parenteral HIV challenge. Topical applica-

tion of a gel delivering a broadly neutralizing monoclonal

antibody, VRC01, also protected RAG-hu mice from vaginal

HIV challenge [17]. Other mice have been surgically implanted

with foetal thymus and liver, sub-lethally irradiated and then

transplanted with autologous CD34� stem cells obtained from

the foetal liver; these mice are termed bone marrow-liver-

thymus (BLT) mice [14]. BLT mice have been used extensively

to evaluate topical and oral administration of several anti-

retroviral drugs for protection against vaginal and rectal HIV

challenge [18�21]. The work by Denton et al. [20] demon-

strated protection of BLT mice using a dosing regimen of

vaginally administered 1% tenofovir similar to that used in the

CAPRISA 004 clinical trial, which demonstrated a 39% reduc-

tion in HIV acquisition in women using tenofovir 1% gel peri-

coitally [22]. Novel HIV prevention approaches have also

been evaluated using the BLT mouse model, such as vaginal

administration of interfering RNA molecules against the host

proteins CD4 and CCR5 [23,24]. In both cases, mice were

protected from vaginal HIV challenge. Collectively, the huma-

nized mouse models have provided additional evidence that

antiretroviral-based interventions prevent vaginal, rectal and

parenteral acquisition of HIV.

Linking drug activity to drug concentration is important for

developing pharmacokinetic/pharmacodynamic (PK/PD)models.

PK/PD models allow the estimation of how much drug is

needed to be efficacious within those models. Until recently,

well-defined PK studies in mice had not been done. In RAG-hu

mice administered drugs orally, tenofovir concentrations

peaked by two hours in all matrices tested with drug exposure

(area under the curve, AUC) in vaginal (14.9 mg�h/g) and

rectal (1,000 mg�h/g) tissue exceeding plasma (11 mg�h/ml).

Maraviroc peaked by four hours in all matrices with the AUC

in vaginal (2.4 mg�h/g) and rectal (32.7 mg�h/g) tissue ex-

ceeding plasma (0.76 mg�h/ml) [25]. These data are consis-

tent with human PK studies [26,27]. Additional work is needed

to model PK/PD correlates of protection in these mice to

define variables in the model such as potential differences in

protein binding of antiretrovirals in mouse serum compared to

human serum and differences in drug metabolism/clearance

(Table 1).

Despite the success of murine models to define product

efficacy, there are several areas that can be exploited to

improve humanized mice for use in HIV prevention research,

including i) development of a human innate immune system,

ii) human microbiome transplantation and iii) repopulation of

cells from different origins (e.g. epithelial sheets). All huma-

nizedmice lack human innate immunity (Table 1).This includes

the accompanying cross-talk between epithelial and immune

cells. With the confounding of endogenous mouse innate

immunity, it is difficult to distinguish human from mouse

responses to pathogens.With the advent of new technologies

that can modulate host genes (such as CRISPR and TALEN [28]),

NOD-SCID mice are being created with deficiencies in their

MHC class II, toll-like receptors and interferon type 1 [29].

These new generations of mice should allow the engrafted

cells to establish themselves better and provide a more accu-

rate representation of HIV infection and responses to new HIV

preventatives. Further, it is anticipated that these mice would

accept and respond to human microbiome transplantation.

There is a greater appreciation that the microbiome influences

host immune and disease development. Thus, human faecal

transplants are being done to further humanize the mice [30].

Less work has been done to humanize the mouse vagina.

Unlike the gastrointestinal microbiome, the vaginal microbiome

has been extensively studied in relation to vaginal health

and pregnancy outcomes as opposed to modulating immune

development [31]. Shifts from a Lactobacillus-dominant flora

are associated with bacterial vaginosis, which results in a

higher vaginal pH and increased susceptibility to sexually trans-

mitted diseases, including HIV along with increased risk of

preterm birth. The mouse vagina does not have a Lactobacillus-

dominant flora and has a neutral pH. Attempts have been

made to colonize the mouse vagina with some Lactobacillus

species [32], but they have not used Lactobacillus crispatus,

which is associated with human vaginal homeostasis [33].

