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Abstract
AIM: To evaluate ATP-binding cassette (ABC) transporters 
in colonic pathophysiology as they had recently been 
related to colorectal cancer (CRC) development. 

METHODS: Literature search was conducted on 
PubMed using combinations of the following terms: 
ABC transporters, ATP binding cassette transporter 
proteins, inflammatory bowel disease, ulcerative, colitis, 
Crohns disease, colorectal cancer, colitis, intestinal 
inflammation, intestinal carcinogenesis, ABCB1/
P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug 
resistance protein 2 (MRP2) and ABCG2/breast cancer 
resistance protein (BCRP), Abcb1/Mdr1a , abcc2/Mrp2 , 
abcg2/Bcrp , knock-out mice, tight junction, membrane 
lipid function. 

RESULTS: Recently, human studies reported that 
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INTRODUCTION
Colorectal cancer (CRC) constitutes the third most 
common cancer in the world and the second leading 
cause of cancer-related deaths. The number of cases 
is increasing and has been estimated to raise from 
1.4 million cases in 2012 to 2.4 million cases in 2035 
worldwide[1]. Early detection of CRC is important as 
early treatment has been associated with improved 
outcomes and saved lives[2]. Therefore, population 
screening programs have been initiated in a number 
of countries such as the United Kingdom, Australia, 
Holland and Denmark[3-6]. The fecal occult blood 
test (FOBT) is the most widely used for population 
screening[7] and individuals with a positive FOBT are 
referred for an endoscopic investigation of the colonic 
mucosa thereby enabling the sampling of biopsies 
from the colonic mucosa. 

Recently, a major part of research had focused 
on improving prognosis and treatment selection 
in CRC[8-10]. Another approach could be to prevent 
the development of cancer in subgroups of patients 
with high risk, i.e., secondary prevention. Thus, 
the molecular evaluation of the (unaffected) colonic 
mucosa from the patients undergoing an endoscopic 
evaluation could potentially stratify the patients 
according to their risk of developing CRC. Our recent 
findings indicate that even healthy looking mucosa as 
determined by histology may contain a significantly 
elevated level of immune response proteins[11]. 
Biomarkers potentially predicting the disease risk 
among selected patient groups could improve the 
efficiency of the screening programs and patient care. 
Furthermore, they have the potential to dramatically 
alter the established patient care pathways as follow-
up of the patients may be tailored according to their 
individual risk and thereby the organization and use of 
resources of the health care system.

CRC develops in the colonic mucosa which is 
highly affected by the metabolic activities in the 
intestinal lumen. The dietary items reaching the colon 
are digested by the commensal bacteria giving rise 
to various substrates which may prevent, initiate or 
promote colorectal cancer development[12]. Thus, in 
order to understand the processes leading to CRC we 
need to take into account the delicate interactions 
between dietary intake, activity of the commensal 
bacteria and host factors. 

We recently reported that low ABCB1 and ABCG2 
gene transcription levels and high ABCC2 levels are 
early events in the colorectal adenoma-carcinoma 
sequence[13,14] suggesting that changes in expression 
levels of the ATP binding cassette (ABC) transporter 
proteins [EC 3.6.3.44] precede cancer development. 
In addition, inflammatory bowel disease (IBD) may be 
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changes in the levels of ABC transporters were early 
events in the adenoma-carcinoma sequence leading 
to CRC. A link between ABCB1, high fat diet and gut 
microbes in relation to colitis was suggested by the 
animal studies. The finding that colitis was preceded by 
altered gut bacterial composition suggests that deletion 
of Abcb1  leads to fundamental changes of host-
microbiota interaction. Also, high fat diet increases the 
frequency and severity of colitis in specific pathogen-
free Abcb1  KO mice. The Abcb1  KO mice might thus 
serve as a model in which diet/environmental factors 
and microbes may be controlled and investigated in 
relation to intestinal inflammation. Potential molecular 
mechanisms include defective transport of inflammatory 
mediators and/or phospholipid translocation from one 
side to the other of the cell membrane lipid bilayer 
by ABC transporters affecting inflammatory response 
and/or function of tight junctions, phagocytosis and 
vesicle trafficking. Also, diet and microbes give rise to 
molecules which are potential substrates for the ABC 
transporters and which may additionally affect ABC 
transporter function through nuclear receptors and 
transcriptional regulation. Another critical role of ABCB1 
was suggested by the finding that ABCB1 expression 
identifies a subpopulation of pro-inflammatory Th17 cells 
which were resistant to treatment with glucocorticoids. 
The evidence for the involvement of ABCC2 and ABCG2 
in colonic pathophysiology was weak. 

CONCLUSION: ABCB1, diet, and gut microbes 
mutually interact in colonic inflammation, a well-known 
risk factor for CRC. Further insight may be translated 
into preventive and treatment strategies. 

Key words: ATP-binding cassette transporters; 
Colorectal cancer; Intestinal; Inflammatory bowel 
disease; Inflammation; Adenoma-carcinoma sequence
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Core tip: Recently, human studies reported that 
changes in the levels of ATP-binding cassette (ABC) 
transporters were early events in the adenoma-
carcinoma sequence leading to colorectal cancer. A 
link between ABCB1, high fat diet and gut microbes in 
relation to colitis was suggested by the animal studies. 
The Abcb1  KO mice might thus serve as a model in 
which diet/environmental factors and microbes may 
be controlled and investigated in relation to intestinal 
inflammation. Such strategy may provide insight 
which can be translated into preventive and treatment 
strategies to benefit the patients.
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a risk factor for the development of CRC[8]. Therefore, 
we wanted to discuss the current understanding of 
how these ABC transporters may affect intestinal 
inflammation and carcinogenesis, how they may 
potentially interact with the environment such as diet 
and gut microbes, and whether this knowledge may 
be utilized for improved treatment care strategies. 

MATERIALS AND METHODS
Literature search was conducted on PubMed using 
combinations of the following terms: ABC transporters, 
ATP binding cassette transporter proteins, inflammatory 
bowel disease, ulcerative, colitis, Crohn’s disease, 
colorectal cancer, colitis, intestinal inflammation, 
intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/
CD243/MDR1), ABCC2/multidrug resistance protein 2 
(MRP2) and ABCG2/breast cancer resistance protein 
(BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-
out mice, tight junction, membrane lipid function. 

RESULTS
ABC family of transporters; ABCB1, ABCC2, and ABCG2
The large family of ABC transporter proteins is highly 
conserved through evolution and extensive sequence 
and protein homology is shared between numerous 
bacterial and eukaryotic ABC transport proteins[15]. 
The ABC proteins are found in the cell membranes and 
intracellular organelles and the ABC family members 
exert multiple different functions depending on the 
cellular context[16]. 

The ABCB1, ABCC2, and ABCG2 transporters, 
encoded by ABCB1, ABCC2, and ABCG2, respectively, 
are located in the apical cell membrane of epithelial 
and endothelial interfaces within the intestine, testis, 
kidneys, liver, brain, and placenta[17-20]. Thereby, 
they exert barrier functions influencing absorption, 
distribution, excretion, and toxicology (ADME-Tox) 
of exogenous substrates with potential impact on 
inflammation and carcinogenesis[21-25]. ABCB1 and 
ABCG2 transporters have also been identified on 
haematological cells[20,26,27]. Whereas ABCB1 has been 
extensively studied in relation to the gastrointestinal 
system[28], less is known for ABCC2 and ABCG2[29].

No monogenic diseases have been identified 
involving ABCB1 and ABCG2[30,31], but several dif-
ferent mutations in ABCC2 have been observed in 
patients with Dubin-Johnson syndrome, an autosomal 
recessive disorder characterized by conjugated 
hyperbilirubinemia[32]. 

Nuclear receptors such as aryl hydrocarbon receptor 
(AHR), pregnane x receptor (PXR, NR1I2), vitamin D 
receptor (VDR, NR1I1), and constitutive androstane/
activated receptor (NR1I3) are activated by a wide 
variety of exogenous and endogenous factors including 
diet, heavy metals, gut microbes, carcinogens and 
inflammation[33,34] (reviewed in[35]). These nuclear 

receptors may be involved in the transcriptional regula-
tion of ABC transporters[34,36-40] as are the transcription 
factors nuclear factor kappa B (NF-κB), activator 
protein 1 (AP-1)[41], and Wnt signaling transcription 
factor TCF4[42]. Furthermore, ABCB1 undergoes 
several posttranslational modifications (PTMs)[43,44] 
which have been shown to affect the stability of 
ABCB1 and/or substrate transport specificities[45]. 
ABCB1 is a 170-180 kDa glycoprotein with N-linked 
glycosylation at residues Asp91, Asp94 and Asp99. ABCB1 
and ABCC2 have two ATP-binding sites and two six-
transmembrane domains in a symmetric structure 
whereas ABCG2 is a half-transporter and have one ATP 
binding site and one six-transmembrane domain.

ABC transporter substrates include many diverse 
endogenous and exogenous molecules including amino 
acids, peptides, metabolites, vitamins, fatty acids, 
steroids, phospholipids, conjugated organic anions, 
and dietary and environmental carcinogens, pesticides, 
metals, metalloids, lipid peroxidation products and 
drugs[22-24]. Substrate overlap has been reported 
between the ABCB1, ABCC2, ABCG2, and especi-
ally between ABCC2 and the basolaterally located 
ABCC1[23,29]. Specific substrates and their potential role 
in ABC transporter related gut inflammation will be 
discussed later in this review.

Inflammation is a key factor underlying the development 
of CRC
CRC is a heterogeneous disease complex with envi-
ronmental, genetic and host factors involved in the 
aetiology[46,47]. Inflammation is a risk factor for CRC[48-50] 
and accordingly, a subset of patients with IBD[51,52] [with 
the two main forms ulcerative colitis (UC) and Crohn’s 
disease (CD)] characterised by long-term and extensive 
colitis are at high risk of CRC[53,54]. The incidences 
of both CRC and IBD are rising[1,55], which point to 
important roles of environment factors. 