Finally, the engraftment of other cell types could lead to the

development of co-infection models. For example, aside from
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HIV, BLTmice have been infected with hepatitis viruses, herpes

viruses and other pathogens to evaluate pathogenesis and

therapeutic drugs [29]. The inclusion of other tissue-specific

engraftments such as using vaginal or ectocervical epithelial

sheets would allow the testing of Neisseria gonorrhoea or

Chlamydia trachomatis, which require epithelial cells for their

replication cycles.

While advances in the humanized mouse model are being

made, significant drawbacks in their widespread use have

been the need for veterinary expertise for their creation,

access to human foetal tissues and facilities to house germ-

free animals, which contribute to the expense in develop-

ment and maintenance of these mice. Experiments utilizing

humanized mice can be quite expensive, limiting the number

and type of questions that can be addressed.

Non-human primate models

Simian immunodeficiency virus (SIV) was isolated from an

Asian non-human primate lymphoma in 1985 [34,35] shortly

after the identification of HIV as the causative agent of AIDS.

Because non-human primates are physiologically and immu-

nologically similar to humans, researchers began to use Asian

macaques [rhesus (Indian and Chinese) (Macaca mulatta), pig-

tailed (Macaca nemestrina) and cynomolgus (Macaca fascicu-

laris)] to characterize the early transmission events and

opportunities for intervention [36�38]. SIV is susceptible

to nucleoside/nucleotide reverse transcriptase inhibitors

(NRTIs), protease inhibitors and integrase inhibitors, but not

NNRTIs, which are all active against HIV [39�41]. This gave

researchers a useful model to evaluate some of the HIV

therapeutics. In a seminal paper, Tsai et al. [40] demonstrated

that pre-dosing up to 48 hours with the NRTI tenofovir could

prevent infection from a high parenteral SIV challenge. This

success opened the door to evaluating antiretroviral drugs as

HIV preventatives, not just therapeutics. Tenofovir was also

effective at preventing oral SIV transmission to neonates,

ushering in a new intervention for the prevention of mother-

to-child transmission [42]. To expand the utility of this model,

concurrent work resulted in HIV/SIV chimeras � SHIVs.The first

SHIV incorporated an HIV envelope and was used to success-

fully infect the macaques [43]. The creation of a reverse

transcriptase (RT)-SHIV by replacing the SIV RT region with one

from HIV also demonstrated successful infection of macaques

with virus susceptible to HIV-specific NNRTIs [44]. Using these

chimeric viruses, topically applied antiretroviral drugs, neu-

tralizing antibodies and entry inhibitors prevented a single,

high dose of SHIV from infecting the macaques [45,46]. For

these studies, a high dose of SHIV was used, often with

progesterone pretreatment (which thins the macaque vaginal

epithelium) [47], to ensure the untreated macaques became

infected so efficacy could be determined. Because such a high

dose of SHIV was required to reproducibly infect the control

animals, there was concern the potential efficacy of the drug

would be overwhelmed by the non-physiologic challenge.

With interest to recapitulate human exposure, a repeat, low-

dose mucosal exposure to R5-SHIV (SIV containing a CCR5-

using HIV envelope) was developed [48]. The number of viral

particles in the low-dose challenge approximated those

recovered from semen during acute HIV infection [49] and

might provide a more accurate determination of product

efficacy. Protection by oral antiretroviral drugs and topical gels

containing antiretroviral drugs and entry inhibitors applied

vaginally and rectally was demonstrated using the repeat, low-

dose SHIV challenge [45]. A high-dose [50] and low-dose

[51,52] penile SIV challenge has been developed in macaques

as well. While antiretroviral-based prevention has not been

evaluated, the penile challenge model was used to demon-

strate increased susceptibility to low-dose SIV infection after

vaccination with an adenovirus type 5-based SIV gag/pol/nef

vaccine [51]. These results were consistent with the findings

from the STEP trial, in which the adenovirus type 5

seropositive vaccinees were twice as likely to seroconvert to

HIV as the placebo vaccinees [53]. Whether the single, high-

dose challenge or repeat, low-dose challenge is the more

rigorous way to evaluate the effectiveness of an HIV preven-

tion product remains to be determined (Table 2).

The SHIV/macaque models have allowed researchers to

investigate PK/PD relationships of antiretroviral drugs and the

timing of drug delivery in relation to viral exposure, which

helps to inform the dosage of drugs needed to prevent infection.

Table 1. Humanized mouse models

Pros Cons

Engraftment of human hematopoietic tissue to create a ‘‘human’’

immune system.

Deficiencies in all the human immune cell types.

Infect with HIV, including ‘‘transmitter/founder’’ viruses. Lack human innate immunity.

Mice will succumb to ‘‘wasting’’ disease similar to humans. Inability to evaluate non-hematopoietic HIV interactions.

Mice being created to more accurately reflect human innate/

adaptive immunity.

Estrus cycle/endocrine system different.

Microbiome transplants being done. Restrictions on microbiome.

Pharmacokinetic studies being initiated. Pharmacokinetics may be affected by mouse serum-binding antiretroviral

drugs differently than humans.

Pharmacogenomics are different from humans.

Mice take several months to be created de novo and kept in controlled

environment; expensive.

Penile challenge has not been attempted.
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Because of difficulties with daily oral dosing in macaques,

subcutaneous dosing was used for drug administration.

Using this strategy, tenofovir disoproxil fumarate with em-

tricitabine (TruvadaTM) completely protected against a rectal

SHIV challenge as compared to emtricitabine alone, which

showed partial protection [54]. Peri-coital dosing, or intermittent

PrEP, consisting of tenofovir disoproxil fumarate with emtricita-

bine protected macaques against rectally administered SHIV as

well as daily dosing, thus suggesting high drug levels around

high-risk exposure was sufficient for protection [55]. These

data were consistent with a human clinical trial, iPrEx, where

intermittent use of Truvada (approximately four doses per

week) was shown to be very effective against HIV acquisition

in a group of high-risk men who have sex with men [56].

Expanding on the non-human primate PK model, Nuttall

et al. [57] showed topical vaginal administration of teno-

fovir gel resulted in detectable levels of tenofovir in rectal

secretions; conversely rectal administration resulted in de-

tectable levels of tenofovir in vaginal secretions in macaques.

These data were confirmed by women applying tenofovir gel

vaginally, showing detectable tenofovir levels in their rectal

secretions [27]. However, determining whether drug levels in

the alternate mucosal compartment are sufficient to prevent

SIV/SHIVchallenge has yet to be done.This is a critical next step

for topical drug administration � multi-compartment protec-

tion � as heterosexual couples have reported sequencing

between vaginal and rectal intercourse during the same sex act

[58]. It is interesting to note that in the non-human primate

studies mentioned above and in human clinical trials [59],

levels of many antiretroviral drugs are higher in rectal tissue as

compared to female genital tissue after oral administration

[60]. It remains to be determined if oral PrEP results in lower

efficacy for heterosexual women engaging in receptive vaginal

intercourse as compared to persons engaging in receptive anal

intercourse. Recently, oral administration of maraviroc, a CCR5

agonist, in macaques did not protect against rectal SHIV

challenge despite high levels of drug in rectal tissue and fluids

[61]. Lack of protection may have been due to increased

dissociation of maraviroc from the macaque CCR5 as com-

pared to the human CCR5 [62]. This study highlights the

differences in pharmacogenetics between non-human pri-

mates and humans (Table 2). Of interest, topical administration

may circumvent the dissociation of maraviroc binding CCR5 in

the macaques, as three studies showed protection against

vaginal and rectal SHIV challenge using topical gels and vaginal

rings [63�65]. Topical administration of drug results in several

log10 more drug locally than can be achieved through oral [27]

or likely injectable dosing, which suggests that topical dosing

may be advantageous especially for vaginal use.