The intestinal mucosa is by far the body’s largest 
surface exposed to and interacting with environmental 
factors. The intestinal epithelium and the mucus 
form a barrier against luminal antigens and invading 
microbes[56,57]. Microbial sensing by intestinal epi-
thelium cells and local innate lymphoid cells (ILCs) 
through pattern recognition receptors (PRR) leads 
to secretion of pro-inflammatory cytokines such as 
tumour necrosis factor-α (TNF-α), interferon-γ (INF-γ), 
interleukin 6 (IL-6), and IL-17[58,59], cytokines which 
have been related to IBD and CRC[60]. Activation of 
PRR stimulates autophagocytic networks[61,62]. Also, 
activation of the innate immune system may result in 
activation of the adaptive immune response with T cell 
involvement; Th1, Th2 and Th17 cells characterised 
by secretion of their signature cytokines INF-γ, IL-4, 
IL-17, respectively, whereas Tregs (and to a lesser 
degree Th2), in contrast, are characterised by their 
production of the anti-inflammatory cytokines IL-10 
and transforming growth factor β (TGF-β)[63,64]. The 
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mentioned, low levels of ABCB1 in colon was found 
to be an early event that preceded malignancy[13]. 
Similarly, in another study using the same cohort 
low levels of ABCG2 and high levels of ABCC2 mRNA 
were found in both colon adenomas and carcinomas 
compared to morphological normal tissue surrounding 
the cancer tissue, and compared to levels in tissue from 
healthy individuals[14]. Taken together, the studies suggest 
that changed expression levels of the ABC transport 
proteins may be early events in the development of IBD 
and CRC.

Genetically determined variation in ABC transporters 
has been investigated in relation to risk of developing 
IBD[75-79] and CRC[80-82] with varying results[83-85]. 
In particular the polymorphisms ABCB1 C1236T, 
G2677T/A, and C3435T have been investigated. These 
polymorphisms are in linkage disequilibrium. Haplotype 
frequencies vary among ethnic groups and the CGC 
and TTT haplotypes are frequent among Caucasians[86]. 
The synonymous C3435T polymorphism was reported 
to cause changes in protein folding due to ribosome 
stalling caused by impaired interaction between the 
tRNA and the chaperone protein that aids the folding 
process at the ribosome[86] which resulted in altered 
transporter function[87]. A recent meta-analysis found 
that the ABCB1 C3435T polymorphism (rs1045642) 
was associated with risk of UC, but not with CD[84]. 
In relation to CRC, a large case-control analysis of 
a Czech and two German cohorts of 4677 cases in 
total found no indications of a strong role of ABCB1 in 
CRC[88] which was in accordance with a meta-analysis 
(not including the above study)[85]. A prospective 
study based on a Danish cohort found that two ABCB1 
polymorphisms, including the C3435T polymorphism, 
were associated with CRC risk[82]. Furthermore, 
these two polymorphisms were found to interact 
with meat intake in relation to risk of CRC. Only few 
studies of ABCC2 and ABCG2 polymorphisms as risk 
factors for IBD and CRC have been performed. No 
strong indications that genetic variation in ABCC2 or 
ABCG2 per see is associated with IBD or CRC were 

role of the Th17-associated cytokines in animal 
models of colitis[65], IBD[66] and CRC[67] have been in 
focus the recent years and it has been suggested that 
Th17 cells may have evolved to combat bacterial and 
fungal infections via orchestration of the neutrophil 
inflammatory response[63]. However, this seems to be 
a simplistic view[68] and more T cell subsets with as 
yet unclarified functions in IBD and CRC have been 
identified these years[69-71]. 

ABC transporters, IBD and CRC
Englund et al[72] found significantly lower levels of both 
ABCB1 and ABCG2 mRNA in colon and rectal biopsies 
from 16 patients with active UC compared to healthy 
individuals whereas the levels did not differ between 
UC patients in remission and healthy controls (Table 
1). The authors also reported lower ABCB1 and ABCG2 
levels in colon from patients with active inflammation 
compared with controls[72]. Langmann et al[40] reported 
low levels of ABCB1 and ABCC2 mRNA in biopsies from 
colon adjacent to inflammation from patients with UC 
compared to the levels in controls. In contrast, Deuring 
et al[73] reported similar levels of ABCG2 mRNA in 
intestinal biopsies from healthy individuals, patients in 
remission and patients with active inflammation but 
dramatically reduced levels of ABCG2 in IBD patients 
with active inflammation when compared to patients 
in remission or healthy controls using quantitative 
immunohistochemistry (Table 1). These observations 
suggest that the low levels of ABCG2 observed in 
inflamed colon were caused by posttranscriptional 
processes[73]. The study also found inflamed colon to 
contain high levels of the endoplasmic reticulum (ER)-
stress marker GRP78 and in vitro they found nitric 
oxide induced ER-stress to impair ABCG2 function[73]. 
The authors therefore suggested that incorrect protein 
folding caused by inflammation-induced ER dysfunction 
may lead to low levels of ABCG2 in inflamed colon of 
IBD patients[73,74]. 

The role of ABC transporters has also been inves-
tigated in relation to CRC (Table 2). As previously 
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Table 1  The ABCB1, ABCC2 and ABCG2 mRNA and protein levels in intestinal tissue from patients with ulcerative colitis

Controls Inactive disease Active disease Ref.