Similar to the humanized mouse models, differences exist

between humans and non-human primates (Table 2). Innate

immunity that controls SIV infection in the macaque is dif-

ferent than the innate immunity that controls HIV in humans

[66]. For example, macaques do not support HIV-1 infection;

HIV-1 replication is blocked before the reverse transcription

step. This blockage appears to be due to TRIM5a, a member of

the tripartite motif (TRIM) family of proteins, which binds the

viral capsid [67]. Human TRIM5a does not associate with the

capsid as well as the macaque TRIM5a, which binds it tightly,

interfering with the viral reverse transcription processing.

While pig-tailed macaques have menstrual cycles similar

to humans, rhesus and cynomolgus macaques are seasonal

breeders, suggesting that pig-tailed macaques should be used

for evaluating vaginal products and rhesus and cynomolgus

macaques should be used for evaluating rectal products.Taking

advantage of the pig-tailed macaque model, macaques were

evaluated for the ‘‘timing’’of SHIVacquisition [37]. Almost 90%

of the macaques had detectable infection during the follicular

phase, leading to speculation that the actual time of infection

occurred about a week previous during the luteal phase with

accompanying high levels of progesterone. Although immu-

nological changes occur after ovulation in the luteal phase for

reproductive success [68], it remains unclear if women are

more susceptible to HIV (or other pathogen) infection during

this time, as no detailed analysis has been done.

Another important difference between humans and non-

human primates is with regard to the vaginal microbiome.

Similar to the mouse, the macaque vagina has a neutral pH,

with lactobacilli species comprising a minority of the micro-

biome. The macaque vaginal microbiota is polymicrobial,

exhibiting high levels of sialidase activity that resembles the

microbiota/enzyme activity of women with bacterial vaginosis

[69]. The impact this may have on prevention interven-

tions and SIV/SHIV acquisition is not known. Colonization of

Lactobacillus jensenii modified to secrete an antiviral protein,

cyanovirin-N, demonstrated a reduction of vaginal pH that

Table 2. Non-human primate models

Pros Cons

Biologically similar to humans. Require SIV or SHIV; cannot use HIV.

Recapitulate disease pathogenesis. Innate immunity/host factors different than humans.

SHIVs developed to respond to antiretroviral therapy. Most species are seasonal breeders, lacking menstrual cycle effects that

occurs in humans.

Model HIV transmission events. Treat with DMPA for reliable infection in single, high-dose model.

Evaluation of sustained vaginal delivery devices. High-dose/repeat low-dose challenge models.

Susceptible to other sexually transmitted diseases. Pharmacogenomics similar, but not identical to humans.

Establish pharmacokinetic/pharmacodynamic relationships. Microbiome different from humans.

Expensive and availability can be limited.

SIV, simian immunodeficiency virus; SHIV, SIV/HIV hybrid virus; DMPA, depot medroxyprogesterone acetate.
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correlated with higher bacterial colonization levels and re-

duced levels of some proinflammatory cytokines [70]. Most

of the macaques colonized by the L. jensenii expressing

cyanovirin-N were protected from a repeat, low-dose SHIV

vaginal challenge [71]. However, because wild-type L. jensenii

were not used as a control, it is not clear if the colonization

with L. jensenii, the cyanovirin-N or both was the mechanism

of protection.

To bring human risk factors to the non-human primatemodel,

sexually transmitted pathogen co-infections and the impact

of coitus are being evaluated. C. trachomatis and Trichomonas

vaginalis inoculated into pig-tailed macaque vaginas showed

similar clinical signs as in humans [72] and the macaques

were more susceptible to SHIV infection [73]. A C. trachomatis

rectal model is also in development [74]. Assessing how these

sexually transmitted pathogens affect HIV prevention inter-

ventions should help our understanding of the complex PK/PD

relationships in conjunction with genital inflammation. Semen

is the delivery vehicle for HIV and has been suggested to in-

crease the infectiousness of HIV [75] and reduce the potency

of some antiviral drugs [76], thus creating a worst-case scenario

for prevention efforts. Defining PK/PD relationships in a non-

human primate coital model would address concerns regard-

ing drug potency. Cosgrove-Sweeney and colleagues [77]