Colon Colon P  value Rectum P value Colon P  value Rectum P value

Gene ABCB11 1 (ref) NA NS NA 22% < 0.001 34% < 0.01 [72]
ABCC21 1 (ref) NA NS NA NA NS NA NS [72]
ABCG21 1 (ref) NA NS NA 11% < 0.001 16% < 0.001 [72]

Array ABCB12 287 -1.5 [40]
ABCC22   81 -8.6 [40]

Protein ABCG23 100 (9/9) 80 (53/67) 24 (13/54) 0.01 [73]

1The ABCB1, ABCC2 and ABCG2 mRNA levels in colon and rectum tissue from patients with ulcerative colitis in remission (n = 17) or with active disease 
(n = 16) compared to the levels in colon tissue from healthy controls (n = 17). mRNA levels are normalised to the villin mRNA level. P values compared to 
the expression in the controls; 2Microarray analyses of pooled cRNA from uninflamed colonic tissue from 4 patients with UC and 4 control subjects. Fold 
change expression in colon tissue compared to controls. Statistically significant expression levels of ABCB1 were found in UC patients compared to controls 
by RT-PCR analyses using 18S RNA as internal control (P < 0.05); 3Quantitative immunohistochemistry of formalin-fixed paraffin-embedded (FFPE) colonic 
biopsies from 9 healthy individuals and 36 patients with ulcerative colitis. The values are n % (samples with positive staining/total number). P value for 
active colitis compared to controls and inactive colitis, respectively. NA: Not available; NS: Not significant.
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found[80,81].

ABC transporters and colitis and dysplasia in animal 
models 
The Abcb1/Mdr1a knock-out (Mdr1a KO) mouse, in 
which the gene corresponding to the human intestinal 
ABCB1 gene has been deleted[89,90], has been utilized 
as an animal model of colitis[91-95]. The colitis is 
characterized by histological changes and high levels 
of the cytokines INF-γ, TNF-α, IL-1β, IL-6 and IL-17 
thus resembling the findings in UC patients. The 
classical study by Panwala et al[91] reported that a 
proportion of Mdr1a KO mice developed colitis when 
exposed to commensal gut bacteria. The development 
of spontaneous colitis was prevented if the mice 
were maintained germfree. Also, spontaneous 
colitis and active inflammation was resolved by oral 
treatment with a mixture of streptomycin, neomycin, 
bacitracin, and amphotericin. These findings highlight 
an important role of bacteria in the initiation and 
perpetuation of colitis in the Mdr1a KO mouse[91]. Since 
then, the finding that lack of Mdr1a confers risk of 
colitis has been replicated by others[94-98]. Furthermore, 
a proportion of the Mdr1a KO mice dual-infected 
with Helicobacter species (H.bilis and H. hepaticus) 
developed dysplasia[99].

One study found redused in the diversity and 
total number of bacteria in mdr1a KO mice compared 
to wildtype mice. These alterations were found to 
precede and associate with the development of 
inflammation[95]. Another study reported changes in 
colonic gene expression which also preceded disease 

development[98]. High expression of INF-γ was found 
in histologically normal colonic tissue from Mdr1a 
KO mice and the change preceded a high expression 
of the inflammatory cytokines IL-1β, IL-6, TNF-α, 
increased colonic permeability, and histologically 
determined colon inflammation[98]. Yet, another study 
found a high level of the pro-inflammatory cytokine 
IL-17 in colon from the Mdr1a KO mice model[92]. 
INF-γ expression has been associated with reduced 
intestinal barrier function due to effects on tight 
junction proteins[96]. Also, one study suggested that 
impaired intestinal barrier function contributed to 
the development of colitis in Mdr1a KO mice. In this 
study, high permeability of FITC-dextran (4.4 kDa) and 
horseradish peroxidase (44 kDa) was found in colon 
tissue mounted in Ussing chambers and in vivo, high 
bacterial translocation to lymphoid tissue including 
increased trabecular infiltrate with neutrophils were 
found[94]. These changes were observed prior to onset 
of colitis. Furthermore, decreased phosphorylation 
of tight junction proteins including occludin was 
observed[94]. Thus, inflammation and the following high 
INF-γ expression may contribute to the loss of barrier 
function which has been observed in the Abcb1 KO 
mice.

High fat diet-induced obesity increases the fre-
quency and severity of colitis in the mdr1a KO mice[100]. 
Wildtype mice feeding either high-fat diet or low fat 
diet did not develop colitis[100]. In contrast, specific 
pathogen free Mdr1a KO mice fed high fat diet had a 
higher frequency and more severe colitis compared 
to those who were fed a low fat diet[100]. Although 
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Table 2  The ABCB1, ABCC2 and ABCG2 mRNA levels in intestinal tissue from patients with adenomas and colorectal cancer and 
healthy individuals

Unaffected tissue P  value1 Adenomas/carcinomas P  value1 P  value2 Ref.

ABCB1 [13]
Healthy individuals 0.012 ± 0.008
Mild/moderate dysplasia cases 0.009 ± 0.004 NS 0.005 ± 0.004 < 0.050 < 0.001
Severe dysplasia cases 0.009 ± 0.030 NS 0.003 ± 0.002 < 0.050 < 0.001
Cancer patients 0.009 ± 0.014 (distant) < 0.05 0.003 ± 0.005 < 0.001 < 0.001

  0.007 ± 0.009 (adjacent) < 0.05 < 0.010
ABCC2 [14]
Healthy individuals 5.35 ± 3.24
Mild moderate dysplasia cases 4.62 ± 4.79 0.081 6.68 ± 6.77 0.87  0.037
Severe dysplasia cases 6.66 ± 8.47 0.880 10.18 ± 11.52 0.27  0.240
Cancer patients 28.06 ± 68.84 (distant) 0.036   87.50 ± 270.21     0.0046    0.0037