have developed a coital, pig-tailedmacaquemodel to evaluate

topical microbicide safety. They noted genital bruising, shifts

in some vaginal flora and a slight increase in vaginal pH in

post-coital assessments. However, less than 40% of the post-

coital examinations showed evidence of a copulatory plug,

so not every mounting resulted in semen deposition. It will be

important to define whether immunological changes occur

in the non-human primates as have been noted in women

after exposure to semen [78,79], as these may affect drug

distribution and potency.

With the advances of non-human primates in HIV preven-

tion research, several caveats remain for their widespread

use. Non-human primates require veterinary services and

secure facilities for housing. Limited availability of non-human

primates can restrict experimental design.Macaques are often

infected with simian Herpes B virus, which generally remains

a latent infection. The animals are asymptomatic during

virus reactivation and can transmit virus to their handlers

[80], veterinarians and laboratory workers who are scratched,

bitten or come in contact with infectious materials such as

blood or tissues. Herpes B virus is often fatal to humans and

guidelines have been written to minimize exposure and for

treatment options if an exposure occurs [81]. Consequently,

non-human primate experiments can be quite expensive,

limiting the number and type of questions that can be

addressed.

Human mucosal tissue models

Because sexual transmission is the primary mode of HIV

infection, use of human mucosal tissue cultures to evaluate

drugs and their formulations for potency was a natural model

to incorporate into preclinical testing algorithms. Cervical

tissue was the first to be used to define the early events of HIV

infection and assess the first generation of topical micro-

bicides [82,83]. Since that time, other mucosal tissues have

been used, including colorectal, vaginal, tonsil, foreskin and

penile. However, the majority of drug evaluation has been

done using cervical, colorectal and more recently penile tissues.

Use of tissues requires institutional ethics board approval be-

cause they are acquired as surgical tissue remainders through

local tissue procurement programmes or can be purchased

from a company (such as National Disease Research Inter-

change, www.ndriresource.org/, or Tissue for Research, www.

tissueforresearch.com/). While cadaver tissue is available,

it has not been used routinely in this context. The tissue is

brought to the laboratory where it is set up in two different

ways: non-polarized or polarized. Non-polarized tissue is com-

posed of small cubes of tissue retaining the epithelium and

lamina propria [83�85]. The tissues are submerged in medium

containing HIV with or without drug. This creates a worst-

case scenario by allowing virus access to targets in the

lamina propria independent of traversing the epithelium.

Non-polarized tissues have the advantage of utilizing all of the

available tissue as compared to polarized tissues, which use

3 to 5 mm dermal punches and some tissue remains unused.

Consequently, many tissue replicates are possible for each

treatment condition. Using non-polarized tissue, unformu-

lated drugs have been tested to determine the effective

concentrations for HIV [83,84,86�97] as well as HSV2 infec-

tion [98,99]. Several entry inhibitors and non-nucleoside and

nucleotide RT inhibitors have been tested and show that

several log10 more drug is needed to inhibit HIV infection of

tissue than is needed in traditional in vitro assays such as

indicator cell lines [84,87,91,92]. These data can be used to

define the effective dose that blocks HIV infection in the

tissue. Human mucosal tissue models also demonstrated the

benefits of drug combinations, which (much like therapy)

show an additive effect even in the presence of drug-resistant

virus [91,92]. Polarized mucosal tissue has been used primarily

to evaluate formulated drugs because they are applied directly

to the epithelium. Mucosal tissue is oriented with the apical

surface upward and sealed around the sides to maintain a

liquid�air separation [82,100,101]. HIV and the formulation

are applied to the apical surface, mimicking their delivery in

humans. A variety of non-specific entry inhibitors, NNRTIs and

NRTIs � alone and in combination � have been incorporated

into hydrogel bases and have demonstrated protection against

HIV infection [100�108].
To provide persons more options in delivery systems,

alternative dosage forms are being developed, including quick

dissolve films, tablets, subliming solids and vaginal rings [109].