  11.44 ± 25.58 (adjacent) 0.690 < 0.0001
ABCG2 [14]
Healthy individuals 718.06 ± 761.24
Mild moderate dysplasia   732.85 ± 2305.28 0.550 56.02 ± 118.42 < 0.0001 < 0.0001
Severe dysplasia 448.02 ± 195.34 0.840 76.31 ± 102.63 < 0.0001 < 0.0001
Cancer patients 6679 ± 58353 (distant) 0.080 98.41 ± 476.36 < 0.0001 < 0.0001

  1302 ± 10090 (adjacent) 0.011 < 0.0001

1P values for comparison of the expression levels in tissue from healthy individuals adjusted for age and gender. Samples were available for 18 healthy 
controls, 88-94 patients with mild/moderate dysplasia, 12 with severe dysplacia, and 121-122 patients with CRC; 2P value for the comparison of the 
expression levels in morphologically unaffected and affected tissue from the same individual using Paired Student’s t-test. All values are mean ± SD. 
ABCB1 mRNA levels are normalised to the β -actin mRNA level. ABCC2 and ABCG2 mRNA levels are normalised to 18S RNA levels. Matching samples 
were available from ABCG2: 66-75 cases with mild-moderate dysplasia, 11 cases with severe dysplasia, and 63-80 and 66-99 CRC cases (distant unaffected 
tissue, and adjacent unaffected tissue, respectively). NS: Not significant.
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the microbiota was not investigated in this study, the 
authors concluded that the diet and potential diet-
induced changes in microbiota was not sufficient 
to induce colitis in the mice but that additional host 
genetic factors are required before the high fat diet is 
a risk factor for colitis[100].

Impaired immune system may also be involved in 
the aetiology of colitis in the Mdr1a KO mice model. 
In mice, regulatory T cells (Tregs) characterised by 
the expression of the transcription factor Foxp3[101] 
are considered to down-regulate effector T cells that 
react to microbial or other gastrointestinal antigens. 
In the study by Tanner et al[97], they also found that 
there appeared to be fewer Tregs present in intestine 
from mdr1a KO mice and that these Tregs were 
unable to effectively suppress TNF-α induced colitis. 
These results are in accordance with the notion that 
inflammation primarily is initiated by the innate 
immune system.

In contradiction to the findings in the Mdr1a KO 
mice model, Abcc2/Mrp2 KO and Abcg2/Bcrp1 KO 

mice were found to be phenotypically normal under 
standard housing conditions[102,103]. 

The molecular mechanisms of ABC transporters may 
involve phospholipid transport
Cellular processes such as phagocytosis, apoptosis, 
cytokine release, vesicle formation and tight junction 
function require cell membrane budding and curvature 
and therefore, different composition of the inner 
and outer side of the lipid bilayer forming the cell 
membrane (Figure 1)[104]. Translocation of phospholipids 
between the two sides of the lipid bilayer within the cell 
membrane is therefore important for generating such 
differences. ABCB1, ABCC2, and ABCG2 have been 
found to translocate various phospholipid membrane 
components; cholesterol, sphingomyelin, and other 
glycosphingolipids suggesting that ABC transporters 
are important for regulating the budding of the 
membrane function[15,16,105,106]. Furthermore, the cellular 
processes also require cell cytoskeleton anchoring 
through specialised domains[107]. ABCB1 has been 
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Ⅰ. Passive "flip-flop" Ⅱ. Bi-directional 
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Ⅳ. Outward "export" 
(ABC flippase)

ATP ATP ATP ATP ATP ATP ATP ATP
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Acceptor

ATP hydrolysis ATP hydrolysis
ATP hydrolysis
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ATP hydrolysis

Ⅰ. Substrate enters 
transporter from inner leaflet 
and is flipped to outer leaflet

Ⅱ. Substrate enters 
transporter from inner leaflet 
and exits directly to acceptor

Ⅲ. Solute/ion/amphiphiles 
move directly into bilayer, and  
out to external environment

Ⅳ. Substrate enters 
transporter from outer leaflet 

and exits to acceptor

A

B

Figure 1  The models presented are from Tarling et al[16]. A: Lipids can move across the membrane bilayer by multiple mechanisms. Four mechanisms are 
proposed here: (1) membrane lipids passively diffuse or “flip-flop” from one leaflet of the bilayer to another; (2) bi-directional movement of lipids from one membrane 
leaflet to another is enhanced by proteins present in the membrane bilayer; (3) P-type ATPases mediate the movement of specific lipids (phospholipids) from the outer 
leaflet of the membrane bilayer; and (4) ABC transporters/flippases mediate the “outward” movement of specific lipids (phospholipids/cholesterol) from the inner leaflet 
to the outer leaflet of the membrane bilayer; B: Mechanisms of substrate recognition and transport by ABC transport proteins: (1) substrates enter the transporter 
from the inner leaflet and are flipped to the outer leaflet where they can exit the membrane bilayer; (2) as in (1) but the substrate exits the transporter directly to an 
exogenous acceptor; (3) solute/ions/amphiphiles move directly into the bilayer, through the transporter protein and out to the external environment; and (4) substrates 
enter the transporter from the outer leaflet and exits to an acceptor molecule. 