Efficacy evaluation of solid dosage forms requires a more

rigorous approach. Much like the repeat, low-dose challenge

model used in non-human primates, where virus is applied

multiple times over a period of time, a multi-day challenge has

been developed to test the efficacy of products intended for

use over extended periods of time, like a vaginal ring. The solid

dosage form is placed on the apical surface of cervical tissue

and HIV is applied over several days to mimic several high-

risk exposures. This model has been used to evaluate ring

segments and subliming solids showing protection from the

active product, but not a placebo [110].

More recently, human explant tissues have been used to

evaluate the effects of hormones and the co-pathogens such
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as HSV2 on HIV susceptibility.With interest growing in the role

of endogenous and exogenous progesterone on HIV suscept-

ibility, a few studies have evaluated mucosal tissue from pre-

and post-menopausal women. Rollenhagen and Asin [111]

showed cervical tissue from post-menopausal women repli-

cated HIV to higher levels than tissue from pre-menopausal

women despite similar levels of proviral copies. Higher repli-

cation was associated with more inflammatory mediators

secreted from post-menopausal tissue. These data are in con-

trast to a paper by Saba et al. [112], which showed better

HIV infection and replication in tissues from pre-menopausal

women obtained in their luteal phase, when progestin levels

are highest. Poor HIV infection and replication were found in

tissues obtained from women during the follicular phase or

post-menopause, which were associated with high secreted

levels of several chemokines that block HIV infection, namely

MIP-1a and RANTES. Additional work to understand how

changes in progestin influence HIV replication and response to

antiretroviral drugs ex vivo is needed. Conversely, co-infection

of cervical explants with HSV2 and HIV resulted in more robust

HIV infection (more integrated provirus, release of p24) as

compared to HIV only [113]. Moreover, when treated with

tenofovir, 100-fold more drug was needed to suppress HIV

(and HSV2) infection in the co-infected explants as compared

to HIV-only-infected explants. HSV2 infection increased the

number of activated target cells. Tenofovir may have been

metabolized more quickly in the co-infected explants, thus

requiring more drug for viral suppression; however, this

possibility was not tested. These data show tissue used ex

vivo responds to external influences and should provide more

information on the role of hormones and co-pathogens on HIV

prevention modalities.

While mucosal tissue has been useful evaluating new drug

entities and formulations, its use has expanded in an inno-

vative manner to an assay termed ‘‘ex vivo challenge.’’ Unlike

explant cultures, which typically use surgically resected tissue

that are exposed to the drug in the laboratory, the ex vivo

challenge assay obtains biopsies from participants after use

of a product for a period of time. The biopsies are brought to

the laboratory, where they are exposed to HIV to determine

if the product was able to prevent/block infection. The ex

vivo challenge assay was first used in clinical trials evaluating

vaginal gels for safety after rectal application. Participants used

the gel for a week and colorectal biopsies were taken,

transported to the laboratory and challenged with HIV. In

both studies, HIV replication was suppressed in tissue taken

from active gel users but not from placebo gel users [114,115],

and PK/PD relationships were made between drug levels

in the tissue and HIV suppression [116,117]. The ex vivo

challenge assay has now incorporated cervical and/or vaginal

tissue taken after use of study products delivering antiretro-

viral drugs, including 28-day intravaginal rings or seven daily

doses of topical gels or films. Much like the findings from the

rectal safety studies, HIV was suppressed in participants using

the active products and PK/PD relationships were developed

[118,119]. While this assay requires logistical coordination

between the clinic and the laboratory, the results will help

inform target drug levels needed to block HIV infection ex vivo.

Because the amount of virus added to this assay is several

log10 higher than viral titres in semen and a laboratory-

adapted virus is used for challenge, how these results translate

to effectiveness in humans remains to be determined.