Andersen V et al . ABC transporters in IBD and CRC



found to be associated with such domains[106,108,109]. 
Other phospholipid transporters such as scramblases, 
P4-ATPases and additional members of the ABC 
transporter family, are reviewed in[15]. 

In vitro studies of rat kidney and Sertoli cells 
support the involvement of ABC transporters in 
tight junction function and apoptosis[110,111]. At the 
Sertoli cell blood-testis barrier, ABCB1 was found to 
co-localise with occluding, claudin-11 and junction 
adhesion molecule A[110]. Knockdown of Abcb1 (Abcb1a 
and Abcb1b) by RNAi in rat Sertoli cell cultures led to a 
decline of claudin-11, internalisation and degradation 
of occluding, and disruption of tight junction barrier 
function[110]. Another study found that ABCB1 de-
creased apoptosis by decreasing the availability of a 
precursor of ceramide[111], an intracellular signalling 
molecule involved in apoptosis induced by TNF-α and 
other apoptotic stimuli[106,108]. However, the functions 
of the ABC transporters may be tissue specific and 
therefore the results may not apply for intestinal 
conditions.

The molecular mechanisms of ABC transporters may be 
related to the transport of other substrates
Figure 1 shows mechanisms of substrate recognition 
and transport by ABC transporters[16]. An in vitro 
study by Pawlik et al[112] on cultured peripheral blood 
mononuclear cells PBMC from healthy individuals 
found that stimulation with phytohaemagglutinin 
(PHA) leads to secretion of IL-2, IL-4, IL-6, IL-10, 
INF-γ, and TNF-α[112]. Furthermore, secretion of IL-2, 
IL-4, INF-γ, and TNF-α was inhibited by anti-MDR1 
specific antibody whereas secretion of IL-6 and IL-10 
was unaffected. In a similar study, blockade of ABCC1 
by anti-MRP1 specific antibodies led to reversible 
abrogated cytokine secretion of IL-10, TNF-α, IL-4 and 
INF-γ[113]. However, another study using splenocytes 
from Mdr1a KO mice found that IL-2, IL-4, IL-10, 
and INF-γ secretion was independent of ABCB1. The 
authors suggested that ABCB1 may not be required 
for secretion of these cytokines because they contain a 
signal sequence designating the cytokines for secretion 
from the cells[114]. Yet, a further in vitro study by Pawlik 
et al[115] on cultured PBMC, this time from 72 healthy 
ABCB1 genotyped individuals was conducted. The 
cultured cells were stimulated with PHA and cytokines 
were measured in the supernatant. The authors found 
significantly lower concentration of IL-2, IL-4, INF-γ, 
and TNF-α, and unchanged concentration of IL-6 and 
IL-10 in cultured cells from individuals with ABCB1 
C3435T TT genotypes compared to CC genotypes[115]. 
Also, ABCB1 blockade by the antagonist PSC833 
resulted in impaired IL-12 secretion by antigen 
presenting cells from peripheral blood from healthy 
human volunteers suggesting that functional ABCB1 
is required for IL-12 secretion in these cells[116]. As 
previously mentioned, cytokines and chemokines are 
important modulators of intestinal inflammation and 

carcinogenesis[108,117]. Additionally, ABCB1, ABCC2, 
and ABCG2 also transport bioactive lipids[15,16,105]. 
The levels of the ABCB1 substrate platelet-activating 
factor[117-119] have been found to be high in intestinal 
mucosa from CD patients[120]. PAF has been reported 
to regulate the function of tight junctions[121] and to 
activate human neutrophils to extrusion of neutrophil 
extracellular traps (NETs) mediating extracellular 
capture and killing of bacteria[122,123]. Also, ABCB1 has 
been reported to transport steroids, mineralocorticoids, 
androgens and oestrogens[106]. Interestingly, the 
ABC substrate testosterone was found to be a key 
mediator of autoimmune responses in the non-obese 
diabetic mouse model of type 1 diabetes[124]. Whether 
a similar phenomenon contributes to the observed 
male preponderance in Mdr1a KO IBD mouse model 
has not been studied as far as we know[94]. ABCG2 
transport the anti-inflammatory butyrate, a product of 
bacterial digestion of dietary fibres, and phytoestrogen 
from vegetables[125,126]. ABCC2 has been reported to 
transport the pro-inflammatory signalling molecules 
leukotriene (LT) B4 and LTC4 involved in dendritic cell 
migration and CRC, and, furthermore, various diet- 
and smoke-derived carcinogens[127-131]. Sulfasalazine 
and 5-aminosalicylic acid (5-ASA, mesalazine) are 
used for treatment and prevention of UC flares[132]. 
ABCG2 is regarded as being the main transporter 
of sulfasalazine[133,134] and ABCG2 activity has been 
suggested as having impact on sulfasalazine treatment 
efficacy in patients with rheumatoid arthritis (RA)[135,136]. 

ABCB1 expression on T cells may identify pro-
inflammatory Th17 cells 
One study utilised ABCB1 expression to identify 
human Th17 cells with a unique pro-inflammatory 
transcriptional signature[20]. This novel subset of Th17 
cells, MDR1-positive Th17 cells, was identified by 
fluorescence activated cell sorting (FACS) analysis of 
PBMC from healthy individuals. Compared to MDR1-
negative Th17 cells, the MDR1-positive Th17 cells were 
characterized by a high production of pro-inflammatory 
Th1 (INF-γ) and Th17 (IL-17A, IL-17F, and IL-22) 
cytokines and low levels of anti-inflammatory cytokines 
such as IL-10 upon stimulation[20]. In contrast to the 
MDR1-negative T cells, the MDR1-positive T cells 
were resistant to treatment with glucocorticoids. 
Thus, MDR1-positive T cells from healthy humans 
were enriched two- to three-fold during culturing of 
peripheral blood memory T cells in the presence of 
glucocorticoids[20]. Furthermore, in a small study of 
3-5 CD patients, MDR1-positive Th17 cells (assessed 
as percent of the total number of memory cells) were 
enriched both in non-inflamed and inflamed gut tissue 
compared to blood levels[20]. High mRNA levels of 
IFN-γ, IL23R, and TNF were found in MDR1-positive 
Th17 cells compared to MDR1-negative Th17 cells 
following FACS-sorting of mononuclear cells from gut 
tissue from two CD patients[20]. 
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DISCUSSION
The ABC transport proteins may confer a link between 
the environment and intestinal inflammation and 
potentially intestinal carcinogenesis via intestinal 
inflammation[48-50,137,138] . Diet affects risk of CRC[1], 
the course[139-143] and risk of IBD [144-148] (reviewed 
in[149-153]). Diet affects gut microbial composition[154,155] 
and both diet and intestinal microbes affect intestinal 
inflammation[156,157] and carcinogenesis[12,158-161]. 

A link between ABCB1, diet and the gut microbes 
in relation to colitis is suggested by the animal studies. 
High fat diet increases the frequency and severity of 
colitis in specific pathogen-free Abcb1 KO mice[100]. 
Undigested dietary items reaching the colon are 
digested by commensal bacteria thereby providing 
the host with valuable energy, essential vitamins, 
fatty acids etc. Dietary fibre from grains, fruit and 
vegetables is converted into short-chain fatty acids 
(SCFA) which represent important key regulators 
of the immune system[12]. The gut microbiome in 
active IBD is characterised by decreased microbial 
diversity with a decreased number of Firmicutes[162]. 
Low abundance of the Clostridium and Bacteroides 
species which preferentially produce butyrate and 
other SCFA may result in low production of SCFA[163]. 
High intake of meat which is a rich source of sulphur 
may lead to the formation of hydrogen sulphide by 
bacterial fermentation[12] which, at least theoretically, 
may be aggravated by high intake of milk fat which 
was found to favour the presence of the sulphate-
reducing bacteria Bilophila wadsworthia in mice[157]. 
Also, intake of animal fat may give rise to arachidonic 
acid which is converted into e.g., prostaglandins and 

leukotrienes[12]. Some of these molecules are ABC 
transporter substrates including dietary pro- and anti-
inflammatory molecules, bioactive lipids, and bacterial 
derived molecules[125,126]. Figure 2 shows potential 
mechanisms of the involvement of ABC transporters in 
inflammation. In addition, diet and other environmental 
factors may impact the transcriptional regulation of 
ABC transporters through effects on nuclear receptors 
and transcription factors leading to changes of the ABC 
transporter activity thereby affecting IBD and CRC. The 
ABC transporters may impact IBD and CRC through 
their transport of various substrates thereby affecting 
underlying biological mechanisms involved in intestinal 
inflammation (Figures 1 and 2).

ABC transporter polymorphisms have been 
evaluated in relation to development of IBD and CRC 
with inconsistent results. These studies are based on 
the hypothesis that genetic variations are associated 
with functional changes in ABC activity and/or 
specificity. It has been suggested that genetic diversity 
of the ABCB1 gene among various ethnicities may 
contribute to the varying results in candidate gene 
studies[164,165]. In addition, ABCB1 polymorphisms may 
only be associated with risk of CRC in populations with 
a relevant dietary exposure[166]. This aspect may be 
exemplified by the finding of an interaction between 
meat intake and the gene NFKB1 encoding NFκB p50 
in a Danish cohort[137]. This interaction may explain the 
finding that the NFKB1 polymorphism was associated 
with risk of CRC in a Swedish cohort but not in a 
Chinese cohort[167]. Meat intake are higher in Denmark 
and Sweden compared to China[168]. Therefore, NFKB1 
was identified as a risk gene in the Danish and Swedish 
high meat intake cohorts but not in the Chinese low 
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Figure 2  Proposed mechanisms for the involvement of ABC transporters in intestinal inflammation.
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meat intake cohort. A detailed assessment of the diet 
seems to be important for assessing the roles of ABC 
polymorphisms. Thus, future studies should focus on 
studying large cohorts with well-defined and relevant 
prospectively sampled environmental exposures in 
order to identify underlying IBD and CRC disease 
mechanisms.