Recently, Nicol and colleagues compared PK/PD correlates

between drug-treated explants and the ex vivo challenge assay

[120]. They used explants dosed in the laboratory with

tenofovir or maraviroc to predict whether oral dosing would

be protective using their ex vivo challenge model. The explants

predicted B20%would be protected based on the tissue ED50

values of 318 mM and 20 mM for tenofovir and maraviroc,

respectively. However, the ex vivo challenge data resulted in

50% protection after oral dosing. While not completely

predictive, this result highlights the importance of comparing

these models to develop relational correlates.

As with all models, limitations exist for use of ex vivo

mucosal tissue (Table 3). Because surgically resected tissue

is obtained through the tissue procurement process, there

typically is not a regular schedule for receipt of tissues, thus

the timing and setup of experiments must accommodate tissue

availability. Surgical remainders are from individuals that have

undergone planned surgeries and thus have likely received

therapy � for example, chemotherapy for cancer or hormonal

replacement therapy for gynaecological conditions � which

could affect PK and PD responses. Further, surgical remainders

are often from an older population, and it was recently shown

that HIV replicates to lower levels in these tissues as compared

to tissues acquired as biopsies from a younger population [104].

Table 3. Human mucosal tissue models

Pros Cons

Immune cells in appropriate ratios. Lack immune cell recruitment/migration.

Infected with HIV and other pathogens. Lack microbiome.

Responsive to exogenous hormones. Loss of tissue architecture over time.

Biopsy tissue collected from younger, healthy population

during scheduled clinic times.

Surgical resections collected from older population, with clinical

reason for surgery.

Establish pharmacokinetic/pharmacodynamic

relationships.

Surgically resected tissue collection is opportunistic; restricted on

the location of tissue.

Utilize mucosal secretions to deliver HIV to tissue.

Evaluates human drug dosing for potential product efficacy

(ex vivo challenge assay).
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However, responses to microbicide products were virtually the

same between surgical resections and flexible sigmoidoscopy

biopsies, providing assurance that the use of surgical resec-

tions should reflect responses from younger, healthier per-

sons.The capacity to recruit immune cells is lost; consequently

responses to pathogens, like HSV2 [113], are from resident

immune cells. The mucus and microbiome are washed away,

and bacteria and yeast are prevented from growing with the

addition of antibiotics to the culture medium. Within 36 to

48 hours of the culture period, the tissue architecture is lost;

for cervical tissue, the epithelium blisters off [101] and for

colorectal tissue autolysis is evident [85,100]. Thus treatments

are typically completed within this early time frame. Under-

standing these limitations allows experiments to be designed

to provide reliable results. The use of biopsy tissue for the

ex vivo challenge assay eliminates most of these concerns, as

tissue is immediately obtained from a younger population

after product use and placed into culture.

Conclusions
Although preclinical models are representations of human

biology and provide critical information on the potential effi-

cacy of many classes of antiretroviral drugs/products, none

of the models can fully recapitulate how humans become

infected with HIV or how the drug would function in a human.

Many prevention products have been evaluated in each of

these models and most of them showed protective effects

against their respective virus. While advances are being made

with eachmodel regarding variables that affect HIV transmission

and responses to an intervention � such as host factors (e.g.

serum-binding of drugs, innate immunity, pharmacogenomics,

metabolomics and microbiome), viral inoculum, hormonal

influences, mucosal secretions and co-infections � more work

is needed. Cross-validation among these models and to human

clinical trial outcomes would be ideal to develop relational

PK/PD models, and this work is now ongoing. However,

this would likely need to be performed on each drug class

(for example, comparing across NRTI and NNRTI classes) until

predictability between these drug classes can be assessed.

Despite these challenges, the timing, route and dose of viral

exposure, as well as adherence to the intervention, are known,

allowing these models to be used to answer defined ques-

tions. All of the available data from these models should be

used to inform stakeholders which drug/dosage form should

be considered to move forward to clinical trials in humans.
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