Due to the many confounding parameters, potential 
causality cannot be evaluated through molecular 
epidemiological studies. Studies using animal models, 
where a range of parameters can be controlled are 
therefore needed for establishing causality. Germfree 
mice do not develop colitis. Although germfree mice are 
not exposed for living bacteria they will meet dietary 
derived microbial antigens which could activate PRR in 
the mucosa and induce inflammation. Inflammation, 
however, has not been observed in the germfree mice. 
Moreover, colitis can be prevented by antibiotics in 
conventionally housed, specific pathogen-free, mice. 
These findings suggest that microbial derived antigens 
are not sufficient to trigger colitis but that living 
microbes are needed and may thus point to potential 
mechanisms such as microbial derived metabolites, 
signalling peptides and extracellular vesicles[169,170]. 
Indeed, gut microbial derived metabolites were 
found to affect the balance between pro- and anti-
inflammatory cells in mice[171]. These metabolites 
may be absorbed into the blood and thereby affect 
distant organs. Gut microbes have been reported 
to affect the immune system, in particular the Th17 
pathway, in various autoimmune mouse models[172-176]. 
Some studies, but not all[177], indicate a similar 
mechanism in humans which might also associate 
with human autoimmunity[178-180]. Also, bacterially 
derived fatty acids and other relevant metabolites 
should be investigated in the Abcb1 KO mice like it 
has been done in male C57BL/6 (B6) mice[171]. The 
Abcb1 KO mice might provide a model, in which the 
interplay of environment factors, diet, and microbes 
can be controlled and investigated. Due to important 
differences of human and murine immune systems, 
the translational value of results obtained from the 
mouse model need also to be evaluated through 
human data.

The finding that presence of ABCB1 on immune 
cells could be used to identify pro-inflammatory 
Th17 cells may have important clinical implications 
as glucocorticoids are a mainstay in the treatment of 
serious flares of IBD[181] and since a large proportion 
(20%-30%) of patients are resistant to glucocorticoid 
treatment[182]. Thus, high ABCB1 mediated drug efflux 
may lead to decreased intracellular drug concentrations 
in target cells [183, 184] and thereby confer glucocorticoid 
treatment resistance. Likewise, ABCG2 activity 
may affect efficacy of treatment with sulfasalazine. 
Further evaluation of the roles of ABC transporters in 
treatment response in IBD is warranted.

In conclusion, results from animal and human 
studies indicate that ABCB1, diet, and gut microbes 

mutually interact in colonic inflammation. Diet 
and microbes may give rise to molecules which 
are substrates for the ABC transporters and may 
additionally affect ABC transporter function through 
e.g., nuclear receptors and transcriptional regulation. 
The Abcb1 KO mice might provide a model in which 
these factors can be controlled and investigated. Such 
strategy may provide insight which can be translated 
into preventive and treatment strategies to benefit the 
patients. The evidence for the involvement of ABCC2 
and ABCG2 in colitis was weak. 
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COMMENTS
Background
Colorectal cancer (CRC) constitutes the third most common cancer in the world 
and the second leading cause of cancer-related deaths. The number of cases 
is increasing and has been estimated to raise from 1.4 million cases in 2012 
to 2.4 million cases in 2035 worldwide. Early detection of CRC is important as 
early treatment has been associated with improved outcomes and saved lives. 
Therefore, population screening programs have been initiated in a number 
of countries such as the United Kingdom, Australia, Holland and Denmark. 
The fecal occult blood test (FOBT) is the most widely used for population 
screening and individuals with a positive FOBT are referred for an endoscopic 
investigation of the colonic mucosa thereby enabling the sampling of biopsies 
from the colonic mucosa. 

Research frontiers
Recently, a major part of research had focused on improving prognosis 
and treatment selection in CRC. Another approach could be to prevent the 
development of cancer in subgroups of patients with high risk, i.e., secondary 
prevention. Thus, the molecular evaluation of the (unaffected) colonic mucosa 
from the patients undergoing an endoscopic evaluation could potentially stratify 
the patients according to their risk of developing CRC. Recently, human studies 
by authors reported that changes in the levels of ABC transporters were early 
events in the adenoma-carcinoma sequence leading to CRC. These findings 
indicate that even healthy looking mucosa as determined by histology may 
contain a significantly elevated level of immune response proteins. 

Innovations and breakthroughs
The authors recently reported that low ABCB1 and ABCG2 gene transcription 
levels and high ABCC2 levels are early events in the colorectal adenoma-
carcinoma sequence suggesting that changes in expression levels of the ATP 
binding cassette (ABC) transporter proteins [EC 3.6.3.44] precede cancer 
development. In addition, inflammatory bowel disease (IBD) may be a risk 
factor for the development of CRC. Therefore, the authors wanted to discuss 
the current understanding of how these ABC transporters may affect intestinal 
inflammation and carcinogenesis, how they may potentially interact with the 
environment such as diet and gut microbes, and whether this knowledge may 
be utilized for improved treatment care strategies. A link between ABCB1, 
high fat diet and gut microbes in relation to colitis was suggested by the 
animal studies. The Abcb1 KO mice might thus serve as a model in which 
diet/environmental factors and microbes may be controlled and investigated in 
relation to intestinal inflammation. Such strategy may provide insight which can 
be translated into preventive and treatment strategies to benefit the patients. 

Applications
Biomarkers potentially predicting the disease risk among selected patient 
groups could improve the efficiency of the screening programs and patient 
care. Furthermore, they have the potential to dramatically alter the established 
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patient care pathways as follow-up of the patients may be tailored according 
to their individual risk and thereby the organization and use of resources of the 
health care system.

Peer-review
Congratulations to the authors for their review on ABC transporters ABCB1/
MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal 
pathophysiology. It is certain that this paper will be very inspiring in this field. 
Personally recommend it to be accepted.
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